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Introduction

Goal of Cosmology: study the origin, nature, evolution and 
content of the Universe as a whole

model is the actual standard model of Cosmology

H2(a) = H2
0 [⌦ma�3 + ⌦ra

�4 + ⌦ka
�2 + ⌦⇤]

Bang! +

⇤CDM

It assumes:

+

Big Bang General 
Relativity Presence of dark matter 

and dark energy

And follows the Friedmann equation:



Galaxy surveys allow us to study cosmology from the distribution of galaxies

SDSS

Introduction

time

The actual state of the Universe depends 
on:

• Initial conditions (Big Bang)

• Physics of the Universe (GR, QM…)

• Content of the Universe

The study of the structures of the 
Universe allow us to understand all this, 
but…
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Galaxy surveys allow us to study cosmology from the distribution of galaxies



SDSS

Introduction

time

We must know the connection between galaxies and dark matter to study the Universe in detail

Galaxy surveys allow us to study cosmology from the distribution of galaxies



Light traces population

Light (of galaxies) traces matter

Europe at night Europe population

Galaxy distribution from galaxy survey (SDSS) Dark matter distribution from simulation

z
z
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Two-point correlation function (2PCF): it gives 
information about the correlations in densities separated 

a given distance
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�2

Dark matter distribution 
(Millennium Simulation)

Introduction

<10

distance

2-
Po

in
t 

C
or

re
la

tio
n 

Fu
nc

tio
n

10

40

distance

di
st

an
ce

Toy distribution Toy 2PCF

⇠(r12) = h�1(r1)�2(r2)i

40

r12
� =

⇢� ⇢̄

⇢̄



Introduction
Linear bias

Galaxy bias is defined as the ration between the galaxy 
and matter 2 Point Correlation Function (2PCF)

Bias at large scales is constant

Manera & Gaztañaga 2011

b(r) =

s
⇠g(r)

⇠(r)
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Manera & Gaztañaga 2011

Linear bias approximation

�g(~x) ' b�(~x)

b(r) =

s
⇠g(r)

⇠(r)

Galaxy bias is defined as the ration between the galaxy 
and matter 2 Point Correlation Function (2PCF)

We can measure it 
from galaxy surveys

??

Bias at large scales is constant

Manera & Gaztañaga 2011



dark matter field (lens)
Source image

light trajectory

Observed image

The light is deflected when travelling throw a gravitational field (or a mass fluctuation)
Then, galaxy images are affected by the foreground mass distribution

Happy UniverseEinstein Ring Space Invader
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Weak Gravitational Lensing (WL)

WL studies the small distortions of galaxy images due to the foreground mass distribution
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Assuming linear bias
�g(✓) = b(z)�(✓)

We construct a biased version of    :

g(✓) =

Z zs

0
q(z)�g(✓)dz = b(z)(✓)

Methodology
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Assuming linear bias
�g(✓) = b(z)�(✓)

We construct a biased version of    :

b =
hgi

hi � hNN i

b =
hggi � hN

g N
g i

hgi

Measure galaxy 
bias from

true 

g

g(✓) =

Z zs

0
q(z)�g(✓)dz = b(z)(✓)

Methodology

Pujol et al. 2016



Redshift dependence

We are measuring a weighted mean of the redshift 
dependent bias

= b(✓)

?

Solution adopted: measure galaxy bias 
in tomographic bins, restricting the 
galaxies inside each bin and assuming 
that bias does not change inside the bin

6 DES

Figure 3. Example of simulation maps used in this work. The left column show g1,g maps and the right column show g1 maps. This example is shown for
the source redshift bin z=1.0–1.2 and the lens redshift bin z=0.4–0.6. The galaxy bias for the lens galaxies can be measured by cross-correlating the left and
the right column. From top to bottom illustrates the different stages of the degradation of the simulations to match the data. The top row shows the g1,g map
against the true g1 map for the full 30⇥30 deg2 area. The middle row shows the same g1,g map against the g1 that contains shape noise. The bottom row shows
both maps with the SV mask applied. Note that the g1 maps containing shape noise has a 3 times large range in the color bars. [add photo-z too!]

(ii) repeat above with shape noise included
(iii) repeat above with SV mask applied
(iv) repeat above with photo-z errors added
(v) repeat above with 4 different areas on the sky

Figure 3 illustrates an example of how the g1,g and g1 maps degrade
over these tests. The top column corresponds to (i) above, and we
can visually see the correspondence of some structures between the
two maps. Note that the g1,g map only contributes to part of the g1
map, which is the reason of the higher amplitude of the g1 map. The
middle row shows the same g1,g and the g1 with shape noise added,

which corresponds to the step (ii) above. We find the structures in
the g1 map becomes invisible in the presence of noise, with the
amplitude much higher than before. The bottom row corresponds
to the step (iii) above, where the SV mask is applied to both maps.
For the g1 map this is merely a decrease in the area. But for the g1,g
map, this also affect the conversion from kg to g

g

gg, causing edge
effects which is visible. In step (iv) we see the overall amplitude
of the maps decrease, this is due to two reasons – the smoothing in
the redshift direction and the decrease in shape noise in g1 due to
the inclusion of more galaxies. Step (v) is achieved by moving the
mask around in the simulation area.
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2 DES

method with only photometric data. Simulations are used side-by-
side with data to ensure that each step in the data analysis is under-
stood. In particular, we start with the same set of “ideal” simula-
tions used in P15 and gradually degrade until they match the data.

The paper is organised as followed. In §2 we overview the ba-
sic theoretical aspects of galaxy bias and weak lensing, together
with the principles of bias measurement method developed in A12
and P15, which we use in this paper. We also discuss the new com-
ponents introduced in this paper due to practical issues in the data.
In §3 we introduce the data and simulations used in this work. The
analysis and results are presented in §4, first with a series of simu-
lation tests and then with the DES SV data. In §6 we compare our
measurements with bias measurements on the same data set using
different approaches. We conclude in §7.

2 BACKGROUND

2.1 Galaxy bias

The clustering of galaxies is biased from the clustering of dark mat-
ter, and galaxy bias describes this relation. In this work we follow
P15 and only discuss the region of linear bias, where the overden-
sity of galaxies dg is linearly related to the overdensity of dark mat-
ter ddm, or

dg(z) = b(z)ddm(z). (1)

ddm ⌘ r�r̄

r̄

, where r is the dark matter density and r̄ is the mean
dark matter density at a given redshift. dg is defined similarly,
with r replaced by rg, the number density of galaxies. Accord-
ing to Manera & Gaztañaga (2011), at sufficiently large scales
(& 40 Mpc/h), the bias defined in Eqn. 1 agrees with biased defined
through the 2PCF of dark matter (xdm) and galaxies (xg). That is,
the following equation holds,

xg(r) = hdg(r0)dg(r0 + r)i= b2hd (r0)d (r0 + r)i= b2
x (r), (2)

where the angle bracket hi averages over all pairs of positions on
the sky separated by r. Our work will be based on scales in this
regime.

2.2 Weak Lensing

Weak (gravitational) lensing refers to the coherent distortion, or
“shear” of galaxy images caused by intervening large-scale cosmic
structures between these galaxies and the observer. By statistically
analysing the galaxy shapes, one can infer the mass distribution in
the comic volume of interest. The main advantage of weak lensing
over other mass measurement methods is that it probes directly the
total mass instead of just a proxy of the total mass (e.g. stellar mass,
gas mass). For a detailed review of the theoretical background of
weak lensing, see Bartelmann & Schneider (e.g. 2001).

In this work, weak lensing information is used either directly
through the complex shear g

g

g = g1 + ig2, or through the real “con-
vergence” k , which can be derived from shear. Both quantities are
second derivatives of the 2D lensing potential y (Bartelmann &
Schneider 2001):

k =
1
2

—2
y =

1
2
(y,11 +y,22), (3)

g

g

g =
1
2
(y,11 �y,22)+ iy,12, (4)

where the subscript “, i j” refers to the second derivative along the i
and j direction, and i, j = 1,2 are the two sky coordinates.

The convergence has the merit that it measures directly the
projected mass weighted by the lensing efficiency. In a flat Uni-
verse, we can write

k(qqq ,c) =
3H2

0 Wm

2

Z
c

0
dc

0 c

0(c �c

0)

c

ddm(qqq ,c
0)

a(c 0)
, (5)

where H0 is the Hubble constant today, Wm is the total matter den-
sity of the Universe today normalised by the critical density today,
a is the cosmological scale factor.

Conversion between g

g

g and k can be done in Fourier space
through the following relations (Kaiser & Squires 1993, KS con-
version):

k̃(`̀̀)� k̃0 = D⇤(`̀̀)g̃gg(`̀̀), (6)

and

g̃

g

g(`̀̀)� g̃

g

g0 = D(`̀̀)k̃(`̀̀), (7)

where “X̃” indicates the Fourier transform of the field X , `̀̀ is the
spatial frequency, k̃0 and g̃

g

g0 are small constant offsets which can-
not be reconstructed and are often referred to as the “mass-sheet
degeneracy”. D is a combination of second moments:

D(`̀̀) =
`2

1 � `2
2 + i2`1`2
|`̀̀|2

. (8)

In this work we follow the implementation of Eqn. 7 and
Eqn. 6 as described in Vikram et al. (2015) and Chang et al. (2015b)
to construct k and g

g

g maps as needed.

2.3 Bias estimation from galaxy density map and weak
lensing map

Our work is based on the method described and tested in A12 and
P15, which we briefly summarize here. For more details we refer
the readers to those two papers.

We first define kg, the projected, lensing-weighted galaxy den-
sity field by replacing ddm in Eqn. 5 by dg. That is,

kg(qqq ,c) =
3H2

0 Wm

2

Z
c

0
dc

0 c

0(c �c

0)

c

dg(qqq ,c 0)

a(c 0)
. (9)

According to Eqn. 1, if the galaxy bias b is constant over redshift,
we have the simple relation kg = bk and b can be measured by cal-
culating the zero-lag cross-correlation between the two fields (A12,
P15), or

b =
hkkgi
hkki =

hkgkgi
hkkgi

. (10)

For a redshift-dependent bias b(z), we can calculate Eqn. 10
in tomographic redshift bins. That is, when calculating Eqn. 9, we
only integrate within a redshift bin (from c0 to c0 +Dc), within
which we assume the galaxy bias is constant, or

kg(qqq ,c0,c) =
3H2

0 Wm

2

Z
c0+Dc

c0

dc

0 c

0(c �c

0)

c

dg(qqq ,c 0)

a(c 0)
. (11)

Using Eqn. 11 means that the relation between k and kg becomes
more complicated as they represent different redshift coverage. P15
showed that for the second estimator in Eqn. 10, an analytic factor
f needs to be applied to correct for the mis-match in redshift range
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Galaxy bias depends on redshift!
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MICE Simulation

⇤CDM lightcone up to z = 1.4
⌦m = 0.25
⌦b = 0.044

h = 0.7
ns = 0.95

⌦⇤ = 0.75 �8 = 0.8

~200 million galaxies over 5000 sq.deg
~3 million CPU hours
~3Gpc size

Convergence map of MICE

MICE provides lensing catalogues 
(Fosalba et al. 2015), galaxy 

catalogues (Carretero et al. 2015), 
dark matter field particles

Methodology



• Dark matter bias measured
• Consistent with unity

• Galaxy bias measured in MICE for 
galaxies with i < 22.5

• Consistency between our method and 
other methods to measure galaxy bias

• Optimal for intermediate redshifts
• This method only depends on 

Results

⌦m

Pujol et al. 2016



Application to data

Dark Energy Survey (DES)

• 4m Blanco Telescope at Cerro 
Tololo (Chile)

• 5,000 square degrees 
• 300 million galaxies up to z = 1.4
• Collaboration of 25 institutions 

• 570 Megapixel 
camera (DECam)

• 74 CCDs
• 5 optical filters
• 525 nights
• Photo-z survey

DECam

Cerro Tololo

Cool observer being distracted



Further simulation tests in MICE

Using shear 
instead of 

convergence

applying 
shear noise

applying SV 
mask

applying 
photo-z 
errors

Chang et al. 2016

Application to data
�1,g �1



Chang et al. 2016

Results for DES SV data

• Galaxy bias for the benchmark galaxy 
sample (i < 22.5)

• Consistent results with other 
estimations of bias 

• Linear fit show slight increase of bias 
in redshift

Application to data



Conclusions

• Study Large Scale Structures and clustering is useful for cosmology 

• Galaxy Bias describes the connexion between galaxy and dark 
matter distribution, important to improve our precision in 
cosmology studies 

• Gravitational Lensing is a very useful tool to measure the mass 
distribution, baryonic and dark matter 

• New method to measure galaxy bias from WL and density fields 

• Method applied to DES SV data, planning to apply it to Y1



Work at CEA

+ Specific instrumental systematics form CCD, telescope, 
electronics, Point Spread Function, overlap between 
galaxies, etc.

Many processes affect the galaxy images that we obtain

• Pixelization 
• Galaxy morphology 
• Truncation 
• The use of a wrong model 
• Neighbour galaxies 
• …

And when we estimate the galaxy shapes many other 
aspects can bias our results:

Euclid Mission



Work at CEA

+ Specific instrumental systematics form CCD, telescope, 
electronics, Point Spread Function, overlap between 
galaxies, etc.

Many processes affect the galaxy images that we obtain

• Pixelization 
• Galaxy morphology 
• Truncation 
• The use of a wrong model 
• Neighbour galaxies 
• …

And when we estimate the galaxy shapes many other 
aspects can bias our results:

Euclid Mission

And with all these issues we want to measure 
lensing statistics with unprecedented precision! 

Goal of my work: study the biases produced in 
the estimation of galaxy shapes and how to 

calibrate them



Thanks!


