using cosmic neutral hydrogen as tracer of large scale structure of the universe

Isabella Paola Carucci

CosmoStat group since April 2019

Room: 274

Post Doc seminar

1 October 2019

PhD, October 2017

using cosmic neutral hydrogen as tracer of large scale structure of the universe

Isabella Paola Carucci

CosmoStat group since April 2019

Room: 274

Post Doc seminar

1 October 2019

21cm radiation

- spectrally isolated
- strongly forbidden: $t_{1/2} \sim 10^7$ years
- small obscuration

e.g. detecting a single $z \sim 2.5$ galaxy with an optimistic HI mass $M_{HI} \sim 6.5 \times 10^9 \, M_{\odot}$ would require ~ 360 hours with the SKA telescope [Kanekar+ 2010]

Cosmology using HI as tracer!

measurements

the future is bright

- SKA (**MeerKAT** already, single dishes, up to z~1.45)
- **Chime** (analysing data, interferometer, to z~2.5)
- Tianlai (analysing data, interferometer, to z~2.5)
- Bingo (being built, single dish, up to z~0.48)
- FAST (testing, single dish)
- HIRAX (dishes)
- ORT

• ...

MeerKAT 21cm IM tests (courtesy of Mario Santos)

Phase I

SKA1-MID

- 0 < z < 3
- 200 dishes; 15m
 911 antennae

SKA1-LOW

- 3 < z < 27

- modelling
- dependence on cosmology
- foreground cleaning and instrumental effects

How is it clustered?

the clustering of HI selected galaxies
 at z ~ 0 from the ALFALFA survey
 (Martin+ 2012, Guo+ 2017)

 $b_{DLAs} = 1.99 \pm 0.11$ at z~2.3 the bias of the Damped Lyman-α systems (DLAs) at z ~ 2.3 by BOSS collaboration (Perez-Rafols+ 2017)

HI cosmic abundance times its linear bias, from 21cm IM observations at z = 0.8 performed with the GBT by (Switzer+ 2013)

How much HI around?

TNG300 Distribution 1.4 TNG100 1.2 1.0 $\times 10^3$ 8.0 $\Omega_{ m HI}$ Rao et al. 2006 Noterdaeme et al. 2012 0.4 Crighton et al. 2015 Rhee et al. 2013 Lah et al. 2007 Songaila & Cowie 2010 0.2 Zwaan et al. 2005 Delhaize et al. 2013 Martin et al. 2010 Braun 2012 0.0 zVillaescusa-Navarro + 2018 $P_{21} \propto (\delta T_b b_{HI})^2 P_m$ $\Omega_{\rm HI}$ × b_{HI} = 0.62 × 10 ⁻³ at z~0.8 $\propto (\Omega_{HI} b_{HI})^2 P_m$

Strategy 1: HI resides in DM halos

Strategy 2: Hydro sims

- assuming photo-ionization equilibrium, setting the HI/H fraction in order to reproduce the Lyman-a mean transmission flux
- mimicking HI self-shielding for high enough density regions
- letting H₂ forming for even denser regions

Villaescusa-Navarro, .. , IPC + 2018

- modelling
- dependence on cosmology
- foreground cleaning and instrumental effects

standard ACDM model

Dark matter

$$\delta = \frac{\Delta \rho}{\rho}$$

$$<\delta(\mathbf{k}) \ \delta(\mathbf{k'}) > = \delta_{D}(\mathbf{k} + \mathbf{k'}) \ P(\mathbf{k})$$

Dark matter

$$\delta = \frac{\Delta \rho}{\rho}$$

$$<\delta(\mathbf{k}) \ \delta(\mathbf{k'}) > = \delta_{D}(\mathbf{k} + \mathbf{k'}) \ P(\mathbf{k})$$

Dark matter models (hydro) simulations

Dark matter models (hydro) simulations

Total matter Pk

10³ $z\!=\!3$ 10² $\Delta_{\rm m}^2(k)$ 10¹ CDM 10⁰ 1 keV 2 keV 3 keV 10⁻¹ 4 keV $P_{ m m}^{ m WDM}/P_{ m m}^{ m CDM}$ 0.9 8.0 0.6 10⁰ 10¹ 10² $k [h \text{ Mpc}^{-1}]$

Halo mass function

Dark matter models: 21cm signal

- modelling
- dependence on cosmology
- <u>foreground cleaning and</u> <u>instrumental effects</u>

i.e. what am I doing here?

buried under the foregrounds

Alonso+ 2014

GMCA: Generalised Morphological Component Analysis

 $\mathbf{X} = \mathbf{A} \mathbf{S}$ signal
signal

Bobin + 2007, 2008, 2012

- BSS with sparse representation
- Iterative thresholding algorithm
- No parameters to tune

Tested on **CMB** (data, e.g.Bobin+ 2016)

And for **EoR** signal (sims, Chapman+ 2013)

testing GMCA on 21cm intensity mapping

Summary

- We will soon start doing cosmology with 21cm IM
- Unique test for the nature of dark matter and generally for theories that modify the growth of structures
- It is observationally hard, that's why
 we want to test/optimise GMCA: the
 sparsity based component separation
 is very well adapted to capture galactic
 foregrounds + effective framework to
 analyse multi-channel data.

Merci!