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PROBLEMS DESCRIPTION
§ Hyperspectral Imaging : Imaging Spectometer performing spectral measurements, 
§ Spectometer : Optical instrument (sensor) used for measuring the quantity of 

electromagenetic radiation over one wavelength or more, 
§ How? - Measurement over narrow contiguous bands in the optical domain creating a 

continous spectrum, 
§ Why? -  Characterization of different materials with differents spectral signatures for: 

Ø Target detection and Change detection, 
Ø Determine the different types of materials which compose the image: Unmixing, 
Ø Classification.

Find the artificial plant and the hidden LEGO



§ Monochromatic : grayscale image without 
spectral information.  

§ Multispectral : frrom 2 to 10 bands, limited 
spectral information,  

§ Hyperspectral : from 10 to 100 narrow and 
cont igous bands, deta i led spect ra l 
information.

CLASSES OF SPECTRAL IMAGES



§ How to analyze Hypspectral Images? 
Ø Visual Inspection : Slow process because the user sees only three bands at once, 
Ø Bands Selection : Using hyperspectral imagery to select a few spectral bands 

adapted to the problem to solve.

BANDS SELECTION



• ANOMALY DETECTION IN HYPERSPECTRAL IMAGES 
To detect all that is « different » from the background (Mahalanobis distance) -  
Application to radiance images. 

• DETECTION OF TARGETS IN HYPERSPECTRAL IMAGES 
To detect (GLRT) targets (characterized by a given spectral signature p) - Regulation of 
False Alarm. Application to reflectance images (after some atmospherical corrections or 
others).

HYPERSPECTRAL TARGET DETECTION



Preliminary Notions TD Gaussian TD non-Gaussian Anomaly Detection Conclusions

Gaussian distribution

A m-dimensional vector x has a complex Gaussian distribution denoted
CN (µ, ⌃). If the probability density function exists, it is of the form:

f
x

(x) = ⇡-m |⌃|-1 exp{-(x - µ)H ⌃-1(x - µ)}.

Maximum Likelihood Estimators:
Let x1, . . . ,xN be an IID N -sample, where xi ⇠ CN (µ, ⌃). Thus, the SMV
and the SCM can be written as:

µ̂SMV =
1
N

NX

i=1

xi , ⌃̂SCM =
1
N

NX

i=1

(xi - µ̂SMV )(xi - µ̂SMV )H .

⇤ Simplicity of analysis and well-known statistical properties: consistent,
unbiased and efficient,

⇤ ⌃̂SCM is Wishart distributed and µ̂SMV is Gaussian distributed.
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GAUSSIAN DISTRIBUTION



Preliminary Notions TD Gaussian TD non-Gaussian Anomaly Detection Conclusions

Selection of the N -secondary data

⇤ Rectangular Sliding window of size n ⇥ n moving all over the
hyperspectral image,

⇤ Size large enough to ensure the invertibility of the covariance matrix,
⇤ and small enough to justify spatial homogeneity.

vector under text x

secondary data xi

Assumptions

⇤ Pixels of the mask are statistically independent, i.e. spatially
independence.

⇤ Pixels of the mask are identically distributed.
J.Frontera-Pons Robust target detection for Hyperspectral Imaging Defense 10/ 53

SELECTION OF THE SECONDARY DATA



Preliminary Notions TD Gaussian TD non-Gaussian Anomaly Detection Conclusions

First comments and adequacy with some results found in the literature

⇤ Hyperspectral data are generally spatially heterogeneous in intensity
and they cannot be only characterized by Gaussian distribution:

Mahalanobis on Experimental data

Hotelling T2
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⇤ Elliptical distribution models have started to be studied in the
hyperspectral scientific community but one generally uses ....
Gaussian estimates !
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MOTIVATION FOR NON-GAUSSIAN MODELS



Introduction

State of the Art

Estimation of clutter covariance matrix M

Applications to Radar Detection

Conclusions and outlook

Basic Results of Radar Detection

Gaussian Noise Case

SIRV and GLRT-LQ

Failure of the OGD with non-Gaussian background
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Fig.: Failure of the OGD in non Gaussian clutter, with same power as Gaussian noise
and to ensure the same Pfa - Detection threshold adjustment

) OGD detection performance significantly decrease when noise
hypothesis are not valid

) Knowing the noise characterization is required.
) Introduction of SIRV model.
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MOTIVATION FOR NON-GAUSSIAN MODELS



Preliminary Notions TD Gaussian TD non-Gaussian Anomaly Detection Conclusions

Elliptical distributions for Hyperspectral background modeling

fz(z) = |�|�1hm

�
(z � µ)H ��1 (z � µ)

�

fx(x) = ��m|�|�1 exp{�(x � µ)H��1(x � µ)}.
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ELLIPTICAL DISTRIBUTIONS



Preliminary Notions TD Gaussian TD non-Gaussian Anomaly Detection Conclusions

Robust M -estimators

M -estimators
The complex M -estimators of location and scatter are defined as the joint
solutions of:

µ̂N =

NX

i=1
u1(ti ) zi

NX

i=1
u1(ti )

, ⌃̂N =
1
N

NX

i=1
u2

�
t2i
�

(zi - µ̂N ) (zi - µ̂N )H ,

where ti =
⇣
(zi - µ̂N )H ⌃̂

-1
N (zi - µ̂N )

⌘1/2
.

⇤ u1(·), u2(·) are two weighting functions acting on the quadratic form,
i.e. Mahalanobis distance,

⇤ The choice of u1(·), u2(·) results in different estimates for the
covariance matrix and the mean vector,

⇤ Existence and uniqueness of the solution have been proven provided
u1(·), u2(·) satisfy given conditions [Maronna 1976],

J.Frontera-Pons Robust target detection for Hyperspectral Imaging Defense 29/ 53

ROBUST M-ESTIMATORS



Preliminary Notions TD Gaussian TD non-Gaussian Anomaly Detection Conclusions

Examples of M -estimators

Preliminary Notions TD Gaussian TD non-Gaussian Anomaly Detection Conclusions and Perspectives

Examples of M -estimators

SCM:

u(t) = 1

Huber’s M -estimator:

u(t) =

�
1/k2 if t <= k2

1/t if t > k2

FPE (Tyler):

u(t) = m
t
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EXAMPLES OF M-ESTIMATORS
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ADAPTIVE DETECTION

⇤(M̂FP , bµ) =

���pH M̂�1
FP (c� bµ)

���
2

⇣
pH M̂�1

FP p
⌘⇣

(c� bµ)H M̂�1
FP (c� bµ)

⌘
H1

?
H0

�

ELLIPTICAL-CFAR TEST

• A mean vector has to be included in the model and estimated jointly with the 
covariance matrix, 

• The real data can be transformed into complex ones by a linear Hilbert filter. 

The hyperspectral data are real and positive as they represent radiance or 
reflectance. 

c: cell under test 
p: spectral steering vector of the target

ADAPTIVE DETECTION



§ Decide Target presence and in fact only noise and background found - False Alarm 
§ Goal : Build detectors that keep the False Alarm Rate Constant, 
§ Derivation of “FA-threshold” relationships to automatically set the threshold. 

7
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Fig. 4: Probability of detection for different SNR values and
PFA = 10

�3 in Gaussian case.

are estimated using a sliding window of size 7 ⇥ 7, having
N = 48 secondary data.
The outcome of the detectors for this image are shown on the
Fig. 6, Fig. 7 and Fig. 8 respectively. The results obtained
on real HSI data on a Gaussian distributed region agree with
the theoretical relationships presented above. Remark that the
false-alarm rate that can be achieved depends on the number
of points on which the detector is calculated (in a similar
manner to the Monte-Carlo trials). As the homogenous area
is bounded and the data set is small, the distribution of the
detectors may divert for small values of the PFA directly
related to the size of the region.

Depending on the underlying material, the detector of the
distribution might divert from the expected behavior when
Gaussian distribution is assumed. This suggests the use of non-
Gaussian distributions to model the background for hyperspec-
tral imaging. The class of elliptically contoured distributions
has already been popularized for background characterization
in HSI [23], [24]. We propose in another paper the study of
false-alarm regulation when elliptical distributions are consid-
ered. Moreover, we analyze some robust estimation procedures
(M -estimators introduced in [16], [25], [26]) more suitable
when non-Gaussian distributions are assumed.

V. CONCLUSION

Three adaptive detection schemes, the AMF, the Kelly
detector and the ANMF, have been analyzed in the case
where both the covariance matrix and the mean are unknown
and need to be estimated. In this context, theoretical closed-
form expressions for false-alarm regulation have been derived
under Gaussian assumptions for the SCM-SMV estimates. The
theoretical analysis has been validated through simulations
and the performances of the detectors has been compared
in terms of probability of detection. Finally, the analysis
on experimental hyperspectral data validates the theoretical
contribution through real application. This work finds its

Fig. 5: True color composition of the Hyperion scene.
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Fig. 6: AMF false-alarm regulation for a real HSI image

purpose in signal processing methods for which both mean
vector and covariance matrix are unknown.
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TARGET DETECTION ON REAL DATA
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FIRST RESULTS FOR ANOMALY DETECTION 
(DSO DATA)

18

RXDSCM = (ck � bµ)H M̂�1
SCM (ck � bµ)RXDFP = (ck � bµ)H M̂�1

FP (ck � bµ)

[Reed and Yu, 1990]

Local Covariance Matrix estimate approach

ANOMALY DETECTION ON REAL DATA



Mahanalobis Distance with the Classical SCM and the Fixed Point (Pfa = 0.1)

PREMIERS RESULTATS POUR LA DETECTION 
D’ANOMALIES (Données DSO)

RXDSCM = (ck � µ)H M̂�1
SCM (ck � µ)RXDFP = (ck � µ)H M̂�1

FP (ck � µ)

ANOMALY DETECTION ON REAL DATA
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(a) MUSE data cube (b) Classical RX detector (c) RX detector built the FP estimates

Fig. 3. Classical and Fixed-point anomaly detection in a hyperspectral image of 300⇥ 300 in 3578 channels. See details in the
text of Section 5.
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MUSE images:  
300 x 300 pixels,  

3578 spectral bands

Problem of detecting galaxies in HS MUSE (Multi Unit Spectroscopic Explorer) data (465- 930 nm) 
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Detector

Enhanced RX 
Detector

SECOND SET OF RESULTS FOR ANOMALY DETECTION

RXDSCM = (c� µ̂SCM )H M̂�1
SCM (c� µ̂SCM ) RXDFP = (c� µ̂FP )

H M̂�1
FP (c� µ̂FP )

GALAXY DETECTION
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Why it works better with the M -estimators?
Preliminary Notions TD Gaussian TD non-Gaussian Anomaly Detection Conclusions

Why it works better with the FPE?

⇤ Impulsive samples in the secondary data
(non-Gaussian distribution assumption),

⇤ Heterogeneity due to the size of the sliding window
(problems at the edges),

⇤ The intended targets are closer than the window size,
⇤ The targets are larger than one pixel cell resolution.

Guard pixels on the sliding window do not solve these problems!
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M-estimators are ROBUST to the presence of strong scatterers 
and impulsive samples in the secondary data

Preliminary Notions TD Gaussian TD non-Gaussian Anomaly Detection Conclusions and Perspectives

Examples of M -estimators

SCM:

u(t) = 1

Huber’s M -estimator:

u(t) =

�
1/k2 if t <= k2

1/t if t > k2

FPE (Tyler):

u(t) = m
t
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WHY IT WORKS BETTER WITH M-ESTIMATORS



• Hyperspectral Imaging provides an image array that enable material discrimination and 
targets location that could not be spatially detected, 

• Robust Target Detection improves classical methods in twofold. It is robust to corrupted 
information and to changes in distribution assumptions. Additionally, it allows a 
theoretical False Alarm Regulation which is critical in real-life detector design, 

• The main obstacles in the development of effective detection algorithms are the inherent 
variability in target and background spectra, and the computational problems in high 
dimensional domains. The use of critical band selection deals quite effectively with both 
difficulties in target and anomaly detection, 

• When extended to the Hyperspectral context, all the methodologies (Random Matrix 
Theory, non-Gaussian modelling, robust estimation, ...) developed for radar applications 
can enhance performance in detection and classification problems: source localization, 
linear spectral unmixing, sub-spaces techniques, detection, estimation, classification, ...

CONCLUSIONS



WORK AT CEA
Goal  : Solve inverse problems

y = Ax+ n

Data Observation 
operator

Noise

Signal to be retrieved

Linear models Non-Linear models

• Sparse representations provide some of the state of the art methods for solving inverse 
problems such as denoising, inpainting, component separation, etc.  

• Classical linear models suffer from some limitations for real data modeling, 
• Generalization of sparse representations to the non-linear case. 



WORK AT CEA
§ Deep Learning : Unsupervised Learning methods that can learn invariant features 

hierarchies, 
§ Non-linear representations obtained with deep layer structures allow to bring out 

complex relationships and disentangle the variation factors of the inputs, 
§ How? - AutoEncoders, ConvNets, Deep Belief Networks,… 
§ Extending deep neural networks to learn sparse representations.

Input :  
x 2 Rd

Encoder Decoder

Hidden representation :  

x̂ = �(WT
d h+ bd)

h = �(WT
e x+ be)

Reconstruction Error : 

L = ||x� x̂||2

Applications in Astrophysics : PSF interpolation, Galaxy classification,…


