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Whence the testbed?
Which stellar observations currently provide the best 
constraints on analytical and numerical stellar models?

• The Sun 
• Activity cycles, detailed dynamics, helioseismology

• A large selection of Kepler and Mt Wilson stars, among a 
few others
• Sensitivity of internal structure and magnetism to fundamental 

parameters

• Red Giants 
• Convective Core Dynamos, internal structure

• M dwarfs 
• Impact of a stable interior, fully convective dynamics, proxy for 

pre-main sequence stars



Basic Aspects of Solar Magnetism

Hathaway 2010



Basic Aspects of Solar Magnetism



Stellar Cycles & Magnetism

Tau-Bootis F-type StarSpectropolarimetry



Stellar Cycles & Magnetism

Froehlich 2013, 
Livingston 2007

Radick 1998

Faculae Dominated Spot Dominated

Long-term Activity CyclesCa H & K Emission



(J. Schmitt, 2003, IAU S219)

Low mass

ultra-cool star V374 Pegasi 
(Donati et al.)

Young star V2129 Oph 
(Donati et al.)

Tiny Stars with Strong Fields



Interface Dynamo Transition?

Schmidt 2014
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Beyond just magnetism…

Many features of the stellar interior may exhibit a strong influence 
upon the observable characteristics of stars:

• Tachoclinic transitions

• Transport by internal waves

• Tidal interactions

• Double diffusive instabilities

• Shear instabilities

• And so on… to greater complexity.



• Can some basic aspects of a star’s magnetic state be 
determined from it’s global parameters?

• What morphologies of magnetic fields are stable within 
radiative regions?

• What is the structure of the interface between 
convectively stable and unstable regions?  Does it 
depend upon rotation?

A small sampling of such puzzles in stellar 
evolution and magnetism



Basic Stellar Physics – On the main sequence

• Fusion in the core – p-p chain and/or CNO 
cycle

• Radiative envelope, where thermodynamic 
and compositional properties permit a small 
opacity and small thermal gradient

• Convective zone(s), where radiation is 
inefficient at carrying heat (e.g., large 
opacity and/or steep thermal gradient)

• Exterior winds and corona above 
photosphere 
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F-M: all magnetically active
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What about other evolutionary phases?

• Since, all phases are interesting from the viewpoint of turbulence and 
dynamos…

Time

Pre-main 
sequence



What about other evolutionary phases?

• Since, all phases are interesting from the viewpoint of turbulence and 
dynamos…

Time

Sub-Giant to Giant



So what does this have to do with MHD?

• First, what is MHD?

• Under a double coarse-graining:
• The first arising from ensemble particle dynamics, to the dynamics of 

statistical distributions (kinetic theory)

• And the second assumes charge quasi-neutrality, and that time and length-
scales of motion that are much larger than kinetic ones. 



So what does this have to do with MHD?

• First, what is MHD?

• Under a double coarse-graining:
• The first arising from ensemble particle dynamics, to the dynamics of 

statistical distributions (kinetic theory)

• And the second assumes charge quasi-neutrality, and that time and length-
scales of motion that are much larger than kinetic ones. 

Equations! Panic!! 



Essential Dynamo 
Processes

Evolution of Mean Magnetic Fields

Turbulent 
Correlations

Rotation

• Fully resolved nonlocal 3D MHD

• Flux-transport dynamo (e.g., BL)

• Delta-correlated turbulence (MFT)

• Parametrically asymptotic models



The basic building block of 

stellar dynamos:

Helical convection

Essential Dynamo Processes



Essential Dynamo Processes

Differential 
Rotation

Meridional
Circulation

Howe 2009 Zhao et al 2013



Simulating stars along the 
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Massive Star Magnetism

Grunhut et al. 2013

Donati et al. 2006

38/420
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• Dynamo-generated or frozen-in fields from PMS

Lead to stable fossil fields in radiative regions 

(e.g. Braithwaite et al. 2006, Duez & Mathis 2010, Emeriau & Mathis 2015)

Potential instability driving dynamo in radiative regions

(e.g. Spruit 2002, Mullan et al. 2005)

• Core dynamo-generated fields from convective regions 

Influences later stages of evolution

(e.g. Moss et al. 1989, Brun et al. 2005, Featherstone et al. 2009)

Origins of Observed 
Massive Star Magnetism



• Evolution of a Massive Star
• Pre-Main Sequence

• Either convective or radiative depending upon mass
• Main Sequence

• Convective core and surface region, generate field how does this link to fossil 
field?

• Helium Burning
• Like the main-sequence, with a more compact core, stronger fields (geometry 

+ density)!
• Mixed Element Burning

• Shellular burning with an even more compact core -> even stronger fields!
• Silicon Burning

• End-stage with shellular burning and extremely compact core -> strongest 
fields!

So even if the core fields 
remain hidden…

• The magnetic field at each stage depends upon the topological 
evolution of the previous one!



• Consider a statistically steady state with the following force balance 
for a non-rotating system:

• Further, let

• Then, the equipartition magnetic field should roughly be

Some Simple Considerations for 
Scaling Laws



• Extend this statistically-steady force balance to a 
rotating system:

• Then, the super-equipartition magnetic field may 
scale as

Some Simple Considerations for 
Scaling Laws



Some Simple Considerations for Scaling Laws

Augustson et al. 2016 Yadav et al. 2016



What about other stars?

• How do the scalings depend upon the diffusive properties of the 
convective dynamo?

• Consider the MAC balance (for low Ro):

• The other basic consideration (for low Pm):



What about other stars?

• Together these imply that                                               or

1/2



What about other stars?



What about other stars?



The stability of magnetic field configurations

• Consider the formation of a star:

• It is convecting, rapidly rotating, and 
most likely differentially rotating

• So, DYNAMO!

• But what happens once the radiative 
region begins to form?



The stability of magnetic field configurations

• With the tangled complex field remaining from the convective 
dynamo: 

• What results after Ohmic decay and instabilities set in?

• The simplest story:

• With nothing to sustain them, large-scale flows are quenched on 
an Alfven time scale (fast compared to evolutionary scales).

• So, if in a stable configuration, the remaining magnetic field will 
slowly diffuse away.



The stability of magnetic field configurations

• This requires a stable magnetic field configuration!

• Yet there are possible instabilities, leading to a 
further loss of magnetic energy,

• e.g., the Tayler instability.

m=0 m=1

m=1

m=0



The stability of magnetic field configurations

• The Tayler instability, predicts that flows can 
develop if

• Certain magnitudes of the magnetic field are 
reached,

• or he field has a certain type of radial 
dependence.

• The flows instabilities can be suppressed if 

• Bp ~ Bphi



The stability of magnetic field configurations

• What remains unknown is what happens if the 
background magnetic field is non-axisymmetric!

• This is a tricky problem… requiring the 
minimization of

• Which in a sphere looks like:

∆𝑊 = ∆𝑊𝐿 + ∆𝑊𝐵 + ∆𝑊𝑃



Conclusions

• Convection = Dynamo, 

• Convection + Rotation = Even better Dynamo,

• Scaling laws have (a likely limited, but nevertheless interesting) 
power to estimate the potential magnetic field strength in a range of 
stars.

• Pre-main sequence stars will build magnetic fields, as they develop 
convectively stable regions, those fields will decay toward a stable 
configuration.

• Certain instabilities may govern which of those remain, and hence 
what might be observable.


