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About me

Kostas Themelis

v
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| am a postdoctoral researcher at the
Cosmostat lab in CEA

before that | was a postdoctoral researcher at
the National Observatory of Athens in
2012-2017

my area of expertise is in statistical signal
processing

my PhD thesis was on Bayesian signal
processing techniques for hyperspectral image
unmixing, completed at the University of
Athens in 2012

my research interests are in variational
algorithms for approximate Bayesian inference
with application to image processing

| don’t need a website, themelis.github.io
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Introduction to Bayesian data analysis

Bayesian data analysis

Let us assume a given set y of data points, and a suitable structural parametric model
M that describes these data.

In the Bayesian framework,

» we treat the model parameters 0 as random variables, i.e., we assume some
suitable p(0)

» we use Bayes’ theorem to compute the posterior distribution of our model
parameters
Bayes’ theorem
» is mathematically expressed as

p(y|9)p(0)

p(Oly) = o)

» it can be seen as an inversion procedure expressed in a probabilistic way
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Introduction to Bayesian data analysis

Bayesian data analysis

Advantages
» Bayes’ theorem provides a direct way to infer model parameters
» we are able to extract confidence intervals for our inferred parameter estimates

Challenges
» subjectivity, different priors give rise to different posteriors
» difficult to express prior beliefs in prior probabilities — complex Bayesian models
» inference is computationally intensive, the data evidence

ply) = / ply.6)d6

is intractable in most cases, hence, posterior approximations are largely based on
sampling - MCMC
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Introduction to Bayesian data analysis Bayesian models

Bayesian modeling

deterministic vs probabilistic modeling

Deterministic scenario
Maximum likelihood estimation
» Tikhonov regularization:

mjn { Iy - X015 + 72 012}
> sparse {;-norm regularlzatlon:
. 1 2

min { 52z Iy~ X6l + Aol

4

Probabilistic scenario

Maximum a posteriori (MAP) estimation
min {—logp(y|0) — logp(6)}

Gaussian prior — p(6) o exp [—[|0]|3/(203)]

Laplace prior — p(0) o exp [—|6]/b]

v
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Variational Bayes (VB)

...a fast alternative to MCMC

VB tranforms the statistical problem of computing p(6|y)
to an optimization one
how?

» first, we assume an approximating pdf ¢(8) for the
true posterior p(8y)

» ¢(0) is of specific form, e.g., it may belong to the
exponential family

» in VB we minimize the Kullback-Leibler divergence
K L(q||p(6]y)) among these two distributions

KL(gllp(oly)) = / q<">1°gp?£> °
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Introduction to Bayesian data analysis Variational Bayes inference

Variational Bayes (VB)

...a fast alternative to MCMC

K L(qllp([x))

p(0]x)

Kostas Themelis

...the task is to minimize

KLGalp(6ly) = [ a(@)oz-47)ae.

but is this possible? isn’t p(@]y) unknown?

» K L(q||p) can be expressed as

KL(qllp) = —(Eq[p(y, )] — Eq[q(0)]

» maximizing the evidence lower bound (ELBOYis
equivalent to minimizing the K L(q||p) divergence

» still a difficult problem to solve...

logp(y)
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Variational Bayes (VB)

...a fast alternative to MCMC

...but if we assume independent approximating factors,
based on the mean-field theory,

9(6) = T a(6n)

we can symplify further and compute a closed form
solution for this problem, which is given by,

variational Bayes update

q(0n) o< exp (Eq-.,, [logp(y, 0)])

KLUt \where all factors q(6,),n = 1,2, ..., N, are updated in a

sequential order
p(Ox)
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Introduction to Bayesian data analysis Variational Bayes inference

A simple linear regression example

Bayesian model
y =X0+mn, n~N(nl0,5 ')
Likelihood

p(y10.58) = N(y|X6,57'T)

Conjugate priors

K
p(8la) = HN (0%0, 0. 1)

p(B) = 9(5\67 d) n n

K
H g (677 \a b Graphical illustration of dependencies among
model parameters

k=1
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Introduction to Bayesian data analysis Variational Bayes inference

A simple linear regression example

Variational Bayesian inference

Approximation

q(0,a, 8) = q(0)q(a)q(B)

Approximate posteriors

q(0) = (9\u9,29)

Hgakmé)
(8) =G(Ble,

Kostas Themelis

Batch variational Bayes algorithm

Initialize (o), (B)
Set a, b, ¢, d to very small values
fort=1,2,...
2o = (A+(B)X"
po = ()BeXTy
c+ 5
<B> = 1 2 2
d+ 5 (lly — X6]?)
fork=1,2,....K
__a+}
) = e
end for
end for

X)!
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Variational Bayesian online parameter estimation Online sparse regression

Online sparse regression

/ &(n)
x(n) Linear distortion y(n)
model —>
w(n)

w(n)

» input-output relation: ‘y(n) =x"(n)w(n) +(n)

» Goal: recursively estimate and track w(n) in time as new observations and input
data pairs {y(n),x(n)} become available

» the recursive LS (RLS) algorithm solves the normal equations recursively in time
in O(N?)

Online sparse regression optimization function

Wy () = arg min ||| A% () (y(n) — X(n)w(m)|[* + 7llw(n)]|1
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Variational Bayesian online parameter estimation Proposed method

Adaptive variational Bayes algorithm

Batch mode vs ...

» a set of observed data is available. Let
0= [wl,...,wN,B,al,...,aN,bl,...,bN

» update each variational parameter 0, sequentially until convergence

}T

» each variational update minimizes the KL distance between ¢(6;) and p(6;|y, 6-:)
and increases monotonically the evidence lower bound
logp(y) > Eq[logp(y, 8)] — Eq(logg(0)]

v

... adaptive mode

» anew data pair {x(n),y(n)} becomes available at time instant n

» perform a single update cycle on all variational parameters 6;(n)’s
» utilize the latest variational parameters, i.e.,

[91(77,), .. .,9,-_1(n),9i+1(n — 1), . ‘,ONq (’I’L — 1)}T

» the evidence lower bound does not always increase (it gradually becomes
accurate as learning proceeds)
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Variational Bayesian online parameter estimation Proposed method

Online sparse regression

Batch variational Bayes

Initialize (c), (5)
Seta,b,c,d~0
fort=1,2,...
3= (A+(BXTX)™!
Mo = </3>29XTY
c+ %

(B) =
d+ 3 (ly — X6]2)
fork=1,2,... K

a—i—%
ag) = —— -
) = e

end for
end for

Kostas Themelis

Initialize X, w(0), A(—1), A(0), R(0), z(0), d(0), o(0)
Setc, a, p, 8, K, v to very small values (10~ °)
forn=1,2,...

R(n) = AR(n — 1) + x(n)x” (n) — AA(n — 2) + A(n — 1)

z(n) = Az(n — 1) + x(n)y(n)
dn) = A0 =)+ 2 m)
) N+(1-N"1+2

’ 7 26+ d(n) — 2T (n)w(n — 1) + T (n)o(n — 1)
fori=1,2,...,N
o2 (n) = 1/(B(n)rii(n))

zi(n) — vl (n)w-i(n)

Online variational Bayes

Tii (n)
2c+1
a;i(n) = 2 1
a+ B2 (n) +ry, (n)
end for
end for
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Variational Bayesian online parameter estimation Experimental results

input|

Transmitter
(Tx)

Receiver

output
R

e

>
fading
channel

Normalized mean square error (NMSE):

NMSE =

(Ilw(n) —Ww(n)|*)
(Iw(n)[12)

Adaptive filtering setup:
» 64-length time-varying channel.

» & nonzero coefficients, binary input.

» SNRis set to 15dB.
» A non-zero coefficient is added at the

750th time mark.
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Work at CEA Weak gravitational lensing

Weak gravitational lensing

Description

Credit: ESA/NASA

» light emitted by distant galaxies is curved, depending on the matter distribution in
its path towards earth

» taking advantage of a plethora of small measured distortions, called 'shear’, we
can estimate the underlying matter distribution
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Work at CEA Weak gravitational lensing

Weak gravitational lensing

...towards a new version of GLIMPSE

» objective: estimate the convergence
K, based on observed shear data ~

0.90

0.75

» this is an ill-posed inverse problem

0.60

0.45

GLIMPSE algorithm
» provides a 2D or 3D reconstruction

0.30

0.15

» requires no binning of the galaxy shear

0.00

0

2 a 6 8 10

Credit: Lanusse et al, 2016

» imposes sparsity in a wavelet basis
» takes into account the reduced shear

N S .
min {EHEW 2y = TPF k|3 + N\|wo @ k|1 + ’LI(.):O(H)}

K =KNL + ka
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Work at CEA Weak gravitational lensing

Thank you!

Variational Bayesian inference Saclay, October 24, 2017 19/19



	About me
	Introduction to Bayesian data analysis
	Bayesian models
	Variational Bayes inference

	Variational Bayesian online parameter estimation
	Online sparse regression
	Proposed method
	Experimental results

	Work at CEA
	Weak gravitational lensing


