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ACADEMIC	  BACKGROUND	  
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Ø 2012-‐2015	  PhD	  with	  Michel	  Rieutord	  on	  the	  
“2D	  dynamics	  of	  the	  radiaAve	  zone	  of	  fast	  
rotaAng	  intermediate	  mass	  stars	  undergoing	  
gravitaAonal	  contracAon”	  
At	  IRAP,	  Toulouse.	  
Ø Since	  November	  2015	  Post-‐doc	  with	  Stéphane	  
Mathis	  on	  “Mechanisms	  of	  angular	  
momentum	  transport	  in	  stars”	  (ERC	  SPIRE,	  
LDEE).	  

	  



KEY	  WORDS	  OF	  WHAT	  I	  DO:	  
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•  Studied	  objects:	  Stars,	  their	  radiaAve	  zone	  	  
	  	  	  	  (stable	  straAficaAon)	  
•  Tools:	  2D	  numerical	  simulaFons	  

	   	  	  	  	  	  solving	  hydrodynamics	  equaAons	  
	   	  	  	  	  	  analyAcal	  studies	  

•  Codes:	  LSB,	  ESTER	  
•  To	  characterize:	  the	  internal	  rotaFon	  field	  and	  
angular	  momentum	  transports	  
•  ResulAng	  from:	  baroclinic	  state,	  gravitaAonal	  
contracAon,	  dynamical	  boundary	  condiAons	  

•  Soon:	  magneAc	  field,	  internal	  gravity	  waves	  



WHY	  2D	  MODELS?	  

•  Interested	  by	  the	  stellar	  
rotaAon	  

•  Intrinsically	  
mulAdimensional	  	  

•  1D	  models	  good	  for	  slow	  
rotaAon	  rate	  

•  3D	  models	  devoted	  to	  
small	  Amescales	  
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Domiciano	  de	  Souza	  et	  al.	  2003	  

Interferometric	  observaAons	  
of	  Achernar	  



SCIENTIFIC	  CONTEXT	  OF	  THE	  PhD	  
•  We	  do	  not	  know	  
the	  dynamical	  
history	  of	  stars	  

•  Large	  spread	  of	  
rotaAonal	  
velocity	  of	  stars	  
on	  the	  main	  
sequence	  

•  Need	  for	  
dynamical	  iniAal	  
condiAons:	  the	  
pre	  main	  
sequence	  phase	  
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Gallet	  Bouvier	  2013	  



•  Intermediate	  mass	  stars:	  
large	  radiaAve	  core	  

•  Phase	  of	  gravitaAonal	  
contracAon:	  induces	  a	  
spin-‐up	  flow	  
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THE	  PRE	  MAIN	  SEQUENCE	  PHASE	  

•  CompeAAon	  between	  	  
the	  baroclinic	  soluAon	  and	  the	  spin	  up	  soluAon	  
	  



SPIN-‐UP	  FLOWS	  
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Contexte scientifique 17
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Figure 1.3 – Représentation schématique de l’écoulement de spin-up d’un fluide au sein
d’une sphère. u0 est l’écoulement géostrophique azimutal ; ũ0 la composante méridienne de
l’écoulement dans la couche d’Ekman et ũ1 le pompage d’Ekman générant la circulation
d’Ekman u1 (Rieutord, 2014).

Les écoulements de Couette ont aussi fait l’objet d’études expérimentales. Par exemple,
Rieutord et al. (2012) ont observé les modes inertiels (la force de rappel est la force de
Coriolis) de l’eau entre deux coquilles sphériques en rotation. Ils montrent l’importance de
la viscosité qui générent des couches de cisaillement au niveau du cylindre tangent à la sphère
interne et excitent les modes.

Le spin-up dans une sphère a été étudié d’un point de vue analytique par Rieutord
(2014). La théorie de couche limite fournit les amplitudes des composantes de vitesse de
l’écoulement de spin-up. Comme le montre la figure (1.3), le pompage d’Ekman génère une
circulation méridienne et montre l’importance notamment de cette circulation d’Ekman dans
le transport de moment cinétique à l’intérieur du fluide. Elle contrôle la durée du spin-up,
temps beaucoup plus court que celui de la diffusion visqueuse.

A l’heure actuelle, aucune étude n’a été menée à notre connaissance sur le spin-up d’un
fluide par contraction gravitationnelle.

Pour conclure cette introduction au contexte scientifique qui a motivé ce travail, nous
présentons nos objectifs détaillés dans l’entre-chapitre suivant.

La section suivante est dédiée à l’étoile Achernar qui sert de cible d’étude à la dernière
partie de notre travail. Nous présentons dès à présent ces caractéristiques principales.

Quasi	  steady	  flows	  arising	  when	  a	  fluid	  
rotaAng	  at	  Ω	  is	  accelerated	  to	  Ω+ΔΩ	  



MAIN	  RESULTS	  
•  The	  flow	  induced	  by	  the	  contracAon	  has	  a	  
higher	  amplitude	  at	  the	  end	  of	  the	  Pre	  Main	  
Sequence	  phase:	  

Universal	  differenAal	  rotaAon	  at	  the	  ZAMS	  
Columnar	  structure	  
Needs	  a	  2D	  descripFon	  
	  
•  Presence	  of	  a	  	  
Stewartson	  layer:	  will	  be	  important	  for	  massive	  
stars	  and	  evolved	  stars	  
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POST-‐DOC:	  LOW	  MASS	  MAIN	  
SEQUENCE	  STARS	  

Garcia	  et	  al.	  2007	  
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Call	  for	  2D	  hydrodynamical	  models	  on	  secular	  
Amescale	  

Helioseismology:	  unAl	  0.2Rsun	  the	  radiaAon	  zone	  rotates	  as	  a	  solid	  body.	  
Asteroseismology:	  Ωc/Ωs	  of	  numerous	  main-‐sequence,	  subgiant	  and	  giant	  stars	  
(Benomar	  et	  al.	  2015,	  Kurtz	  et	  al.	  2014,	  Triana	  et	  al.	  2014,	  Saio	  et	  al.	  2015,	  Murphy	  et	  al.	  2016,	  Deheuvels	  et	  al.	  2012,	  

Deheuvels	  et	  al.	  2014,	  Deheuvels	  et	  al.	  2016,	  Beck	  et	  al.	  2012,	  Mosser	  et	  al.	  2012)	  	  weaker	  than	  predicted:	  
sign	  of	  a	  strong	  transport	  of	  angular	  momentum	  in	  stellar	  radiaAve	  zones	  

	  new	  constrains	  for	  stellar	  modelling	  	  
	  



P.J.Käpyläetal.:Bistablestellardifferentialrotation

Fig.6.Radial(leftpanel)andlatitudinal(rightpanel)differentialrotation,definedbyEqs.(21),fromRunsA–E(diamonds),andSetD(blue
dottedlinewithasterisks)andB(reddashedlinewithtriangles).

extendstohigherlatitudesandconsistsofseveralcellsatlow
latitudes.Thecellathighlatitudesislikelyanartefactofthe
closedθ-boundary.Asimilartransitionfrommultipletosingle
cellshasbeenobservedbeforeindifferentsettings(e.g.Käpylä
etal.2011a;Mattetal.2011;Gastineetal.2013).Theflow
amplitudenearthesurfaceinRunDisoftheorderof30ms−1,
whichisstillsomewhathigherthanthe20ms−1obtainedfrom
helioseismology(Zhao&Kosovichev2004).

Asingle-cellpolewardcirculationwithsolar-likerotation
hasbeenreportedfromsimulationsinsphericalshellswiththe
ASHcodebyimposingalatitudinalentropyvariationonthe
bottomboundary(Miesch2007;Mieschetal.2011).Inour
spherical-wedgesimulations,suchacirculationpatternincom-
binationwithasolar-likedifferentialrotationprofilehassofar
occurredonlyasatransitoryphenomenoninrunsthathavenot
yetfullyrelaxed,andtheytypicallyendupintheanti-solar
regime.Recenthelioseismicstudiessuggestthatthesolarmerid-
ionalcirculationpatternconsistsofseveralcellsinradiusand
possiblyalsoinlatitude(Zhaoetal.2013;Schadetal.2013;
Kholikovetal.2014),whichisalsorealizedinourmorerapidly
rotatingcasesbutisatoddswithmean-fieldmodelsofsolarro-
tation(e.g.Rempel2005;Kitchatinov&Rüdiger2005).

3.4.Flowbistability

WeconfirmrecentresultsofGastineetal.(2014)thatnearthe
transitionfromsolar-liketoanti-solardifferentialrotation,two
stablesolutionsforthelarge-scaleflowexistforthesamepa-
rametervalues,onlydependingontheinitialconditions.

Ourresultsfor∆(r)
Ω

and∆(θ)
Ω

areshowninFig.6forthree
setsofmodels(cf.Table1).Firstly,werunmodelsfromthe
initialconditionsdescribedinSect.2.1.Furthermore,werun
twoadditionalsetswherewetakeasnapshotfromananti-solar
andasolar-likesolutionasinitialconditions.Inthelasttwo
setswevarytheRayleighandPrandtlnumbersbychanging
δnandhencetheradiativeconductivityK(r),whilekeepingthe
othercontrolparametersatfixedvalues.Wefindthatforthese
choicesofparametersandinitialconditions,itismoredifficult
toswitchfromanti-solartosolar-likedifferentialrotationthan
viceversa.Thisisseenbycomparingtheδnrequiredforsolar-
likesolutionsinthedifferentsetsofruns:inSetDwherewe
approachfromtherapidrotationregime,theswitchoccursbe-
tween0.68<Roc<0.70(1.27<Co<1.37).Intheopposite

Fig.7.Time-averagedrotationprofilesfromRunsCandD1.

caseofSetB,whereweapproachfromtheanti-solarbranch,the
switchoccursbetween0.53<Roc<0.55(2.43<Co<2.01).
InthecaseofRunsA–Ethatwererunfromscratch,wefound
0.63<Roc<0.65(1.33<Co<1.50).Thus,intermsofthe
Coriolisnumberthebistabilityregionextendsfartherintothe
anti-solarregimethanthesolar-likeone.Physically,thismight
berelatedtothefactthatinthiscasethestrengthofthediffer-
entialrotationismuchlarger(seethetwopanelsofFig.6).We
haveconsideredasinglevalueoftheTaylornumberinourstudy.
WenotethataccordingtoGastineetal.(2014),thesizeofthe
bistableregioniswiderwithhigherTa.

Figure7showstherotationprofilesfromRunsCandD1
thathavethesamecontrolparametersbutdifferenthistories:
RunCwasrunfromtheinitialconditionsdescribedinSect.2.1,
whereasinRunD1weusedthefinalthermallyrelaxedstate
ofRunD(=D0)asinitialcondition.Theresultingevolutionof
∆

(r)
Ω

and∆(θ)
Ω

isshowninFig.8,wherewealsoshowthecor-
respondingresultsforRunB3withthesameinputparameters
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of Coriolis forces, and the distance to the rotation axis are
different in the polar regions relative to the equatorial regions,
leading to different convective patterns in mildly turbulent
simulations such as case H. At low Reynolds numbers the
transition between equatorial modes and polar modes occurs
near the tangent cylinder. As the Reynolds number is in-
creased, this transition moves to lower latitudes and becomes
less apparent. For example, Brun & Toomre (2002) have
demonstrated that increasing the level of turbulence in the
simulations makes the convective patterns in the equatorial
region more isotropic and extended downflow lanes become
difficult to isolate within the convective network.

Vortical plumes are evident at the interstices of the down-
flow network, representing coherent structures that are sur-
rounded by more chaotic flows. The sense of the vorticity is
generally cyclonic: counterclockwise in the northern hemi-
sphere and clockwise in the southern hemisphere. The stron-
gest downflow plumes extend through the entire depth of the
domain. They tend to align with the rotation axis and to tilt
away from the meridional plane, leading to Reynolds stresses
that are crucial ingredients in redistributing the angular mo-
mentum within the shell (see x 5; see also Miesch et al. 2000;
Brun & Toomre 2002). Downflow lanes and plumes are con-
tinually advected, sheared, and distorted by differential rotation
and nonlinear interactions with other flow structures.

The differential rotation in case H is shown in Figures 1b and
1c, expressed in terms of the sidereal angular velocity !. The
angular velocity of the rotating reference frame is 414 nHz,
which corresponds to a rotation period of 28 days. In the
contour plot, the polar regions have been omitted owing to
the difficulty of forming stable averages there as a result of
the small moment arm and small averaging domain.

Case H exhibits a differential rotation profile that is in good
agreement with the solar internal rotation profile inferred from
helioseismology in the bulk of the convection zone (Thompson
et al. 2003). Angular velocity contours at midlatitudes are
nearly radial, and the rotation rate decreases monotonically
with increasing latitude as in the Sun. The latter property, in
particular, represents an important improvement over most
previous spherical convection simulations in which the lati-
tudinal angular velocity contrast "! was confined mainly to

mid- and low latitudes, namely, outside of the inner tangent
cylinder. The angular velocity profile in such simulations is
generally sensitive to the parameters of the problem, and more
solar-like profiles such as case H can be achieved by varying the
Reynolds and Prandtl numbers in particular (Elliott et al. 2000;
Brun & Toomre 2002). The differential rotation contrast be-
tween the equator and latitudes of 60! in case H is 140 nHz (or
34% relative to the frame of reference), somewhat larger than
the 92 nHz (or 22%) variation implied by helioseismology. The
rotation profile of case H exhibits some asymmetry with respect
to the equator, particularly at high latitudes (Fig. 1b), although
such asymmetries are expected to diminish over a longer tem-
poral average. Since the convection itself is generally asym-
metric, it is not surprising that the mean flows driven by the
convection are as well.
Mean field models of the solar differential rotation have

advocated that a thermal wind balance (involving latitudinal
temperature gradients) may be the cause of the noncylindrical
angular velocity profile (Kichatinov & Rüdiger 1995; Durney
1999). This may come about if baroclinic convective motions
produce latitudinal heat flux, leading to a breakdown of the
Taylor-Proudman theorem (Pedlosky 1987). A pole-equator
temperature contrast of a few degrees kelvin is compatible with
a "!/!0 of "30%. Although it is indeed true that case H
exhibits latitudinal entropy and temperature gradients, these
are not the dominant players in driving the differential rotation
throughout the shell. Rather, we find that the Reynolds stresses
are the main agents responsible for maintaining the rotation
profiles in our simulations (see x 5).

3.2. AchievvinggSustained Dynamo Action

We now consider the dynamo possibilities that such intricate
convective patterns and large differential rotation can lead to.
As stated earlier, we have introduced a seed magnetic poloidal
field into our hydrodynamical case H for three different values
of the magnetic diffusivity !, corresponding to cases M1, M2,
and M3 (Table 1). Figure 2 shows the magnetic and kinetic
energy evolution for these three cases. We note that over more
than 4000 days (corresponding to several ohmic decay times;
see Table 1) the two least diffusive cases M2 and M3 achieve
a sustained magnetic energy (ME), the amplitude of which

Fig. 1.—(a) Radial velocity near the top of the shell for case H shown using a Mollweide projection. Dashed lines indicate the equator, as well as meridians and
parallels every 45! and 30!, respectively. Downflows appear dark and upflows bright. (b) Angular velocity ! in case H averaged over longitude and time, with
brighter tones indicating more rapid rotation (see color tables). (c) Mean angular velocity shown as a function of radius for the indicated latitudes, averaged over
both hemispheres.

BRUN, MIESCH, & TOOMRE1078 Vol. 614

What	  3D	  modelling	  tells	  
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Different	  types	  of	  
differenAal	  
rotaAon	  in	  
convecAve	  
envelope	  

Maj	  et	  al.	  2011	  

Need	  a	  general	  treatment:	  
Parametrized	  dynamical	  
boundary	  condiAon	  	  

904 S.P. Matt et al.: Convection and differential rotation in G and K stars

Fig. 7 (online colour at: www.an-journal.org) Azimuthally and temporally averaged rotation frequency in a meridional slice through
the domain (contour/color plots; rotation axis is vertical) and shown along radial lines at different latitudes (line plots, latitude given in
degrees). Shown are the 0.5 (top left), 0.7 (top right), 0.9 (bottom left), and 1.1 M⊙ (bottom right) cases.

thermore, the average mass density in the convective en-
velope decreases with increasing stellar mass (the midlevel
density in the 1.1 M⊙ case is 280 times lower than in the
0.5 M⊙ case), which decreases the efficiency of convective
energy transport. In spite of the lower density, the convec-
tion in higher mass stars is able to carry a larger luminosity
than the lower mass stars, due to a combination of larger
stellar radii, higher convective velocities, and higher tem-
perature contrasts between up- and downflows.

Table 3 also lists the Reynolds, Rossby, and Péclet num-
bers for each model. The Reynolds (and Péclet) have a range
of a factor of a few, with no trend in mass. These val-
ues primarily reflect our choice of νtop for each case (Ta-
ble 2) rather than any intrinsic property of the stars. For our
choices of νtop, the 0.5 M⊙ case has the highest Reynolds
number. On the other hand, the Rossby numbers do not de-
pend strongly on our choice of diffusivities, and they show
a strong dependence on mass, primarily due to the trend in
convective velocity with mass, at a constant rotation period.
Finally, Table 3 lists a characteristic convective turnover

timescale for each case. This also shows a strong trend with
mass, primarily due to the trend in convective velocities.

3.2 Differential rotation and meridional circulation

Figure 7 shows the differential rotation in all 4 cases. The
2D plots in the Figure exhibit isorotation contours that are
nearly aligned on cylinders in all cases. This behavior is
typical for simulations such as these that have no enhanced
latitudinal entropy gradient present at the lower boundary of
the convection zone (Ballot et al. 2007; Miesch et al. 2006).

The angular rotation rate in the 0.5 M⊙ case has a min-
imum value at mid latitudes, a local maximum in the outer
equatorial region, and a global maximum near the pole. A
similarly “banded” differential rotation pattern is evident in
a number of previously published ASH simulations (e.g.
Bessolaz & Brun 2011; Browning 2008). The differential
rotation in the 0.7 and 0.9 M⊙ cases are the most solar-like,
with the fastest angular rotation rate at the equator and slow-
est at higher latitudes. However, the 1.1 M⊙ case exhibits

c⃝ 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.an-journal.org
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degrees). Shown are the 0.5 (top left), 0.7 (top right), 0.9 (bottom left), and 1.1 M⊙ (bottom right) cases.
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density in the 1.1 M⊙ case is 280 times lower than in the
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Table 3 also lists the Reynolds, Rossby, and Péclet num-
bers for each model. The Reynolds (and Péclet) have a range
of a factor of a few, with no trend in mass. These val-
ues primarily reflect our choice of νtop for each case (Ta-
ble 2) rather than any intrinsic property of the stars. For our
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equatorial region, and a global maximum near the pole. A
similarly “banded” differential rotation pattern is evident in
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rotation in the 0.7 and 0.9 M⊙ cases are the most solar-like,
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c⃝ 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.an-journal.org

Ω(r,θ)?	  



DIFFERENTIAL	  ROTATION	  OF	  THE	  
RADIATIVE	  CORE	  OF	  LOW	  MASS	  

STARS	  

Solar-‐like	  shear	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  AnA-‐solar	  shear	  
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Increasing	  the	  shear	  leads	  to	  a	  quasi	  
cylindrical	  differenAal	  rotaAon	  



FLUX	  OF	  ANGULAR	  MOMENTUM	  

LaAtudinal	  flux	  of	  angular	  
momentum	  near	  surface	  α	  uθ	  
	  

12	  

b	  >	  0	   b	  <	  0	  

Averaged	  over	  laAtude	  radial	  flux	  of	  
angular	  momentum	  α	  ul=2	  	  
	  



CORE-‐TO-‐SURFACE	  ROTATION	  RATIO	  

b=10-‐2	  

b=10	  
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TransiAon	  shellular-‐like	  	  
Cylindrical	  differenAal	  
rotaAon	  
=	  weakest	  Ωc/Ωs	  	  

Importance	  of	  2D	  transport	  of	  
angular	  momentum	  



Internal	  rotaFon	  profile	  in	  a	  	  
«	  solar-‐like	  »	  case	  

14	  

Need	   for	   another	   processus	   of	   transport	   of	   angular	  momentum	  
both	  in	  the	  radial	  and	  in	  the	  laAtudinal	  direcAons	  
	  



CONCLUSION	  
•  Flux	  of	  angular	  momentum	  both	   in	   the	   radial	  and	   laAtudinal	  

direcAons	  are	  proporFonal	  to	  the	  shear	  parameter	  b.	  	  
•  The	  core	  to	  the	  surface	  rotaAon	  raAo	  decreases	  as	  the	  shear	  

increases.	  	  
•  In	   the	   solar	   case,	   we	   find	   a	   roughly	   cylindrical	   differenAal	  

rotaAon	   throughout	   the	   radiaAve	   zone	  with	   a	   small	   core	   to	  
the	  surface	  rotaAon	  raAo.	  

•  This is not compatible with the observations showing that 
the solar internal rotation profile is flat at least until 0.2 
solar radius. This calls for additional processes 
responsible for extra transport of angular 
momentum in the radial and latitudinal directions 
(magnetic fields, internal gravity waves, turbulence…).	  
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MAIN	  SEQUENCE	  MASSIVE	  STARS	  
•  EvoluAon	  of	  massive	  stars	  not	  fully	  
understood	  

•  Asteroseismology:	  Ωc/Ωs	  of	  numerous	  
main-‐sequence	  massive	  stars	  between	  
1	  and	  4	  (Kurtz	  &	  al	  2014,	  Triana	  &	  al	  2015,	  Aerts	  2015)	  	  

16	  

stars that rotate at least as rapidly as the Sun, these involve
roughly cylindrical central columns of decidedly slow rotation
(retrograde relative to the reference frame), accompanied by
equatorial regions of somewhat enhanced rotational velocity
(prograde). As shown in Figure 6 (left) for the three cases B, C,
and C4, the time-averaged mean longitudinal velocity v̂!
exhibits some variations along that central column, with those
fluctuations becoming more pronounced as the complexity of
the convection increases in going from case B to C (see Fig. 3).
There is likewise greater asymmetry in v̂! between the two
hemispheres (delineated by the equator) in these cases. Such
symmetry breaking may be anticipated as the convection
becomes increasingly nonlinear. The convection itself is not
symmetric about the equator, and thus mean flows associated
with it, including the differential rotation, are likely to exhibit
differences in the two hemispheres. The columns of slow ro-
tation extend slightly into the radiative envelopes at high lat-
itudes, in keeping with the prolate shape of the convective core.
The presence of the central slow cylinder of rotation does not
appear to result from the small inner sphere omitted from our
computational domain, for we have found similar columns of
slowness for several different sizes of central spheres. Figure 6
(right) shows the variation of angular velocity !̂ with radius in
three latitudinal cuts, providing another assessment of the
slowness of the central column and of the speeding up of the
equatorial region.

These central columns of slow rotation are largely unex-
pected and constitute a striking finding of these simulations. A
general result from previous studies of convection in deep
shells under strong rotational constraints (with Roc small) is that
equatorial regions of fast rotation are obtained (e.g., Gilman
1979; Miesch et al. 2000; Brun & Toomre 2002). The con-
servation of angular momentum requires that other regions be
slowed down, and this often appears as higher latitude regions
of slowness. The analog in our spherical domain may be the
central column of particularly retrograde v̂!, for this could
compensate for the equatorial speeding up (prograde v̂!) of
regions with a large moment arm. The continuous redistribu-
tion of angular momentum by the convection, involving vari-
ous effects of Reynolds stresses, meridional circulations, and
viscous stresses, is examined in x 8 as we seek to understand
the balances needed to account for such central columns of
slowness.

We have also considered a more slowly rotating case F, with
a rotation rate of !0/10, to examine whether the central column
of slowness is still achieved under a weaker rotational influence
(with Roc large). The prior studies of convection in shells
(Gilman 1978) indicated that under such conditions the equa-
torial regions may exhibit relatively slow rotation due to the
modified transport of angular momentum. If this property of
shell convection were to carry over to full spherical domains,
then it might follow that the overall conservation of angular
momentum could yield central regions of fast rotation to
compensate for the equatorial slowness. Figure 7 shows that for
case F this is indeed realized. The central region of relatively
fast rotation is decidedly less columnar than those of slow ro-
tation in Figure 6, probably because the Taylor-Proudman
constraint is weakened. We thus suspect that central columns of
slowness may be ubiquitous for stars that rotate sufficiently
rapidly that Roc is less than unity. In the remainder of this paper,
we concentrate on our simulations that satisfy this criterion (all
but case F), since real A-type stars are generally quite rapidly
rotating.

4.2. Contrasts in Angular Velocity

We now turn to the time-averaged angular velocity !̂ profiles
associated with the differential rotation in our convective cores
with Roc small, some examples of which are shown as radial
cuts at constant latitudes in the right-hand panels of Figure 6
that accompany the views of v̂!. The !̂ profiles in Figure 6
emphasize that most of the radiative envelope rotates at the

Fig. 6.—Strong differential rotation established by the convection in the
three cases B, C, and C4. Shown are the azimuthal velocity v̂! as contour plots
in radius and latitude (left; with dashed line denoting equator) and the angular
velocity !̂ with proportional radius for three latitudinal cuts (right); both v̂!
and !̂ are averaged in time (all over intervals of roughly 110 days) and
longitude. Maxima and minima of v̂! (in meters per second) are indicated.
Cases B (top) and C (middle) are rotating at the solar rate (414 nHz), and case
C4 (bottom) rotates 4 times faster. Greater angular velocity contrasts are
achieved in the more complex flows of case C (b) and case C4 (c) than in the
laminar case B (a), in all cases involving a central column of slowness.
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Fig. 5 The core and/or envelope rotation frequency of stars with
birth mass above 2.25 and up to some 50 M⊙ for which this mea-
surement is available, as a function of their spectroscopically de-
termined gravity as a proxy for their evolutionary stage. The er-
ror on the frequencies is much smaller than the symbol sizes. A
typical uncertainty for the spectroscopic log g amounts to 0.15.
Data for OB stars (dark blue: single; light blue with cross: binary)
taken from Aerts et al. (2014), for Bp/Ap stars from Hubrig et al.
(2007), for Vega from Petit et al. (2010), and for the two hybrid
pulsators from Kurtz et al. (2014) and Saio et al. (2015) (green).
The core helium-burning red giants with a mass above 2.25 M⊙

from Mosser et al. (2012) are indicated in red. The inset shows the
massive stars with seismically determined values of Ωcore. Four
evolutionary tracks for a 5 M⊙ star rotating at the indicated frac-
tions of the critical value (the two lower ones valid for 10 % critical
and without rotation) were taken from Brott et al. (2011a).

values given in Brott et al. (2011a). A general trend is that
most of the massive stars for which Ωenv could be measured,
support the picture that their surface gets slowed down effi-
ciently by the time they have exhausted their central hydro-
gen, somewhat independently of the surface rotation with
which they were born. On the other hand, the processes that
transport angular momentum in stars may also induce mix-
ing and the occurrence of slowly rotating, nitrogen-enriched
stars seems to point to shortcomings in the models in this re-
spect (Brott et al. 2011b; Aerts et al. 2014).

Just as for red giants, stronger core-to-envelope cou-
pling than foreseen in current state-of-the-art models, again
with two orders of magnitude, is required to bring the mod-
els of massive stars in agreement with measured rotation
rates of young neutron stars and white dwarfs (e.g., Langer
2012). It is thus tempting to assume that one efficient phys-
ical angular momentum transport mechanism is at work in
all stars, yet is missing in current models. Given that the
incidence of magnetic fields is, at best, limited to 10 % for
O to F-type stars (e.g., Donati & Landstreet 2009; Petit et
al. 2013), an excellent candidate mechanism could be inter-
nal gravity waves (e.g., Talon & Charbonnel 2005; Rogers
et al. 2013). High-precision CoRoT and Kepler space pho-

tometry of the most massive stars supports this suggestion
(e.g., Tkachenko et al. 2014 for a discussion).

4 Tidal asteroseismology

None of the above considered pulsations in close binaries.
Asteroseismic studies of binaries, in particular eclipsing
ones, are an asset for stellar physics because the binarity of-
fers model-independent constraints on the masses and radii
of the stars, while these parameters are outcomes of seismic
modelling in the case of single stars. Isochrone fitting of
double-lined eclipsing binaries offers an independent way to
tune interior structure parameters, such as core overshooting
(e.g., Torres 2013). For young massive stars this gives com-
patible estimates with seismic modelling of single pulsators
(e.g., Fig. 2 in Aerts 2015).

Obviously, a combination of binary and asteroseismic
modelling has the potential to put tighter constraints on the
stellar structure evaluation if the pulsator is a member of a
binary, even if tides are not involved. This benefit was al-
ready demonstrated for the α Cen system (e.g., Miglio &
Montalbán 2005) and for the above mentioned sdB pulsator
PG 1336–018 (Van Grootel et al. 2013) from ground-based
asteroseismology and is being applied to space photometry
now as well (e.g., Southworth et al. 2011; Frandsen et al.
2013, Maceroni et al. 2013, Beck et al. 2014; Gaulme et
al. 2014; Boumier et al. 2014). A recent overview of as-
teroseismology in eclipsing binaries with focus on solar-
like pulsations is available in Huber (2014). It is notewor-
thy that binary light curve modelling tools developed in the
mmag-precision photometry era are not able to deal with the
current µ mag photometric precision. The space photometry
revolution thus triggered the development of new software
tools to handle the binary modelling at the level of the pre-
cision of the current data (Prsa et al. 2013; Degroote et al.
2013; Bloemen et al. 2013).

The subject of tidal asteroseismology, i.e., stellar mod-
elling based on tidally excited or tidally affected pulsations,
only turned into a practical science since the availability
of the uninterrupted CoRoT and Kepler lightcurves of ei-
ther eclipsing binaries with tidally excited g-modes (e.g.,
Maceroni et al. 2009; Welsh et al. 2011; Hambleton et al.
2013; Debosscher et al. 2013; Borkovits et al. 2014) or pul-
sating stars that were initially thought to be single stars but
turned out to be a member of a spectroscopic binary from
follow-up data (e.g., Pápics et al. 2013). In all of those stud-
ies, clear evidence was found that some or all of the g-modes
are tidally triggered, after iterative light curve modelling
schemes in the cases where the binary and pulsational vari-
ability are of the same order of magnitude. Modelling of
tidally excited pulsation modes triggered by dynamic tides
active in eccentric binaries offers the opportunity to put
stringent constraints on the interior structure models of the
binary components by exploiting the tide-generating poten-
tial. This was so far only worked out in detail for the most
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STEWARTSON	  LAYER	  
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292 R. Hollerbach

(a)

(b)

Figure 2. (a) Contours of the angular velocity, with a contour interval of 0.1. (b) Streamlines
of the associated meridional circulation, with a contour interval of 2 × 10−4. From left to right
Ro= 0, 0.5 and −0.5, and E = 10−4. The angular velocity is symmetric about the equator,
the meridional circulation anti-symmetric (that is, counter-clockwise in the upper hemisphere,
clockwise in the lower). Finally, the dotted line in the left panel of (a) indicates the plane z =1;
in figure 3 we show profiles of the angular velocity as a function of the cylindrical radius along
this line.

is the relative differential rotation rate. In the experiments E typically ranges between
10−2 and 10−5, and |Ro| between 0 and O(1). Very conveniently this is also the range
that is numerically accessible. The boundary conditions associated with (1) are

U = r sin θ êφ at r = ri,

U = 0 at r = ro,

}
(4)

where we fix the inner and outer radii at ri =1/2 and ro = 3/2.
The numerical code we use to solve these equations (along with the incompressibility

condition ∇ · U =0) is described by Hollerbach (2000). Two slightly different versions
of this code were used. We begin by considering purely axisymmetric solutions,
thereby computing the basic states whose instabilities we want to consider. These
results are presented in the next section. In §§ 4 and 5 we then linearize about these
basic states and compute the stability of single non-axisymmetric modes at a time.

3. Axisymmetric solutions
Figure 2 shows the equilibrated, steady-state solutions at E = 10−4 and Ro = 0, 0.5

and −0.5. The shear layer on the tangent cylinder is clearly visible, with the fluid at
rest outside, and rotating at a rate intermediate between the inner and outer spheres
inside. The Ekman layers of thickness E1/2 at the inner and outer boundaries are also
visible. A slight thickening of the inner Ekman layers toward the equator can just be
seen, where the E1/2 scaling breaks down entirely, and is replaced by an E2/5 scaling
(Stewartson 1966, see also Hollerbach 1994 and Dormy et al. 1998).

In addition to these various structures shown by the angular velocity, there is also
a secondary meridional circulation, consisting of a flow from the outer to the inner
Ekman layer inside the tangent cylinder, with the return flow in a narrow jet on the
tangent cylinder. This flow is very weak compared with the azimuthal shear, only
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FORCING	  BY	  BOUNDARY	  CONDITIONS	  
+	  STABLE	  STRATIFICATION	  
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Increasing	  the	  shear	  leads	  to	  a	  cylindrical	  
differenAal	  rotaAon	  



FLUX	  OF	  ANGULAR	  MOMENTUM	  

LaAtudinal	  flux	  of	  angular	  
momentum	  near	  core	  
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Averaged	  over	  laAtude	  radial	  flux	  of	  
angular	  momentum	  

	  
Could	  be	  used	  in	  1D	  models	  	  



CORE-‐TO-‐SURFACE	  ROTATION	  RATIO	  
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INFLUENCE	  OF	  THE	  SIZE	  OF	  THE	  CORE	  

Bigger	  cores	  lead	  to	  higher	  differenAal	  rotaAon	  within	  the	  envelope.	  
On	  the	  MS,	  higher	  mass	  stars	  have	  bigger	  cores.	  
Small	  cores	  (lower	  mass	  stars):	  a	  quasi	  solid	  rotaAon	  in	  the	  envelope.	  
Big	  cores	  (higher	  mass	  stars):	  a	  spin-‐up	  meridional	  circulaAon	  in	  the	  
envelope.	  



THE	  IMPACT	  OF	  THE	  THERMAL	  DIFFUSIVITY	  
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In	  3D	  ASH	  simulaAons	  with	  Pr=1,	  they	  do	  not	  observe	  
Stewartson	  layers.	  
In	  our	  simulaAons,	  the	  Stewartson	  layers	  appear	  when	  Pr<10-‐2.	  
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or the Brunt-Väisälä frequency vanishes. We thus find the sys-
tem of dimensionless dependent variables:
⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∇ × (ez ∧ u + Ro u · ∇u − (rer − εses) − E∆u) =
−n2

T (r) sin θ cos θeϕ
(n2

T/r)ur + εu · ∇θ = ẼT∆θ
∇ · u = 0

(5)

where we introduced the numbers:

E =
ν

2ΩR2 , ẼT =
κ

2ΩR2

(
2Ω
N

)2

, Ro =
N2R
4g

E is the Ekman number which measures the viscosity, ẼT mea-
sures heat diffusion and Ro is the Rossby number. In addition to
these numbers we will need the Froude number, Fr, the Prandtl
number P and the λ-parameter introduced by Garaud (2002);
these are respectively:

Fr =
V
NR
=
ΩNR

2g
, P = ν

κ
, λ =

E
ẼT
= P N

2

4Ω2 ·

n2
T (r) is the scaled Brunt-Väisälä frequency.

2.3. Boundary conditions

This systems needs to be completed by boundary conditions. We
assume the regularity of the solutions at the sphere’s centre and
impose stress-free boundary conditions on the velocity field at
the outer surface. Thus doing, the velocity field is determined up
to a solid rotation; if u is a solution of Eq. (5) then u + Aez × r
is also a solution (A is an arbitrary constant). For actual stars,
such a degeneracy is lifted by initial conditions and conservation
of angular momentum. Here, we lifted it by imposing that the
solution u of Eq. (5) has no total angular momentum, i.e. that
∫

(V)
suϕdV = 0

so that the total angular momentum of the star is in the back-
ground solid rotation measured by Ω (which therefore appears
as the mean rotation rate).

We further complete Eq. (5) by also imposing a zero temper-
ature fluctuation on the outer surface.

2.4. Discussion

As can be seen, the problem is controlled by a large number of
parameters namely

– the ratio of the centrifugal acceleration ε to surface gravity
which is also the ellipticity of equipotentials;

– the Rossby number Ro;
– the diffusion coefficients, E, ẼT ;
– the profile of Brunt-Väisälä frequency n2

T (r).

Moreover, two other parameters will be necessary to described
molecular weight gradients, namely the Brunt-Väisälä frequency
profile n2

µ(r), and the related diffusion coefficient, while another
one will characterize the viscosity jump at the core-envelope in-
terface. We therefore need some guidance in this large parameter
space.

For this purpose and in order that this model enlighten us on
real systems, we shall consider the case of a 3 M⊙ star with a one
day rotation period. Thus we will use a radius R = 2 × 109 m,

a typical Brunt-Väisälä frequency of N = 10−3 Hz and a sur-
face gravity of g = 102 m/s2. The profile of the Brunt-Väisälä
frequency needs to reflect more realistic models. In Fig. 1a we
plot such a profile for a 3 M⊙ star at different stages of its evo-
lution on the main sequence. Such profiles should not be taken
at face value, especially the contribution of the µ-gradients since
only microscopic diffusion is included in this model (produced
by the code CESAM, see Morel 1997). In fact it is the aim of
the present work to understand the mechanisms by which ele-
ments move in the radiative envelope. Therefore we consider the
generic situation visualized in Fig. 1b.

Because of our choice of scalings, the amplitude of non-
linear terms in the momentum equation is independent of ro-
tation and can be appreciated directly from a non-rotating stellar
model. In Fig. 2, we display the values of the Rossby number as
a function of radius for our typical 3 M⊙ star. Indeed, the non-
dimensional function

Ro(r) =
N2(r)r
4g(r)

gives an interesting approximation of the amplitude of these non-
linear terms. As can be seen, this number is generally less than
unity except near the surface layers where it reaches Ro ∼ 5.

Recalling that ε < 1, we see that the other non-linear terms
are also less than unity (in fact very much less than unity as
shown below). As a first step in the investigation, we ignore them
altogether so as to be able to examine the properties of the sys-
tem with linear equations.

Setting Ro = ε = 0, we obtain the system:

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∇ × (ez ∧ u − θr − E∆u) = −n2
T sin θ cos θeϕ

(n2
T/r)ur = ẼT∆θ

∇ · u = 0.

(6)

3. The asymptotic analysis at E≪ 1

Before solving the full system (6), we first discuss the case
of asymptotically small Ekman numbers found in stellar
applications.

3.1. The inviscid profile

When viscosity is neglected the Eqs. (6) admit a particular solu-
tion called (in geophysics) the thermal wind; in our case it reads
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

u0 =
(
s
∫

n2(r)
r dr + F(s)

)
eϕ,

θ = 0
(7)

where s = r sin θ is the radial cylindrical coordinate and F(s) an
arbitrary function describing a pure geostrophic solution.

As already pointed out by Busse (1981, 1982), the so-called
thermal disequilibrium induced by centrifugal acceleration does
not imply meridional circulation. A slight differential rotation
where the baroclinic torque is balanced by the Coriolis torque
gives a steady solution.

However, we also see that such a solution is largely under-
determined since the function F needs to be specified; this
degeneracy is lifted by viscosity. The qualitative importance
of F(s) comes from the fact that it controls the latitudinal dif-
ferential rotation.



CONCLUSION	  
•  The	  convecAve	  core	  generates	  a	  
Stewartson	  layer.	  

•  This	  calls	  for	  a	  bejer	  descripAon	  of	  viscous	  
effects.	  

•  Look	  for	  asteroseismic	  signatures	  of	  the	  
Stewartson	  layer.	  
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ON	  GOING	  PROJECTS	  
•  AddiAonal	  angular	  momentum	  transport	  
processes:	  MagneAzed	  cartesian	  box	  with	  
gravito	  inerAal	  waves	  

•  3D	  simulaAon	  of	  massive	  stars’	  interior	  at	  low	  
Prandtl	  number:	  seeking	  Stewartson	  layers	  
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