
Lecture 16: LATTICE GAUGE THEORIES:

AN INTRODUCTION



In this chapter, we discuss gauge theories on the lattice (chosen hypercubic

for convenience), which can be considered as non-perturbative regulariza-

tions of the continuum gauge theories studied in chapters 13–15: the low

temperature or small coupling expansion of the lattice model is a regularized

continuum perturbation theory.

We concentrate on pure lattice gauge theories (without fermions). Phys-

ically, this means that we cannot investigate many properties of a realistic

theory like QCD where fermions are coupled through a gauged SU(3) colour

group, but we can still investigate with lattice methods one important ques-

tion:

Does the theory generate confinement, that is, a force between charged

particles increasing at large distances, so that heavy quarks in the funda-

mental representation cannot be separated?

More generally, can one find charged (from the gauge group point of view)

asymptotic states like massless vector particles in the theory?



Other problems which we do not consider here, can also be discussed

in this framework: for example, the appearance of massive group singlet

bound states in the spectrum (gluonium), the question of a deconfinement

transition at finite physical temperature in QCD.

We first construct lattice models with gauge symmetry and show that

gauge fields are replaced by parallel transporter. We study pure gauge

theories (without matter fields) on the lattice. We discover that gauge

theories have properties quite different from the ferromagnetic systems we

have studied so far. In particular, the absence of a local order parameter

will force us to examine the behaviour of a non-local quantity, a functional

of loops called hereafter Wilson’s loop to distinguish between the confined

and deconfined phases. Results will be obtained in the high temperature

or strong coupling limit and in the mean field approximation. However,

we emphasize that the main physics results of lattice gauge theories are

obtained, after dynamical quarks are added, from large scale numerical



simulations with realistic values of physical parameters (including small

quark masses).

16.1 Gauge invariance on the lattice

The construction of lattice gauge theories is based on the idea of parallel

transport that has already been introduced in chapter 14.

We start from a model possessing a global (rigid) symmetry group G, and

we want to make it gauge invariant.

To each site i of a lattice, we associate a set of dynamic variables ϕi,

representing matter fields, on which acts an orthogonal representation D(G)

of the group G:

ϕg = gϕ , g ∈ D(G) .

A model is gauge invariant (local invariance) if it is invariant under inde-

pendent group transformation on each lattice site i. For the ϕ-measure of

1301



integration as well as for all the terms in the lattice action which depend only

on one site, global invariance implies local invariance as in the continuum.

Problems arise only with terms that connect different lattice sites.

Let us consider, for example, a term in the action of the form ϕi · ϕj ,

i and j being different sites on the lattice. Such a term is invariant under

global but not local transformations:

ϕi ·ϕj 7→ ϕig
T
i gjϕj ,

(where gT means g transposed). To render it invariant, it is necessary to

introduce a new dynamic variable, a matrix Uij belonging to the represen-

tation D(G), which depends on the two sites i, j and transforms like

Uij 7→ giUijg
T
j . (16.1)

Then, the quantity

ϕiUijϕj (16.2)
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is gauge invariant. Moreover, if Uij and Ujk are two matrices transforming

with the rule (16.2) then the product of matrices UijUjk transforms like

UijUjk 7→ giUijUjkg
T
k . (16.3)

In the transformation (16.1), we recognize the transformation of a parallel

transporter. In the continuum, a parallel transporter depends not only

on the end-points i, j but also on the curve joining them. Moreover, in a

local field theory one needs only transport along infinitesimal curves which

can be expressed in terms of a gauge field or connection, element of the

representation of the Lie algebra.

On the lattice curves follow links, the segments which connect adjacent

sites. The minimum displacement is a link and two arbitrary lattice sites can

be joined by a path formed of links of the lattice. As a consequence of the

composition rule (16.3), one can thus take as dynamic variables elements Uℓ

of the group representation associated with parallel transport along oriented
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links of the lattice, which transform like

Uℓ ≡ Uab 7→ gaUℓ g
T
b ,

where the link ℓ goes from site b to a. It is consistent with the transformation

law to choose

Uba = TUab = U−1
ab . (16.4)

Then, we can choose for matrix Uij any parallel transporter product of link

variables along a path Cij joining j to i:

U[Cij)] =
∏

links ℓ∈Cij

Uℓ ,

where the product is ordered along the path.
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Relation with the continuum formulation: the Abelian example. In contin-

uum field theory, in the Abelian U(1) example, we have already explicitly

constructed the parallel transporter (equation (13.25)) which is an element

of the U(1) group. In terms of the gauge field Aµ, it reads

U [Cxy] = exp

[

−ie
∮

C

∑

µ

Aµ(s)dsµ

]

,

in which e is the gauge coupling constant, and the gauge field is integrated

over an oriented piecewise differentiable curve going from x to y. Indeed,

in a gauge transformation a charged field ϕ and the gauge field

ϕ(x) 7→ eiΛ(x) ϕ(x), Aµ(x) 7→ Aµ(x)−
1

e
∂µΛ(x)

and, thus,

e

∫

C

∑

µ

Aµ(s)dsµ 7→ e

∫

C

∑

µ

Aµ(s)dsµ − Λ(y) + Λ(x),
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the transformation of U [Cxy] is

U [Cxy] 7→ eiΛ(y)−iΛ(x) U [Cxy].

The non-Abelian case. In the non-Abelian case, the explicit relation is

more complicated because the gauge field
∑

αA
α
µ(x)t

α is an element of the

Lie algebra of G and the matrices representing the field at different points

do not commute. It can be formally written as

U[Cxy] = P

{

exp

[
∮

C

∑

α,µ

Aα
µ(s)t

αdsµ

]

}

,

in which the symbol P means path-ordered integral.
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16.2 The pure gauge theory

We now discuss the pure gauge theory and its formal continuum limit as

obtained from a low temperature, strong coupling expansion.

16.2.1 Action and partition function

We now have to construct a gauge invariant interaction for the gauge ele-

ments U. It follows from the transformation (16.1) that only the traces of

the products of U’s on closed loops are gauge invariant. On a hypercubic

lattice, the shortest loop is a square, called hereafter a plaquette. In what

follows, we thus consider a pure gauge action of the form

S(U) = −
∑

plaquettes

trUijUjkUklUli . (16.5)

The appearance of products of parallel transporters along closed loops is

not surprising since we know quite generally that the curvature tensor Fµν
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which appears in the pure gauge action of the continuum theory is associated

with infinitesimal transport along a closed loop. Note that each plaquette

appears with both orientations in such a way that the sum is real when the

group is unitary.

The partition function. We can then write a partition function corre-

sponding to the action (16.5) as

Z =

∫

∏

links{ij}

dUij e−βpS(U), (16.6)

in which βp is the plaquette coupling. We integrate over Uij with the group

invariant (de Haar) measure associated with the group G. In contrast to

continuum gauge theories, the expression (16.6) is well-defined on the lattice

(at least as long as the volume is finite) because the group is compact and

thus the volume of the group is finite. Therefore, gauge fixing is not required

and a completely gauge invariant formulation of the theory is possible.
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16.2.2 Low temperature analysis

To understand the precise connection between the lattice theory (16.6) and

the continuum field theory, we investigate the lattice theory at low temper-

ature, that is, at large positive βp. In this limit, the partition function is

dominated by minimal energy configurations.

Let us show that the minimum of the energy corresponds to matrices

U gauge transform of the identity. We start from a first plaquette 1234.

Without loss of generality, we can set

U12 = g−1
1 g2 , g1, g2 ∈ D(G).

The matrix g1 is arbitrary and g2 is calculated from U12 and g1. Then, we

can also set

U23 = g−1
2 g3 , U34 = g−1

3 g4 .

These relations define first g3, then g4. The minimum of the action is ob-

tained when the real part of all traces is maximum, that is, when the prod-
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ucts of the group elements on a plaquette are 1. (The trace of an orthogonal

matrix U is maximum when all its eigenvalues are 1.) In particular,

U12U23U34U41 = 1 ,

which yields

U41 = g−1
4 g1 .

If we now take an adjacent plaquette the argument can be repeated for

all links but one, which has already been fixed. In this way, we can show

that the minimum of the action is a pure gauge. Thus, when the coupling

constant βp becomes very large, all group elements are constrained to stay,

up to a gauge transformation, close to the identity (in a finite volume with

consistent boundary conditions). From this analysis, we learn that the

minimum of the potential is highly degenerate at low temperature, since it

is parametrized by a gauge transformation, which corresponds to a finite
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number of degrees of freedom per site. This unusual property of lattice

gauge theories corresponds to the property that the gauge action in classical

mechanics determines the motion only up to a gauge transformation. To

perform a low temperature expansion, it becomes necessary to ‘fix’ the gauge

in order to sum over all minima.

Low temperature expansion. We choose a gauge such that the minimum

of the energy corresponds to all matrices U = 1. At low temperature, the

matrices U are then close to the identity:

U(x, x+ anµ) = 1− aAµ(x) +O
(

a2
)

,

in which a is the lattice spacing, x the point on the lattice, and nµ the unit

vector in the direction µ. We know from the discussion of section 14.1 that

the matrix Aµ(x) is the connection or gauge field. We have already shown

that the transformation (16.1) of the parallel transporter implies for Aµ(x)
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at leading order in the lattice spacing:

Aµ(x) 7→ g(x)∂µg
−1(x) + g(x)Aµ(x)g

−1(x),

which is the usual gauge transformation.

We now expand the lattice action for small fields. To simplify calculations,

we parametrize the orthogonal matrixU associated with the link (x, x+anµ)

in terms of the antisymmetric matrix Aµ(x) as

lnU(x+ anµ, x) = −aAµ(x+ 1
2anµ) +O

(

a3
)

. (16.7)

We verify below that we need U up to order a2. With the parametrization

(16.7), equation (16.4) implies that the term of order a2 vanishes. We now

define the antisymmetric matrix Fµν(x) by

e−a2Fµν(x) = U(x, x+ anν)U(x+ anν , x+ a(nµ + nν))

×U(x+ a(nµ + nν), x+ anµ)U(x+ anµ, x). (16.8)
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To calculate Fµν(x), we introduce the expansion (16.7) and use repeatedly

the Baker–Hausdorf formula:

ln
(

eA eB
)

= A+B + 1
2 [A,B] + · · · ·

Applied to the product of several factors, it takes the form

ln
(

eA1 eA2 . . . eAn
)

=
∑

i

Ai +
1
2

∑

i<j

[Ai, Aj ] + · · · ,

and, therefore,

a2Fµν(x) = a
[

Aµ(x+ 1
2anµ) +Aν(x+ anµ + 1

2anν)

−Aµ(x+ anν + 1
2anµ)−Aν(x+ 1

2anν)
]

+ a2 [Aµ(x),Aν(x)] +O
(

a3
)

.

At leading order, we recover the curvature tensor

Fµν(x) = ∂µAν − ∂νAµ + [Aµ,Aν ] +O (a) .
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We obtain one term in the plaquette action by taking the trace of expression

(16.8). Since Fµν is an antisymmetric matrix trFµν vanishes. Thus,

tr e−a2Fµν(x) = tr1+ a4 trF2
µν(x) + O

(

a6
)

.

This result shows that the leading term of the small field expansion of the

plaquette action (16.5) is the standard gauge action studied in chapter 14.

The relation between βp and the bare coupling constant e0 of continuum

gauge theories is thus

a4βp ∼ e−2
0 . (16.9)

As anticipated in chapters 13,14, we conclude that the low temperature

expansion, in a fixed gauge, of lattice gauge theories provides indeed a

lattice regularization of continuum gauge theories. We have here discussed

only the pure gauge action, but the generalization to matter fields is simple.

Higher order terms in the small field expansion yield additional interactions
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needed to maintain gauge invariance on the lattice. This is not surprising:

we have already shown that the gauge invariant extension of Pauli–Villars’s

regularization also introduces additional interactions.

16.3 Wilson’s loop and confinement

In section 15.4.2, we have calculated the RG β-functions for non-Abelian

gauge theories and shown that pure gauge theories are asymptotically free

in four dimensions, which means that the origin in the coupling constant

space is an UV fixed point and also implies that the effective interaction

increases at large distance. Therefore, as in the case of the 2D non-linear

σ-model, the spectrum of a non-Abelian gauge theory cannot be determined

from perturbation theory. To explain the non-observation of free quarks,

it has been conjectured that the spectrum of the symmetric phase consists

only in neutral states, that is, states which are singlets for the group trans-

formations.
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Clearly, it would be convenient to identify a local order parameter, that

is, a local observable whose expectation value would distinguish between the

QED phase of Abelian gauge theories, in which charge states can be pro-

duced, from the so-called confined phase. However, in gauge theories such

a local order parameter does not exist (see Elitzur’s theorem). This prop-

erty follows from the simple remark that physical observables correspond to

gauge invariant operators which are neutral by construction. Moreover, we

have seen in the study of continuum gauge theories (chapters 13, 14) that

the only gauge independent quantities corresponding to non-gauge invariant

operators are the S-matrix elements. Since it is very difficult to determine

S-matrix elements beyond perturbation theory, it has been suggested by

Wilson to study, in pure gauge theories, a gauge invariant non-local quan-

tity, the energy of the vacuum in presence of largely separated static charges.

We thus first study this quantity in pure Abelian gauge theories, in which,

in the continuum, all calculations can be done explicitly.
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16.3.1 Wilson’s loop in continuum Abelian gauge theories

In continuum field theory, in order to calculate the average energy, it is

necessary to introduce the gauge Hamiltonian, and, therefore, convenient

to work in the temporal gauge. We have constructed a wave function for two

static point-like charges, in the temporal gauge, in section 13.4 (equation

(13.38)):

ψ(A) = exp

[

−ie
∮

C0

∑

i

Ai(s)dsi

]

,

in which the charges are located at both ends of the curve C0.

By evaluating the behaviour for large time T of the matrix element

W (C0) =
〈

ψ
∣

∣e−HT
∣

∣ψ
〉

,

in which H is the gauge Hamiltonian in the temporal gauge, we obtain the

energy E(C0) of the vacuum in presence of static charges:

W (C0) ∼
T→∞

e−TE(C0) .
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If the charges are separated by a distance R, we expect E to depend only

on R and not on C0.

The loop functional W (C0) can be calculated from a field integral:

W (C0) =

〈

exp

[

−ie
∮

C′

0

∑

µ

Aµ(s)dsµ

]〉

,

C ′
0, which is now defined in space and time, is the union of two curves,

which coincide with C0 at time 0, and with −C0 at time T , respectively.

The expectation value here means average over gauge field configurations.

Since in the temporal gauge the time component of Aµ vanishes, we can

add to C ′
0 two straight lines in the time direction which join the ends of the

curves C0(t = 0) and C0(t = T ). W (C0) then becomes a functional of a

closed loop C (see Fig. 16.1):

W (C0) ≡W (C) =

〈

exp

[

−ie
∮

C

∑

µ

Aµ(s)dsµ

]〉

. (16.10)

1318



C0

x

−C0
T t

Fig. 16.1 – The loop C.

The advantage of the representation (16.10) is that it is explicitly gauge

invariant since it is the expectation value of the parallel transporter corre-

sponding to a closed loop in space–time.

The question of confinement is related to the behaviour of the energy E

when the separation R between charges becomes large. In a pure Abelian

gauge theory, in the continuum, which is a free field theory, the expression
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(16.10) can be evaluated explicitly. To simplify calculations we take for C0

also a straight line and use Feynman’s gauge. The quantity W (C) then is

given by

W (C) =

∫

[dAµ] exp

[

−S(A) +
∫

ddx
∑

µ

Jµ(x)Aµ(x)

]

with

S(A) = 1
2

∫

ddx
∑

µ,ν

[∂µAν(x)]
2

and

Jµ(x) = −ie
∮

C

δ(x− s)dsµ .

The result is

lnW (C) = −Γ(d/2− 1)

8πd/2
e2

∮

C×C

ds1 · ds2 |s1 − s2|2−d
. (16.11)
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The integral in the right hand side exhibits a short distance singularity, and

a short distance cut-off thus is required. Moreover, to normalize the right

hand side of equation (16.11), we divide it by W (C) taken for R = a, a

being a fixed distance. We now write more explicitly the integrals:

∮

C×C

ds1 · ds2
2 |s1 − s2|d−2

=

∫ T

0

|u− t|2−d du dt+

∫ R

0

|x− y|2−y dx dy

−
∫ R

0

[

(x− y)2 + T 2
]1−d/2

dx dy −
∫ T

0

[

(t− u)2 +R2
]1−d/2

dt du .

The first term in the right hand side is cancelled by the normalization. The

second term is independent of T and, therefore, negligible for large T . It

is actually related to the scalar product of the wave function ψ(A) and the

ground state eigenfunction. The third term decreases with T for d > 2
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which we now assume. Only the last term increases with T :

∫ T

0

{

[

(t− u)2 + R2
]1−d/2 −

[

(t− u)2 + a2
]1−d/2

}

dt du

∼
√
π
Γ
(

(d− 3)/2
)

Γ(d/2− 1)

(

R3−d − a3−d
)

T .

Therefore, the vacuum energy E(R) in presence of the static charges has

the form

E(R)− E(a) =
e2

4π(d−1)/2
Γ
(

(d− 3)/2
) (

a3−d −R3−d
)

.

We recognize the Coulomb potential between two charges.

For d ≤ 3, the energy of the vacuum increases without bound when the

charges are separated, and free charges cannot exist.

For d = 3, the potential increases logarithmically.

For d = 2, the Coulomb potential increases linearly with distance.
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In more general situations, the method that we have used above to deter-

mine the energy is complicated because we have to take the large T limit

first and then evaluate the large R behaviour. It is more convenient to take

a square loop, T = R, and evaluate the large R behaviour of W (C). Here,

we obtain

lnW
[

C(R)
]

− lnW
[

C(a)
]

=
1

2πd/2
Γ(d/2− 1)e2

{
∫ R

0

[

(u− t)2 +R2
]1−d/2

du dt

−
∫ a

0

[

(u− t)2 + a2
]1−d/2

du dt−
∫ R

a

|u− t|2−ddu dt

}

.

For d > 3, dimensions in which the Coulomb potential decreases, the right

hand side is dominated by terms which correspond to the region |s1 − s2| ≪
R in equation (16.11):

lnW [C(R)]− lnW [C(a)] ∼ const. ×R .
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This is called the perimeter law since lnW (C) is proportional to the perime-

ter of C and is, therefore, relevant to the d = 4 Coulomb phase.

By contrast, for d ≤ 3, lnW (C) increases as R4−d. The reason is that

two charges separated on C by a distance of order R, feel a potential of

order Rd−3.

In particular for d = 2, lnW (C) increases like R2, that is, like the area

of the surface enclosed by C: this is the area law expected in confinement

situations.

16.3.2 Non-Abelian gauge theories

It follows from the discussion of section 14.3 that in the temporal gauge

the wave function corresponding to two opposite point-like static charges is

also related to a parallel transporter along a curve joining the charges. The

same arguments as in the Abelian case, show that the expectation value of

the operator e−TH in the corresponding state is given by the average, in the
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sense of the field integral, of the parallel transporter along a closed loop:

W (C) =

〈

P exp

[

−i
∮

C

∑

µ

Aµ(s)dsµ

]〉

,

in which we recall that the symbol P means path ordering since the matrices

Aµ(s) at different points do not commute.

If we calculate W (C) in perturbation theory, we find of course at leading

order the same results as in the Abelian case. However, we know from

renormalization group, that we cannot trust perturbation theory at large

distances. Therefore, to get a qualitative idea about the phase structure we

first use the lattice model to calculate W (C) in the large coupling or high

temperature limit βp → 0.

Wilson’s loop: strong coupling expansion. Here, we assume that the group

we consider has a non-trivial centre. We take the explicit example of

gauge elements on the lattice belonging to the fundamental representation
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of SU(N) (whose centre is ZN , with elements the identity multiplied by

roots z of unity, zN = 1).

We calculate W (C) by expanding the integrand in expression (16.6) in

powers of βp. We choose for simplicity for the loop C a rectangle although

the generalization to other contours is easy.

Any non-vanishing contribution must be invariant by the change of vari-

ables Uℓ 7→ zℓUℓ, where zℓ belongs to the centre. Let us consider one

link belonging to the loop and multiply the corresponding link variable

U(x, x+anµ) by z0. We now multiply all link variables U(x+y, x+y+anµ),

which are obtained by a translation y in the hyperplane perpendicular to

nµ, by zy. Another link belonging to the loop belongs to the set but with

opposite orientation. Plaquettes involving such variables involve them in

pairs. For a result to be invariant and thus non-vanishing we need that the

number of times each link variable appears in the direction nµ minus the

number of times it appears in the direction −nµ vanishes (mod N). Thus,
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we start adding plaquettes to satisfy this condition at point x. However,

the addition of one plaquette does not change the total difference between

the numbers of links in the +nµ and −nµ directions. Therefore, always at

least one condition remains unsatisfied until the plaquettes reach the other

link of the loop. We can then repeat the arguments for the remaining links

of the loop and the new non integrated remaining links of the plaquettes.

The number of required plaquette variables to get a non-vanishing result, is

at least equal to the area of the rectangle, the minimal area surface having

the loop as boundary. We can then perform the integrations which are just

factorized group integrations. In this way, we get a contribution to W (C)

proportional to (βp)
A, in which A is the number of plaquettes. The largest

contribution corresponds to plaquettes covering the minimal area surfaces

bounded by the loop. It is indeed obtained by covering the rectangle with

plaquettes in such a way that each link variable appears only twice in either
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orientation. For a rectangular loop R× T , we just get

W (C) ∼ eRT ln βp . (16.12)

This results indicates that the potential between the static charges is linearly

rising at large distance. Static charges creating the loop cannot simply be

screened by the gauge field, in which case we would again get a perimeter

law.

Remarks.

(i) If the centre is trivial, it is possible to form a tube along the loop and

this implies a perimeter law. If, for example, the group is SO(3), in the

decomposition of a product of two spin 1 representations, we again find a

spin 1 which can be coupled to a third spin 1 to form a scalar. Thus, two

plaquettes can be glued to the same link of the loop without constraint on

the orientation of the plaquette.
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(ii) The asymptotic form (16.12) is also valid for the Abelian U(1) lattice

gauge theory. Therefore, in four dimensions, Wilson’s loop has a perimeter

law at any order in the weak coupling expansion and an area law at large

coupling. We expect a phase transition between a low coupling Coulomb

phase, described by a free field theory, and a strong coupling confined phase.

This phase transition has been observed in numerical simulations. It seems

to be first order, but this question has not been definitively settled. The

existence of the transition is related to the compact nature of the U(1)

group which is only relevant on the lattice (lattice QED based on group

elements is also called compact QED). Defects in which the group element

varies by a multiple of 2π around a plaquette govern the dynamics of the

transition. They correspond in the continuum to magnetic monopoles. In

four dimensions monopole loops yield, for dimensional reasons, logarithmic

contributions to the action, a situation reminiscent of the two-dimensional

Coulomb gas. The separation of vortices in the Kosterlitz–Thouless (KT)
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phase transition is here replaced by the separation of magnetic monopoles.

The string tension. The coefficient in front of the area is called the string

tension σ,

σ(βp) ∼
βp→0

− lnβp .

If no phase transition occurs when βp varies from zero to infinity, the gauge

theory leads to confinement. In this case, the behaviour of the string tension

for βp small is predicted by the renormalization group. Since σ has the

dimension of a mass squared one finds

σ(e0) ∼ (e20)
−β2/β2

3 exp
(

−1
/

β2e
2
0

)

. (16.13)

in which e20 is related to βp by equation (16.9) and β2, β3 are two first

coefficients of the RG β-function, the first being given in equation (15.25).

A physical quantity relevant to the continuum limit can then be obtained
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by dividing
√
σ by its asymptotic behaviour. Let us define ΛL as

ΛL = a−1(β2e
2
0)

−β3/2β
2

2 exp
(

−1/2β2e
2
0

)

,

then ΛL /
√
σ has a continuum limit. When one calculates σ by non-

perturbative lattice methods, the verification of the scaling behaviour (16.13)

indicates that the result is relevant to the continuum field theory and not

only a lattice artifact.

It is possible to systematically expand σ in powers of βp. The possibility

of verifying that confinement is realized in the continuum limit, depends

on the possibility of analytically continuing the strong coupling expansion

up to the origin. Unfortunately, theoretical arguments lead to believe that,

independently of the group, the string tension is affected by a singular-

ity associated with the roughening transition, transition which, however,

is not related to bulk properties. At strong coupling, the contributions to

the string tension come from smooth surfaces. When e20 decreases (βp in-

creases), one passes through a critical point e20R, after which the relevant
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surfaces become rough. At the singular coupling e20R, the string tension does

not vanish but has a weak singularity. Still at this point the strong coupling

expansion diverges. Therefore, it is impossible to extrapolate to arbitrarily

small coupling. The usefulness of the strong coupling expansion then de-

pends on the position of the roughening transition with respect of the onset

of weak coupling behaviour. Notice that numerically in the neighbourhood

of the roughening transition, rotational symmetry is approximately restored

(at least at large enough distance).

One can also calculate other quantities which are associated to bulk prop-

erties, and are, therefore, not affected by roughening singularities, such

as the free energy (the connected vacuum amplitude) or the plaquette–

plaquette correlation function. However, even for these quantities the ex-

trapolation is not easy because the transition between strong and weak

coupling behaviours is in general very sharp. This is confirmed by results

coming from Monte Carlo simulations and is interpreted as indicating the
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presence of singularities in the complex βP plane close to the real axis. From

the numerical point of view, it seems that the plaquette–plaquette correla-

tion function is the most promising case for strong coupling expansion.

Remark. We note that the potential between static charges in the confined

phase is linearly increasing in the same way as the Coulomb potential in

one space dimension. This leads to the following physical picture: in QED

the gauge field responsible of the potential has no charge and propagates

essentially like a free field isotropically in all space directions. Conservation

of flux on a sphere then yields the R2−d force between the charges. However,

in the non-Abelian case the attractive force between the gauge particles

generates instead a flux tube between static charges in such a way that the

force remains the same as in one space dimension.

Gauge symmetry breaking: Elitzur’s theorem. Let us add a simple com-

ment about the absence of a local order parameter in gauge theories. We

have seen that in the temporal gauge the ground state is invariant under
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space dependent gauge transformations. This property is incompatible with

the existence of a local order parameter which is necessarily non-gauge in-

variant. Therefore, the question is: can a phase transition on the lattice lead

to a spontaneous breaking of gauge invariance? To answer this qustion, we

consider the transition probability at low temperature between two states,

concentrated one around the minimal energy configuration Aµ = 0 and the

other one around a pure non-trivial gauge. If the gauge function is different

from zero only in a finite space volume, the cost in energy is the same as in

a one-dimensional system and, therefore, the transition probability always

remains finite independently of the number of space dimensions. Therefore,

the quantum ground state is gauge invariant. Note that this argument does

not apply to gauge transformations which do not vanish at large distances.

Therefore, it does not forbid a spontaneous breaking of the global symmetry

associated with the gauge group.
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16.4 Mean field approximation

We have shown that the pure gauge lattice model yields at low temperature

or coupling the continuum gauge theory. The continuum model allows, in

perturbation theory, the separation of charges at large distances. On the

contrary, at high temperature, charges are confined in the lattice model.

Therefore, it is necessary to investigate the possibility of phase transi-

tions in lattice gauge theories. Since in the case of spin models, the mean

field approximation gives a semi-quantitative understanding of the phase

structure at least for d > 2, it is natural to also study gauge theories in the

mean field approximation.

We introduce two sets of real matrices φℓ and Hℓ, in which the index ℓ

stands for link. Then we write the partition function

Z =

∫

∏

ℓ

dUℓ exp [−βpS(U)] ,
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in which S(U) is the lattice action (16.5), as

Z =

∫

∏

links ℓ

dφℓ dHℓ dUℓ exp

[

−βpS(φ) +
∑

links

trHℓ (φℓ − Uℓ)

]

.

The introduction of the variables φ allows to express the action in terms of

an average link variable. Since the average of an orthogonal (unitary) matrix

is not orthogonal (resp. not unitary), we have defined φ as an arbitrary real

(resp. complex) matrix. The variables Hℓ represent directly at leading order

the mean field which approximates the effect of the plaquette interaction.

The integral over the matrices U now factorizes into a product of integrals

over each link variable:
∫

dU e− trHU = e−ρ(H),

in which ρ(H) is thus aG×G group invariant function ofH (H transforming

under independent right and left multiplication).
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The partition function becomes

Z =

∫

∏

ℓ

dHℓ dφℓ exp

{

−
[

βpS(φ) +
∑

ℓ

(

ρ(Hℓ)− trHℓφℓ
)

]}

.

We then look for saddle points in the variables H and φ. Since H and φ

are general real or complex matrices, we expect to find many saddle points.

However, both for simplicity and symmetry reasons, we look for solutions

in which Hℓ and φℓ are constant on the lattice and multiple of the identity

(up to a gauge transformation):

φℓ = ϕI , Hℓ = hI ,

in which I is the identity matrix. Denoting by S(ϕ, h) the lattice action per

link we then find

S(h, ϕ) = tr I
[

− 1
2 (d− 1)βpϕ

4 + V (h)− hϕ
]

,
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in which we have defined V (h) by

V (h) =
ρ(hI)

tr I

with V (h) = − 1
4h

2 +O(h4) for SU(2). The saddle point equations are

ϕ = V ′(h) , h = −2(d− 1)βpϕ
3.

We can eliminate ϕ and obtain

h = −2(d− 1)βp [V
′(h)]

3
. (16.14)

For h small, V ′(h) is at least linear in h (as in SU(2)). We realize immedi-

ately the essential difference with the spin models we had considered so far.

The right hand side of equation (16.14) is at least cubic in h instead of being

linear. Thus, the equation has never a non-trivial solution arbitrarily close
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to zero. For βp small there exists only the trivial solution h = 0, which, ac-

cording to the strong coupling or high temperature analysis, corresponds to

the confined phase in which Wilson’s loop follows an area law. For a critical

value βc, h jumps from zero to a finite value, indicating a first order phase

transition. We recall that at a first order transition the correlation length,

at least above the transition, remains finite. Therefore, the neighbourhood

of the transition temperature does not define a continuum field theory, in

contrast with the non-linear σ-model. Above βc, the expectation value of

Wilson’s loop is given by

W (C) =

〈

tr
∏

all links ℓ∈C

φℓ

〉

∼ φP (C),

in which P (C) is the perimeter of the loop. Therefore, Wilson’s loop follows

a perimeter law and the phase is deconfined. Above βc we are in the low

temperature phase which can be described by a continuum field theory and

perturbation theory.
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Discussion. Mean field theory is valid in high dimensions. Continuum

field theory tells us that the zero temperature (βp = ∞) is an IR stable

fixed point for d > 4. Thus, the mean field result can only apply for d > 4.

However, we would naively expect a second order phase transition in 4 + ε

dimensions with a critical temperature of order ε, or βp ∼ 1 /ε , in analogy

with the non-linear σ-model. The open question is whether in any integer

dimension d > 4 the transition is really second order.

For d ≤ 4, the zero temperature is a UV fixed point. The simplest

consistent scheme is one in which the critical temperature vanishes and

the model always remains in the confined high temperature phase. The

dimension d = 4 for gauge theories plays the role of the dimension d = 2

for the non-linear σ-model. The large momentum behaviour of correlation

functions can be determined from perturbation theory, but no analytical

method yields directly their low momentum behaviour and, therefore, for

example, the spectrum of the theory. The only other analytical piece of
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information available is the small coupling expansion in a finite volume of the

eigenstates of the quantum Hamiltonian, which one can try to extrapolate

by numerical methods towards the infinite volume limit using finite size

scaling analysis. However, again there is numerical evidence of a sharp

transition between the finite volume and infinite volume results, making

the extrapolation difficult. The most promising quantities seem to be ratios

of masses. This lack of reliable analytical methods explains the popularity

of numerical simulations based on stochastic methods of Monte Carlo type

in this problem.

Monte Carlo methods. We will not describe the increasingly sophisticated

numerical methods which have been used in lattice gauge theories.

In pure gauge theories, the existence of phase transitions has been in-

vestigated for many lattice actions. For the gauge group SU(3), relevant

to the physics of Strong Interactions, the string tension has been carefully

measured, the plaquette–plaquette correlation function has been studied to
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determine the mass of low lying gluonium states. Finally, calculations have

been performed at finite physical temperature, that is, on a 3 + 1 dimen-

sional lattice in the limit in which the size of the lattice remains finite in

one dimension, this size being related to the temperature. In this way, the

temperature of a deconfinement transition has been determined.

Fermions on the lattice. One important qualitative feature of Strong In-

teraction physics is the approximate spontaneous breaking of chiral symme-

try (see section 12.5). However,non-trivial problems arise when one tries to

construct a chiral invariant lattice action. One has the choice only between

writing an action which is not explicitly chiral symmetric and in which one

tries to restore chiral symmetry by adjusting the fermion mass term (Wil-

son’s fermions), writing a chiral symmetric action with too many fermions

(staggered or Kogut–Susskind fermions), or, as it has been more recently

discovered various Dirac operators satisfying the Ginsparg–Wilson relation

In the latter solution several implementations can be interpreted as adding
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for the fermions an extra space dimension, which increases the already diffi-

cult computer problem. Indeed, an important practical difficulty also arises

with fermions: because it is impossible to simulate numerically fermions,

it is necessary to integrate over fermions explicitly. This generates an ef-

fective gauge field action which contains a contribution proportional to the

fermion determinant and is, therefore, no longer local. The speed of numer-

ical methods crucially depends on the locality of the action. This explains

that most numerical simulations with fermions have been for some time per-

formed in the so-called quenched approximation in which the determinant

is neglected. This approximation corresponds to the neglect of all fermion

loops and bears some similarity with the eikonal approximation. In this

approximation, the approximate spontaneous breaking of chiral symmetry

has been verified by measuring the decrease of the pion mass for decreasing

quark masses. Owing to the difficulty of the problem, the numerical study

of the effect of dynamical fermions at realistic lattice sizes and close enough
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to the chiral limit has started in more recent years. The physical spectrum

of hadrons can now be reproduced.
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