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The construction of Quantum Field Theories is one of main intellectual

achievement of the 20th century physics. In particular, Quantum Field

Theories have played an essential role in in two apparently unrelated do-

mains of physics: the theory of fundamental interactions at the microscopic

scale, which has taken the form of the so-called the Standard Model, and

the theory of continuous macroscopic phase transitions.

Relativistic quantum field theory, although it incorporates both the the-

ory of Relativity and Quantum Mechanics, is not a straightforward exten-

sion of non-relativistic quantum mechanics in the sense that the dynamical

variables are not related to individual particles but to fields and fields have

an infinite number of degrees of freedom.

This is the origin of unusual properties, like the appearance of infinities

in a straightforward interpretation of quantum field theory.



The problem of the removal of infinities has then led to the method of renor-

malization, a method in which the initial parameters of the Lagrangian are

replaced by physical observables. From the freedom of defining the pa-

rameters of the renormalized theory at different momentum scales emerged

another important concept: the renormalization group (RG).

Much insight has been gained later from the study of continuous phase

transitions, where the physics is initially defined in terms of a microscopic

model that has no short distance singularities.

However, the large distance physics near the transition can be derived

from an effective quantum field theory in imaginary (Euclidean) time equip-

ped with a short-distance cut-off, reflection of the defining microscopic scale

of the initial theory.



Both the large momentum divergences of the quantum field theory and the

singularities of phase transitions at the critical temperature are a reflection

of the non-decoupling of large distance physics from microscopic scales. A

more general RG, based on a recursive averaging over short distance degrees

of freedom, has provided the necessary tool to understand why the large

distance physics is nevertheless to a large extent insensitive to the specific

form of the short distance structure or regularization.

The RG of quantum field theory can now be understood as the asymptotic

form of the general RG in some neighbourhood of the Gaussian fixed point

or free field theory in the particle terminology.

The first set of lectures is mainly devoted to the scalar boson and Dirac

fermion relativistic fields. Then, we will discuss gauge theories and topics

relevant to the Standard Model.

As the programme tries to indicate, we will adopt a constructive, and not

only descriptive, approach to quantum field theory.



We will emphasize its characteristic features, beyond a specific realization.

For this purpose, some tools are needed. One important tool is functional

integration, that is, integration over paths or fields together with related

functional methods, motivated by Feynman path integral representation of

quantum mechanics.

Finally, most of the time, the convention of imaginary or Euclidean time

will be used, that is, we will deal with the operator e−βH of statistical

physics rather that the evolution operator e−itH/~. The reasons will be

explained later. The quantum evolution is then obtained by analytic con-

tinuation β 7→ it/~.



For an introductory note on path integrals in physics see, for example,

J. Zinn-Justin, Path integral, Scholarpedia, 4(2): 8674 (2009)

(www.scholarpedia.org).

For details and more references see, for example,

J. Zinn-Justin, Path integrals in Quantum Mechanics, French version

EDP Sciences et CNRS Editions (Les Ulis 2003), English version Oxford

Univ. Press (Oxford 2005); Russian translation (Fizmatlit 2007).

In www.scholarpedia.org, see

Jean Zinn-Justin (2010), Critical Phenomena: field theoretical approach,

Scholarpedia, 5(5):8346.

More advanced material can be found in

J. Zinn-Justin, Quantum Field Theory and Critical Phenomena, Claren-

don Press 1989 (Oxford 4th ed. 2002).



Lecture 1: RANDOM WALK, CONTINUUM LIMIT

AND RENORMALIZATION GROUP



As an introduction, we first illustrate the notion of universality and con-

tinuum limit with the elementary example of random walk.

The asymptotic properties at large time and large distance of the random

walk can be easily determined by methods reminiscent of the proof of the

central limit theorem of probabilities.

The universality of the large scale behaviour and, correspondingly, the

existence of a macroscopic continuum limit, emerges as a collective property

of systems involving a large number of microscopic random variables, when

the probability of large steps decreases fast enough (the property of locality).

We revisit the problem with RG inspired methods, introducing in this

way the RG terminology. The main result that the large scale behaviour is

universal and defines a continuum limit, the Brownian motion, that can be

described by a Gaussian path integral, will be recovered.



1.1 Translation invariant local random walk

We consider a stochastic process, a random walk, in discrete times, first on

the real axis and then, briefly, on the lattice of points with integer coordi-

nates.

The random walk is specified by a probability distribution P0(q) (q being

a position) at initial time n = 0 and a density of transition probability

ρ(q, q′) ≥ 0 from the point q′ to the point q, which we assume independent

of the (integer) time n.

These conditions define a Markov chain, a Markovian process, in the sense

that the displacement at time n depends only on the position at time n,

but not on the positions at prior times, homogeneous or stationary, that is,

invariant under time translation, up to the boundary condition.
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1.1.1 Walk in continuum space

The probability distribution Pn(q) for a walker to be at point q at time n

satisfies the evolution equation

Pn+1(q) =

∫

dq′ ρ(q, q′)Pn(q
′) .

Probability conservation implies

∫

dq ρ(q, q′) = 1 . (1.1)

To slightly simplify the analysis, we take as initial distribution

P0(q) = δ(q).

where δ is Dirac’s distribution.
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Translation symmetry. We have already assumed ρ independent of n

and, thus, the random walk transition probability is invariant under time

translation. In addition, we now assume that the transition probability is

also invariant under space translation and, thus,

ρ(q, q′) ≡ ρ(q − q′).

As a consequence, the evolution equation takes the form of the convolution

equation,

Pn+1(q) =

∫

dq′ ρ(q − q′)Pn(q
′),

which also appears in the discussion of the central limit theorem of proba-

bilities.
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Locality. We consider only transition functions piecewise differentiable

and with bounded variation, and satisfying a property of locality in the form

of an exponential decay: qualitatively, large displacements have a very small

probability. More precisely, we assume that the transition probabilities ρ(q)

satisfy a bound of the exponential type,

ρ(q) ≤M e−A|q|, M,A > 0 .

1.1.2 Fourier representation

The evolution equation is an equation that simplifies after Fourier transfor-

mation. We thus introduce

P̃n(k) =

∫

dq e−ikq Pn(q) ,

which is a generating function of the moments of the distribution Pn(q).
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The reality of Pn(q) and the normalization of the total probability imply

P̃ ∗
n(k) = P̃n(−k), P̃n(k = 0) = 1 .

Similarly, we introduce

ρ̃(k) =

∫

dq e−ikq ρ(q),

which is a generating function of the moments of the distribution ρ(q).

Finally, the exponential decay condition implies that the function ρ̃(k) is a

function analytic in the strip | Im k| < A.

The evolution equation then becomes

P̃n+1(k) = ρ̃(k)P̃n(k)

and since with our choice of initial conditions P̃0(k) = 1,

P̃n(k) = ρ̃n(k).

7



1.1.3 Generating function of cumulants

We also introduce the function

w(k) = ln ρ̃(k) ⇒ w∗(k) = w(−k), w(0) = 0 , (1.2)

a generating function of the cumulants of ρ(q). The analyticity of ρ̃(k) and

the condition ρ̃(0) = 1 imply that w(k) is analytic at k = 0. It has an

expansion at k = 0 of the form

w(k) = −iw1k −
1

2
w2k

2 +
∑

r=3

(−i)r
r!

wrk
r , w2 > 0 ,

where wr is the rth cumulant. Then,

P̃n(k) = enw(k) .

8



1.1.4 Random walk: Asymptotic behaviour from a direct calculation

With the hypotheses satisfied by P0 and ρ, the determination of the asymp-

totic behaviour for n→ ∞ follows from arguments identical to those leading

to the central limit theorem of probabilities. One finds the asymptotic be-

haviour

Pn(q) ∼
1

2π

∫

dk eikq−n(iw1k+w2k
2/2) =

1√
2πnw2

e−(q−nw1)
2/2nw2 .

At q fixed, the probability converges exponentially to zero for all w1 6= 0.

By contrast, the random variable s = q/n has the asymptotic distribution

Rn(s) = nPn(ns) ∼
n→∞

√

n

2πw2
e−n(s−w1)

2/2w2 . (1.3)

The average value s is thus a random variable that converges with proba-

bility 1 toward the expectation value 〈s〉 = w1 (the mean velocity).

9



Finally, the random variable that characterizes the deviation with respect

to the mean trajectory,

X = (s− w1)
√
n =

q√
n
− w1

√
n , (1.4)

and thus 〈X〉 = 0, has, as limiting distribution, the universal Gaussian

distribution

Ln(X) =
√
nPn(nw1 +X

√
n) ∼ 1√

2πw2

e−X
2/2w2 .

The neglected terms are of two types, multiplicative corrections of order

1/
√
n and additive corrections decreasing exponentially with n.

The result implies that the mean deviation from the mean trajectory in-

creases as the square root of time, a characteristic property of the Brownian

motion.
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1.1.5 Continuum time limit

The asymptotic Gaussian distribution of the deviation q̄ = q − nw1 from

the mean trajectory is

Pn(q̄) ∼
1√

2πnw2

e−q̄
2/2nw2 .

By changing the time scale and by a continuous interpolation, one can define

a diffusion process or Brownian motion in continuous time.

Let t and ε be two real positive numbers and n the integer part of t/ε:

n = [t/ε] . (1.5)

One then takes the limit ε→ 0 at t fixed and thus n→ ∞.

If the time t is measured with a finite precision ∆t, as soon as ∆t≫ ε, time

can be considered as a continuous variable for what concerns all expectation

values continuous functions of time.
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One then performs the change of distance scale

q̄ = x/
√
ε.

Since the Gaussian function is continuous, the limiting distribution takes

the form

Pn(q)/
√
ε ∼
ε→0

Π(t, x) =
1√

2πtw2

e−x
2/2tw2 . (1.6)

(The change of variables q 7→ x implies a change of normalization of the dis-

tribution.) This distribution is a solution of the diffusion or heat equation:

∂

∂t
Π(t, x) = 1

2w2
∂2

(∂x)2
Π(t, x).

In the limit n→ ∞ and in suitable macroscopic variables, one thus obtains

a universal diffusion process that can entirely be described in continuum

time and space.
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The limiting distribution Π(t, x) implies a scaling property characteristic

of the Brownian motion. The moments of the distribution satisfy

〈

x2m
〉

=

∫

dxx2mΠ(t, x) ∝ tm. (1.7)

The variable x/
√
t has time-independent moments. As the change q̄ = x/

√
ε

also indicates, one can thus assign to the position x a dimension 1/2 in

time unit (this also corresponds to assign a Hausdorff dimension two to a

Brownian trajectory in higher dimensions).

Remark. The dimensional relation between the dynamical variable x and

the coordinate t will be called power counting in quantum field theory.
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1.1.6 Corrections to continuum limit

One can also study how perturbations to the limiting Gaussian distribution

decrease with ε.

We can express the distribution of q in terms of w(k) = ln ρ̃(k). Corre-

spondingly, we introduce w̄(k) the equivalent quantity for q̄ = q− nw1. We

then obtain the relation
∫

dk eikq̄+iknw1 enw(k) =

∫

dk eikq̄+nw̄(k)

with

w̄(k) = w(k) + ikw1 .

With our assumptions, the expansion of the regular function w̄(k) in powers

of k reads

w̄(k) = −1

2
w2k

2 +
∑

r=3

(−i)r
r!

wrk
r .

14



After the introduction of macroscopic variables, which for the Fourier vari-

ables corresponds to k = κ
√
ε, one finds

nw̄(k) = tω(κ) with ω(κ) = −w2

2!
κ2 +

∑

r=3

εr/2−1 (−i)r
r!

wrκ
r .

One observes that, when ε = t/n goes to zero, each additional power of κ

goes with an additional power of
√
ε.

In the continuum limit, the distribution becomes

Π(t, x) =
1

2π

∫

dκ e−iκx etw(κ) .

Differentiating with respect to the time t, one obtains

∂

∂t
Π(t, x) =

1

2π

∫

dκw(κ) e−iκx etw(κ)

and in w(κ), κ can then be replaced by the differential operator i∂/∂x.
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One thus finds that Π(t, x) satisfies the linear ‘partial differential equation’

∂

∂t
Π(t, x) =

[

w2

2!

(

∂

∂x

)2

+
∑

r=3

εr/2−1 1

r!
wr

(

∂

∂x

)r
]

Π(t, x).

In the expansion, each additional derivative implies an additional factor
√
ε

and, thus, the contributions that contain more derivatives decrease faster

to zero.
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1.2 Universality: the renormalization group strategy

We now explain the universality property, that is, the existence of a limiting

Gaussian distribution that is independent of the initial distribution, and its

scaling properties by a quite different method, that is, without calculating

the asymptotic distribution explicitly.

For simplicity, we assume that initially the number of time steps is of the

form n = 2m.

The idea then is to recursively combine the time steps two by two, de-

creasing the number of steps by a factor two at each iteration. This provides

a very simple application of RG ideas to the derivation of universality prop-

erties.

At each iteration one thus replaces ρ(q − q′) by

[T ρ](q − q′) ≡
∫

dq′′ρ(q − q′′)ρ(q′′ − q′).
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The transformation of the distribution ρ(q) is non-linear but applied to the

function w(k), it becomes the linear transformation

[T w](k) ≡ 2w(k).

This transformation has an important property: it is independent ofm or n.

In the terminology of dynamical systems, its repeated application generates

a stationary, or invariant under time translation, Markovian dynamics.

We now study the properties of the iterated transformation T m for m→
∞. A limiting distribution necessarily is a fixed point of the transformation.

Thus, it corresponds to a function w∗(k) (where the notation ∗ is not related

to complex conjugation) that satisfies

[T w∗](k) ≡ 2w∗(k) = w∗(k).

Expanding in powers of k, one verifies that such a transformation has, with

our assumptions, only the trivial fixed point w∗(k) ≡ 0.
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But a larger class of fixed points becomes available if the transformation is

combined with a renormalization of the distance scale, q 7→ λq, with λ > 0.

We thus consider the transformation

[Tλw](k) ≡ 2w(k/λ) .

The transformation Tλ provides a simple example of a RG transformation,

a concept that we describe in more detail in the framework of phase tran-

sitions.

1.2.1 Generic situation

The fixed point equation then becomes

[Tλw∗](k) ≡ 2w∗(k/λ) = w∗(k).

For the class of fast decreasing distributions, the functions w(k) are regular

at k = 0.
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Thus, w∗(k) has an expansion in powers of k of the form (w(0) = 0)

w∗(k) = −iw1k − 1
2w2k

2 +
∑

ℓ=3

(−i)ℓ
ℓ!

wℓk
ℓ , w2 > 0 .

In the generic situation w1 6= 0. Expanding the equation, at order k one

finds

2w1/λ = w1 ⇒ λ = 2 .

Then, identifying the terms of higher degree, one obtains

21−ℓwℓ = wℓ ⇒ wℓ = 0 for ℓ > 1 .

Therefore,

w∗(k) = −iw1k .

The fixed points form a one-parameter family, but the parameter w1 can be

absorbed into a normalization of the random variable q.
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Since

ρ∗(q) =
1

2π

∫

dk eikq−iw1k = δ(q − w1),

fixed points correspond to the certain distribution q = 〈q〉 = w1. Since space

and time are rescaled by the same factor 2, the fixed point corresponds to

q(t) = w1t, the equation of the mean path.

Convergence and fixed point stability. For a non-linear transformation,

a global stability analysis is often impossible. One can only linearize the

transformation near the fixed point and perform a local study.

Here, this is not necessary since the transformation for w(k) is linear.

Setting

w(k) = w∗(k) + δw(k),

then,

[T2δw](k) = 2δw(k/2) .
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The function δw is regular and, thus, can be expanded in a Taylor series of

the form

δw(k) =
∑

ℓ=1

(−i)ℓ
ℓ!

δwℓk
ℓ .

Then,

[T2δw](k) = 2δw(k/2) = 2
∑

ℓ=1

(−ik)ℓ
ℓ!

2−ℓδwℓ .

The expression shows that the functions kℓ with ℓ > 0, are the eigenvectors

of the transformation T2 and the corresponding eigenvalues are

τℓ = 21−ℓ.

Since at each iteration the number of variables is divided by two, one can

relate the eigenvalues to the behaviour as a function of the initial number

n of variables. One defines an associated exponent

αℓ = ln τℓ/ ln 2 = 1− ℓ .

22



After m iterations, the component δwℓ is multiplied by nαℓ since

T m
2 kℓ = 2m(1−ℓ)kℓ = nαℓkℓ.

The behaviour, for n → ∞, of a component of δw on the eigenvectors thus

depends on the sign of αℓ.

We now adopt the RG terminology to discuss eigenvalues and eigenvec-

tors.

We examine the various values of ℓ:

(i) ℓ = 1 ⇒ τ1 = 1, α1 = 0. If one adds a term δw proportional to the

eigenvector k to w∗(k), δw(k) = −iδw1k, then

w1 7→ w1 + δw1,

which correspond to a new fixed point. This change has also the interpre-

tation of a linear transformation on k or on the random variable q.
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An eigen-perturbation corresponding to the eigenvalue 1 and, thus to an

exponent α1 = 0, is called marginal.

Quite generally, the existence of a one-parameter family of fixed points

implies the existence of an eigenvalue τ = 1 and, thus, an exponent α = 0.

Indeed, let us assume the existence of one-parameter family of fixed points

w∗(s),

T w∗(s) = w∗(s) ,

where w∗(s) is a differentiable function of the parameter s. Then,

T ∂w∗
∂s

=
∂w∗
∂s

.

(ii) ℓ > 1 ⇒ τℓ = 21−ℓ < 1, αℓ < 0. The components of δw on such

eigenvectors converge to zero for n or m→ ∞.

In the RG terminology, the eigen-pertubations that correspond to eigen-

values smaller in modulus than 1 and, thus, to negative exponents (more

generally with a negative real part), are called irrelevant.
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Universality, in the RG formulation, is a consequence of the property that

all eigenvectors, but a finite number, are irrelevant.

Dimension of a random variable. To the random variable that has a

limiting distribution, one can attach a dimension dq defined by

dq = lnλ/ ln 2 . (1.8)

This corresponds to dividing the sum by ndq . One here finds dq = 1, which

is consistent with q(t) ∝ t.

1.2.2 Centred distribution

For a centred distribution, w1 = 0, one has to expand to order k2. One

finds the equation

w2 = 2w2/λ
2.

Since the variance w2 is strictly positive, except for a certain distribution,

a case that we now exclude, the equation implies λ =
√
2.
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Again, the coefficients wℓ vanish for ℓ > 2 and the fixed points have the

form

w∗(k) = − 1
2w2k

2.

Therefore, one finds the Gaussian distribution

ρ∗(q) =
1

2π

∫

dk eikq−w2k
2/2 =

1√
2πw2

e−q
2/2w2 .

Since, in the transformation T , the number n of time steps is divided by

two, this value of the renormalization factor λ corresponds to dividing space

by a factor
√
2. This is consistent with the scaling dimension of the space

variable in time unit x ∝
√
t of the Brownian motion:

dq = lnλ/ ln 2 = 1
2 .

The two essential asymptotic properties of the random walk, convergence

toward a Gaussian distribution and scaling property are thus reproduced

by the RG type analysis.
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Fixed point stability. One can now study the stability of the fixed point

corresponding to the transformation T√2. One sets

w(k) = w∗(k) + δw(k),

and looks for the eigenvectors and eigenvalues of the transformation

[T√2 δw](k) ≡ 2δw(k/
√
2) = τδw(k).

Clearly, the eigenvectors have still the form

δw(k) = kℓ ⇒ τℓ = 21−ℓ/2.

The correspondent exponent is

αℓ = ln τℓ/ ln 2 = 1− ℓ/2 .
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The values can be classified as:

(i) ℓ = 1 ⇒ τ1 =
√
2, α1 = 1

2 . This corresponds to an unstable direction;

a component on such a eigenvector diverges for m→ ∞.

In the RG terminology, a perturbation corresponding to a positive expo-

nent α, and which thus moves away from the fixed point, is called relevant.

Here, a perturbation linear in k violates the condition w1 = 0. One is

then brought back to the study of fixed points with w1 6= 0.

(ii) ℓ = 2 ⇒ τ2 = 1, α2 = 0. A vanishing eigenvalue characterizes a

marginal perturbation. Here, the perturbation only modifies the value of w2

and, again, has an interpretation as a linear transformation on the random

variable.

(iii) ℓ > 2 ⇒ τℓ = 21−ℓ/2 < 1 , αℓ = 1 − ℓ/2 < 0. Finally, all perturba-

tions ℓ > 2 correspond to stable directions in the sense that their amplitudes

converge to zero for m→ ∞ and are irrelevant.
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Redundant perturbations. In the examples examined here, the marginal

perturbations correspond to simple changes in the normalization of the ran-

dom variables. In many problems, this normalization plays no role. One

can then consider that fixed points corresponding to different normaliza-

tions should not be distinguished. From this viewpoint, in both cases one

has found really only one fixed point. The perturbation corresponding to

the vanishing eigenvalue is then no longer called marginal but redundant,

in the sense that it changes only an arbitrary normalization.

Other fixed points. Other values of λ = 21/µ, correspond formally to new

fixed points of the form |k|µ, 0 < µ < 2 (µ > 2 is excluded because the

coefficient of k2 is strictly positive). However, these fixed points are no

longer regular functions of k. They correspond to distributions that have

no second moment 〈q2〉 and thus no variance: they decay only algebraically

for large values of q. In the RG terminology, they correspond to different

universality classes, distributions with other decay properties.
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Random walk on the lattice of points with integer coordinates. The anal-

ysis can also be generalized to a random walk on the points of integer coor-

dinate. The main difference is that w(k) is a periodic function of period 2π.

However, at each iteration the period is multiplied by a factor λ > 1. Thus,

asymptotically, the period diverges and, at least for continuous observables,

the discrete character of the initial lattice disappears.

In the d-dimensional lattice Z
d, if the random walk has hypercubic sym-

metry, the leading term in the expansion of w(k) for k small is again 1
2w2k

2

because it is the only quadratic hypercubic invariant. Therefore, asymptot-

ically the random walk is Brownian with rotation symmetry. The lattice

structure is only apparent in the first irrelevant perturbation because there

exists two independent cubic invariant monomials of degree four:

d
∑

µ=1

k4µ,
(

k2
)2
.
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1.3 Brownian motion and path integral

To derive the universal properties of the asymptotic distribution, which have

been shown to be independent of the initial transition probability, one can

directly start from Gaussian transition probabilities of the form

ρ(q) =
1

(2πw2)1/2
e−q

2/2w2 . (1.9)

An iteration of the general evolution equation leads to

Pn(q) =

∫

dq′dq1 dq2 . . .dqn−1 ρ(q, qn−1) . . . ρ(q2, q1)ρ(q1, q
′)P0(q

′).

For a certain initial position q′ = q0 = 0 and the transition probability (1.9),

it becomes (qn = q)

Pn(q) =
1

(2πw2)n/2

∫

dq1 dq2 . . .dqn−1 e
−S(q0,q2,...,qn) (1.10)

S(q0, q2, . . . , qn) =
n
∑

ℓ=1

(qℓ − qℓ−1)
2

2w2
.
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We now introduce macroscopic time variables,

τℓ = ℓε , τn = nε = t ,

and a continuous, piecewise linear path x(τ ) (cf. Fig. 1.1)

x(τ ) =
√
ε

[

qℓ−1 +
τ − τℓ−1

τℓ − τℓ−1
(qℓ − qℓ−1)

]

for τℓ−1 ≤ τ ≤ τℓ .

One verifies that S can be written as (with the notation ẋ(τ ) ≡ dx/dτ )

S
(

x(τ )
)

=
1

2w2

∫ t

0

(

ẋ(τ )
)2
dτ

with the boundary conditions

x(0) = 0 , x(t) =
√
εq = x .
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x(τ) x

xn−1

xℓ

x1 x2

xn−2xℓ+1
x0 xℓ−1

τ

0 τ1 τ2 τℓ−1 τℓ τℓ+1 τn−2 τn−1 t

Fig. 1.1 – A piecewise linear path contributing to the time-discretized path integral

(1.10) with xℓ ≡ x(τℓ). The continuum limit is reached by taking the limit n → ∞

at nε fixed.

33



Moreover,

Pn(q) =
1

(2πw2)1/2

∫

(

n−1
∏

ℓ=1

dx(τℓ)

(2πw2ε)1/2

)

e−S(x) .

In the continuum limit ε → 0, n → ∞ with t fixed, the expression yields a

representation of the distribution of the continuum limit,

Π(t, x) ∼ ε−1/2Pn(q),

in the form of a path integral, which we denote symbolically

Π(t, x) =

∫

[dx(τ )] e−S(x(τ)) , S
(

x(τ )
)

=
1

2w2

∫ t

0

(

ẋ(τ )
)2
dτ ,

where
∫

[dx(τ )] means sum over all continuous paths that start from the

origin at time τ = 0 and reach x at time t.

34



The trajectories that contribute to the path integral correspond to a

Brownian motion, a random walk in continuum time and space. The repre-

sentation of the Brownian motion by path integrals, initially introduced by

Wiener, is also called Wiener integral.

Wiener and Feynman path integral. The Wiener path integral can be

compared with Feynman path integral for a free non-relativistic particle in

one dimension, where S(x) is replaced by

A(q) =
i

~

∫

dτ 1
2m
(

ẋ(τ )
)2
dτ ,

where A is the classical action.

From the viewpoint of the path Feynman integral, the Wiener path inte-

gral corresponds to motion in imaginary time.
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Remarks

(i) Note that, after the rescaling from microscopic to macroscopic variables,

x = q
√
ε, the transition probability (1.9) becomes

ρ(x) =
1

(2πw2ε)1/2
e−x

2/2w2ε .

It vanishes for |x| > 0 when the time step ε goes to zero, a characteristic

property of locality of short-time evolution.

The parameter 1/ε plays the role of the cut-off in quantum field theory.
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(ii) We have determined the path integral at leading order in the large

time, large space limit. The leading corrections are of two types (from time

translation invariance)

ε

∫

dτ
(

ẋ(τ )
)4
, ε2

∫

dτ
(

ẍ(τ )
)2
.

The powers of ε can be determined by power counting, which a form of

dimensional analysis, using the property that the action is dimensionless:

For example, the first term above, in time units has a dimension 4× 1
2 −

4 + 1 = −1 since x has time dimension 1
2 . A factor ε is required to make

it dimensionless. The second term has dimension 2 × 1
2 − 4 + 1 = −2. A

factor ε2 is needed.

In the QFT terminology, S(x) is an effective (Euclidean) action.
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Exercises
Exercise 1.1

Study the local stability of the Gaussian fixed point

ρG(q) = e−q
2/2 /

√
2π ,

by starting directly from the equation

[Tλρ](q) = λ

∫

dq′ρ(q′)ρ(λq − q′). (1.11)

Determine the value of the renormalization factor λ for which the Gaussian

probability distribution ρG is a fixed point of Tλ.
Setting ρ = ρG + δρ, expand equation (1.11) to first order in δρ. Show

that the eigenvectors of the linear operator acting on δρ have the form

δρp(q) = (d/dq)
p
ρG(q), p > 0 .

Infer the corresponding eigenvalues.
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Exercise 1.2

Random walk on a circle. To exhibit the somewhat different asymptotic

properties of a random walk on compact manifolds, it is proposed to study

random walk on a circle. One still assumes translation invariance. The ran-

dom walk is then specified by a transition function ρ(q− q′), where q and q′
are two angles corresponding to positions on the circle. Moreover, the func-

tion ρ(q) is assumed to be periodic and continuous. Determine the asymp-

totic distribution of the walker position. At initial time n = 0, the walker is

at the point q = 0.

Exercise 1.3

Another universality class

One considers now the transition probability ρ(q − q′) with

ρ(q) =
2

3π

2 + q2

(1 + q2)2
.
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The initial distribution is again

P0(q) = δ(q).

Evaluate the asymptotic distribution Pn(q) for n→ ∞.
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Lecture 2: THE ESSENTIAL ROLE OF FUNCTIONAL

INTEGRALS IN THEORETICAL PHYSICS



Twentieth century has seen the emergence of the physics of fluctuating sys-

tems, statistical and quantum. This explains, to some extent, the important

role played by functional integrals in modern physics.

Path integrals: The origins

The first path integral seems to have been defined by Wiener (1923), as a

tool to describe the statistical properties of the Brownian motion, inspired

by the well-known work of Einstein.

Wentzel (1924), in a less-known work, introduces, in the framework of

quantum optics, the notions of sums over paths weighted by a phase factor,

of destructive interference between paths that do not satisfy classical equa-

tions of motion, and the interpretation of the sum as a transition probability

amplitude.

Dirac (1933) has written a first expression of the quantum evolution op-

erator that resembles a path integral, but he did not go beyond the approx-

imation of discrete time intervals.



Of course, the modern history of path integrals begins with the articles

of Feynman (1948) who formulates quantum evolution in terms of sums

over a set of trajectories weighted by eiA/~, where A is the value of the

corresponding classical action (time-integral of the Lagrangian).

Later, in the framework of quantum field theory (QFT), the Russian

school was specially active (Berezin, Faddeev, Lipatov, Polyakov, Popov,

Slavnov, Vasiliev...). From the beginning of the seventies on, the use of field

integrals slowly spread to the whole theoretical community.

We describe now a few striking examples of physics problems where the

use of path or field integrals has proven essential from the conceptual or the

technical point of view.



2.1 Classical equations: The mysterious variational principle

2.1.1 Euler–Lagrange equations

Following the intuition of Maupertuis and the formulation of the variational

principle by Euler and Lagrange, Lagrange showed that the equations of

motion of Newtonian mechanics can be derived from a variational principle.

In modern form, Hamilton’s principle states that classical equations of

motion can be derived from a purely mathematical quantity, the action,

integral of a Lagrangian,

A(q) =

∫ t′′

t′
dtL

(

q(t), q̇(t); t
)

,

by expressing the stationarity of the action with respect to variations of

the trajectory q(t). The equations then take the form of Euler–Lagrange

equations:

δA = 0 ⇒ d

dt

∂L
∂q̇i

=
∂L
∂qi

.
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The simplest example is

L(q, q̇) = 1
2mq̇

2 − V (q) ⇒ mq̈ = −V ′(q).

Technically, this formalism happens to be very efficient, for example, for

systems with constraints, or to establish conservation laws generated by

continuous symmetries. However, in this classical framework, the action

and the Lagrangian remain purely mathematical quantities.

2.1.2 The particle in a static magnetic field

Later it was discovered that, quite remarkably, the equation of motion of a

particle in a static magnetic field B, which takes the form

mq̈ = eq̇×B(q) where ∇ ·B(q) = 0 ,

can also be derived from an action principle, provided an additional math-

ematical quantity is introduced, the vector potential:

B(q) = −∇×A(q).
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The Lagrangian can be written as

L(q, q̇) = 1
2mq̇2 − eA(q) · q̇ .

Classically, the vector potential is not considered as a physical quantity

since it is defined only up to a shift by a gradient: A(q) 7→ A(q) +∇Ω(q).

2.1.3 Electromagnetism and Maxwell’s equations

Maxwell’s equations (in the vacuum) can be written as

∇ ·E = ρ , ∇×B− ∂E

∂t
= J ,

∇ ·B = 0 , ∇×E+
∂B

∂t
= 0 ,

where E and B are the electric and magnetic fields, resp., ρ the charge and

J the current densities, resp..
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In quadri-covariant notation where (i, j = 1, 2, 3)

t ≡ x0 , Fi0 = Ei , Fij = −
∑

k

ǫijkBk , J0 = ρ ,

they take the form

3
∑

µ=0

∂µF
µν = Jν ⇒

3
∑

ν=0

∂νJ
ν = 0 .

These equations imply that the tensor Fµν can be expressed in terms of a

vector potential, or gauge field, Aµ(x) under the form

Fµν = ∂µAν − ∂νAµ .

The gauge is defined only up to an Abelian gauge transformation

Aµ(x) 7→ Aµ(x) + ∂µΩ(x).
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Then again, remarkably enough, with the introduction of this new mathe-

matical quantity, the gauge field, Maxwell’s equations can be derived from

an action principle with the Lagrangian density

L(A, Ȧ) = − 1
4

∑

µ,ν

FµνFµν −
∑

µ

JµAµ with Fµν = ∂µAν − ∂νAµ ,

and gauge invariant action,

A =

∫

d4xL(A, Ȧ).
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2.1.4 General Relativity

In Einstein’s relativistic theory of gravitation (or General Relativity), the

equations of motion can also be derived from an action principle.

For example, in the absence of matter, in terms of metric tensor gµν(x)

they read

Rµν
(

g(x)
)

− 1
2R
(

g(x)
)

gµν = 0 ,

where R is the scalar curvature and Rµν the Ricci tensor.

These equations can be derived by varying Einstein–Hilbert’s action,

A(g) =

∫

d4x
(

−g(x)
)1/2

R
(

g(x)
)

,

where g(x) is the determinant of the metric tensor. The variational property

still holds in presence of a cosmological constant and matter when the metric

is replaced by the spin connection.
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The question then arises: why can all fundamental classical equations be

derived from a variational principle, by expressing the stationarity of a local

action?

At first sight, quantum mechanics in its Hamiltonian formulation, gives no

direct answer to the question. It should be considered as a major success of

quantum mechanics in the path integral formulation, quantum field theory

in the field integral formulation, that it provides a simple explanation to

this property.
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2.1.5 Variational principle and path integral

According to Feynman, quantum evolution is given by a path integral of

the form

〈q′′|U(t′′, t′) |q′〉 = N
∫ q(t′′)=q′′

q(t′)=q′
[dq(t)] eiA(q)/~,

where U(t′′, t′) is the evolution operator, A =
∫

dtL is the classical action,

time-integral of the classical Lagrangian, and one sums over all possible

trajectories q(t) satisfying the boundary conditions at times t′ and t′′.

In the classical limit, for ~ → 0, the path integral is dominated by paths

that leave the action stationary (the stationary phase method): these are

precisely the classical paths.

The property generalizes to the relativistic quantum field theory.
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2.1.6 Additional remarks

In the framework of path or field integrals, Lagrangians, Hamiltonians, vec-

tor potentials, all initially ad hoc mathematical quantities, acquire now a

physical status.

Also, it has been argued that the variational principle of classical me-

chanics seems to violate causality, since it requires the knowledge of the

initial and final position. The argument does not apply to the path integral,

which is a sum over all possible trajectories and classical paths are selected

because they leave the action stationary.

The formulation by path integrals thus leads to a more intuitive picture

of quantum mechanics, gives a direct meaning to the notion of quantum

fluctuations and allows understanding the origin of the variational principle

in classical mechanics.
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2.1.7 Quantum gravity

As another potential non-trivial consequence, one can conclude that since

the classical equations of General Relativity follow from a variational prin-

ciple, the field integral over metrics (or, more generally, spin connection)

of eiAEH/~, involving Einstein–Hilbert’s action AEH, properly regularized at

short distance (of course, a non-trivial issue), should be directly relevant to

quantum gravity.

Einstein–Hilbert’s action is most likely one of the first terms of the ex-

pansion of an effective quantum action.
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2.2 Relativistic quantum field theory: unitarity and covariance

The standard Hamiltonian formulation of relativistic quantum theory is

explicitly unitary but not explicitly covariant. However, as first noticed by

Dirac, the short time evolution can be expressed in terms of the Lagrangian

and is thus explicitly covariant.

In the Hamiltonian formulation, for a Hamiltonian H(p, q) where p and q

are phase space variables (position and conjugate momentum), the matrix

elements of the quantum evolution operator U(t′′, t′) between times t′ and

t′′ are given by an integral over phase space trajectories,

〈q′′ |U(t′′, t′)| q′〉 =
∫ q(t′′)=q′′

q(t′)=q′
[dp(t)dq(t)] exp

(

i

~
A(p, q)

)

,

where A(p, q) is the classical action in the Hamiltonian formalism:

A(p, q) =

∫ t′′

t′

[

p(t)q̇(t)−H
(

p(t), q(t); t
)]

dt .
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When the classical Hamiltonian H is a quadratic form in p, like p2/2m +

V (q), the integral over p is Gaussian and can be performed explicitly:

∫

[dp(t)] exp

[

i

~

∫ t′′

t′
dt
(

p(t)q̇(t)− p2(t)/2m
)

]

∝ exp

[

i

~

∫ t′′

t′
dt 1

2mq̇
2(t)

]

.

The integration amounts to replacing p(t) by the solution mq̇(t) of the

classical equation and thus generates the Lagrangian:

〈q′′ |U(t′′, t′)| q′〉 =
∫ q(t′′)=q′′

q(t′)=q′
[dq(t)] exp

[

i

~

∫ t′′

t′
dtL(q, q̇)

)

with

L(q, q̇) = 1
2mq̇

2 − V (q).

In a relativistic quantum theory, the Lagrangian formulation is explicitly

relativistic covariant, in contrast with the Hamiltonian formulation, which

is explicitly unitary.
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2.2.1 Path integrals as algebraic tools: application to perturbation theory

Functional integrals allow a smooth transition between ordinary integrals,

path integrals and field integrals, unlike any other formulation of non-

relativistic quantum mechanics or relativistic quantum field theory.

As a consequence, functional integrals yield a simple derivation of Wick’s

theorem and provide a convenient tool to generate perturbative expansions.

They can be used to sum partially the perturbative expansion in the form

of systematic loop expansion.

They allow easy proofs of Ward–Takahashi identities, relations between

correlation functions induced by symmetries of the action, to all orders of

the perturbative expansion. In particular, relations between renormalization

constants can be established, which are not obvious when the symmetry is

broken by soft terms (or spontaneously) in the action.
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2.3 The non-linear σ-model

The non-linear σ-model is a model with global O(N) symmetry and an

N -component scalar field φ(x) that lives on the sphere SN−1:

φ2(x) = 1 . (2.1)

In terms of φ, the action takes the form of a free action,

S(φ) = 1

2g

∫

ddx [∂µφ(x)]
2 ,

but the constraint (2.1) generates interactions. Within the perturbative ex-

pansion, the O(N) symmetry is realized in the phase of spontaneous sym-

metry breaking and the dynamical fields correspond to Goldstone modes. In

two (1 + 1) dimensions, only the perturbative expansion of O(N) invariant

quantities is IR finite. The one-loop calculation of the RG β-function shows

that the model is asymptotically free.
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Moreover, perturbation theory is misleading since the O(N) symmetry is

not broken, the N -component field is massive and the dependence of the

coupling constant is given by RG arguments. Several of these properties are

reminiscent of Quantum ChromoDynamics in four dimensions.

First (one-loop) calculations seemed to indicate that the O(N) symme-

try was explicitly broken by perturbative corrections, the dynamical fields

becoming massive. Within the canonical formulation, a more careful and

involved calculation showed that the breaking terms actually cancelled.

However, the field integral representation gave both the correct quantized

form to all orders (Meetz and Honerkamp),

Z =

∫

e−S(φ)
∏

x

δ(φ2(x)− 1)[dφ],

and a geometric interpretation of the initial error: in the field integral frame-

work, it amounted to replacing the O(N) invariant measure by a flat Eu-

clidean measure, an error that obviously breaks the O(N) symmetry.
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2.4 Quantum field theory and lattice regularization

The field integral formulation of quantum field theory emphasizes its rela-

tion with classical statistical physics.

To regularize field theories and to define them beyond perturbation the-

ory, the field integral representation suggests introducing a lattice regular-

ization. In the example of the field theory with imaginary time action,

S(φ) =
∫

d4x
[

1
2

(

∇xφ(x)
)2

+ 1
2rφ

2(x) +
g

4!
φ4(x)

]

,

one obtains a lattice spin model of the form (a is the lattice spacing)

Z =

∫

exp

(

a2
∑

i,j n.n.

φiφj

)

∏

i∈Z4

ρ(φi)dφi

(i, j are lattice sites and n.n. stands for nearest neighbour) with

ρ(φ) = exp

[

−a2( 12ra2 + 1)φ2 − a4

4!
gφ4
]

.
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This lattice model can then be handled by all methods of statistical physics,

including MC type computer simulations.

In particular, the existence of a continuum limit requires a continuous

phase transition, thus a fine-tuning of the coefficient of φ2 in ρ(φ) to some

negative value.

In the case of the non-linear σ model,

ρ(φ) = δ(φ2 − 1).

The similarity between the two regularizations suggests a relation between

the non-linear σ-model and the O(N)-symmetric (φ2)2 statistical field the-

ory, a relation that is confirmed by RG arguments or by a largeN expansion.
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2.2.1 Critical phenomena and quantum field theory

Conversely, following Wilson, it has been realized that universal properties

near a continuous phase transition of a large class of statistical models can

be described by an Euclidean quantum or statistical field theory.

For example, the critical properties of the d-dimensional Ising model

ZIsing =
∑

{Si}=±1

exp

(

J
∑

i,j n.n.

SiSj

)

are described by the φ4 quantum field theory (in imaginary time)

Zφ4 =

∫

[dφ] exp [−S(φ)] ,

where one now integrates over all fields φ(x), x ∈ R
d and S(φ) is the Eu-

clidean action:

S(φ) =
∫

ddx
[

1
2

∑

µ (∂µφ(x))
2
+ 1

2rφ
2(x) + 1

4!gφ
4(x)

]

.
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This property generalizes to classical spin models with O(N) symmetry like

Z =
∑

{|Si|}=1

exp

(

J
∑

i,j n.n.

Si · Sj
)

.

In addition, path integral techniques allow proving directly that the formal

N = 0 limit of the O(N) symmetric field theory describes the statistical

properties of large polymers (or SAW).

The quantum field theory renormalization group has then be used to

calculate precisely universal critical properties of classical statistical systems

near a continuous phase transition.
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2.3 Lattice gauge theories and numerical simulations

The correspondence between classical statistical models and quantum field

theory has led to the application of statistical methods to the non-pertur-

bative study of quantum field theories. By replacing the continuum field

integral by a lattice regularized form, non-perturbative numerical techniques

become available, like Monte-Carlo type simulations.

An outstanding example is QCD. On the lattice, gauge fields are replaced

by group elements Uij associated to links joining next neighbour sites ij.

In the absence of matter, the partition function Z can be calculated with

Wilson’s plaquette action:

Z =

∫

e−βpSW(U)
∏

links{ij}
dUij , SW(U) = −

∑

plaquettes
(ijkl)

trUijUjkUklUli.

After addition of matter fields, the lattice formulation yields a non-pertur-

bative definition of QCD, which can be investigated by MC simulations.
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2.4 Instantons, barrier penetration and vacuum instability

In non-relativistic quantum mechanics, barrier penetration effects can eval-

uated in the semi-classical limit by WKB methods.

Alternatively, in the same way as for simple integrals, barrier penetra-

tion effects can be determined by applying the steepest descent method to

the path integral in the imaginary time framework. Saddle points then are

finite action solutions of Euclidean (imaginary time) equations of motion

(instantons).

However, the instanton method generalizes simply to quantum field the-

ory, unlike methods based on the Schrödinger equation.

Important physics phenomena, like vacuum instability, the periodic struc-

ture of the QCD vacuum and the strong CP problem, the solution of the

U(1) problem are related to instantons.
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2.5 Instantons, large order behaviour and the problem of Borel

summability

In quantum field theory, the behaviour of the perturbative expansion at large

orders is related to vacuum instability. Field integral techniques (instantons)

(as initiated by Lipatov) have led to the determination of the large order

behaviour of the perturbative expansion in many quantum field theories.

An important outcome is that perturbation series are always divergent.

Moreover, the knowledge of the large order behaviour has then direct im-

plications on the problem of Borel summability.

A direct application has been the summation of the perturbative expan-

sion of the O(N) symmetric (φ2)2 QFT to determine critical exponents.

In the table, N = 0 corresponds to the statistical properties of polymers,

N = 1 to the Ising model universality class, which also contains liquid-

vapour transition and binary mixtures mixing transition, N = 2 to the

Helium superfluid transition and N = 3 to isotropic ferromagnets.
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Reliable critical exponents from O(N) symmetric (φ2)23 field theory
(Le Guillou and Z.-J. (1980) updated by Guida and Z.-J. (1998))

N 0 1 2 3

g̃∗ 1.413± 0.006 1.411± 0.004 1.403± 0.003 1.390± 0.004

g∗ 26.63± 0.11 23.64± 0.07 21.16± 0.05 19.06± 0.05

γ 1.1596± 0.0020 1.2396± 0.0013 1.3169± 0.0020 1.3895± 0.0050

ν 0.5882± 0.0011 0.6304± 0.0013 0.6703± 0.0015 0.7073± 0.0035

η 0.0284± 0.0025 0.0335± 0.0025 0.0354± 0.0025 0.0355± 0.0025

β 0.3024± 0.0008 0.3258± 0.0014 0.3470± 0.0016 0.3662± 0.0025

α 0.235± 0.003 0.109± 0.004 −0.011± 0.004 −0.122± 0.010

ω 0.812± 0.016 0.799± 0.011 0.789± 0.011 0.782± 0.0013

ων 0.478± 0.010 0.504± 0.008 0.529± 0.009 0.553± 0.012
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2.2.1 Potentials with degenerate minima

In the case of potentials with discrete degenerate classical minima, the large

order behaviour (derived from instantons) indicates that the perturbative

expansion is not Borel summable and, as a consequence, does not determine

unique functions. In simple quantum mechanics with analytic potentials,

the problem can be studied systematically and it can be shown that all

multi-instanton configurations must be taken into account and a generalized

summation procedure introduced.

J. Zinn-Justin, Multi-instanton contributions in quantum mechanics,

Nucl. Phys. B192, 125-140 (1981).

U.D. Jentschura and J. Zinn-Justin, Multi-instantons and exact results I,

II: conjectures, WKB expansions, and instanton interactions, Ann. Phys.

313 (2004) 197; ibidem, (2004) 269-325.
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2.3 Relation between classical and quantum statistical physics

For a scalar quantum field φ in d space dimensions at temperature T = 1/β,

the quantum partition function reads

Z =

∫

[dφ] exp

[

−
∫ β

0

dτ

∫

ddxS(φ)
]

,

where S is the Euclidean (imaginary time) action, and the (Bose) fields

satisfy the periodic boundary conditions

φ(0, x) = φ(β, x).

However, the field integral representation immediately shows that the same

partition function has also the interpretation of a classical partition func-

tion in (d + 1) space dimensions with finite size β and periodic boundary

conditions in one space direction.
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This observation has important implications for the theory of continu-

ous phase transitions: it relates a class of classical transitions in (d + 1)

space dimensions to quantum transitions at zero temperature (β = ∞) in d

dimensions.

More generally, this relation between classical and quantum statistical

physics maps finite temperature quantum effects to finite size effects in

the classical theory. This is most useful from the renormalization group

viewpoint.
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2.4 Finite temperature QFT, finite size effects in statistical field

theory and dimensional reduction

In particular, in this framework, high temperature is associated to dimen-

sional reduction. Technically, one expands the periodic field in Fourier (Mat-

subara) modes

φ(t, x) =
∑

ν

ei2πνt/β φν(x).

At high temperature, near a continuous phase transition, when the corre-

lation length is much larger than the thermal wave length 6λ = ~
√

2π/mT ,

only the zero-mode is critical. One can then integrate perturbatively over

all non-zero modes:

e−Seff.(φ0) =

∫

∏

ν 6=0

[dφν ] e
−S(φ) with Z =

∫

[dφ0] e
−Seff (φ0),

but must treat the zero-mode φ0 non-perturbatively.
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2.4.1 The dilute (thus weakly interacting) Bose gas

As an example, the technique has been applied to the dilute Bose gas. The

initial field integral over fields ψ∗, ψ periodic in Euclidean time reads

Z =

∫

[dψ(t, x)dψ∗(t, x)] e−S(ψ∗,ψ)/~,

Since one is interested only in long wavelength phenomena, the two-body

potential can be replaced by a delta-function and parametrized in terms of

the s-wave scattering length a (positive because the interaction is assumed

repulsive).

For d = 3, the effective Euclidean action of the system may then be

written as (µ is the chemical potential)

S(ψ∗, ψ) = −
∫ β

0

dt

∫

d3x

[

ψ∗(t, x)

(

~
∂

∂t
+

~
2

2m
∇2
x + µ

)

ψ(t, x)

+
2π~2a

m

(

ψ∗(t, x)ψ(t, x)
)2
]

.

71



The reduced partition function, at leading order when only the zero-mode

is kept, takes the form of the field integral

Z =

∫

[dφ(x)] exp [−S(φ)]

with

S(φ) =
∫
{

1

2
[∂µφ(x)]

2
+

1

2
rφ2(x) +

u

4!

[

φ2(x)
]2
}

ddx ,

where ψ(x) = (φ1(x) + iφ2(x))/
√
2, ψ∗(x) = (φ1(x) − iφ2(x))/

√
2, r =

−2mTµ and, for d = 3, u = 96π2a/λ2.

The Euclidean action reduces to the ordinary O(2) symmetric (φ2)2 field

theory, which also describes the universal properties of the superfluid Helium

transition.
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2.4.2 Large N non-perturbative techniques

In quantum field theories with O(N) or U(N) symmetries and fields in the

vector representation, physical quantities can be calculated in the large N

limit, yielding non-perturbative results. At leading order, the results can be

obtained by summing Feynman diagrams, but field integral techniques are

much simpler and can easily be extended to higher orders in 1/N . Applica-

tions include the study of the (φ2)2 theory, the Gross–Neveu model....

For example, in U(φ2) scalar field theories the starting point is the inser-

tion into the φ-field integral of the identity

1 =

∫

[dλdρ] exp

{

i

∫

ddxλ(x)
[

ρ(x)− φ2(x)
]

}

,

which then allows a Gaussian integration over φ.

For a review see, for example,

M. Moshe, J. Zinn-Justin, Quantum field theory in the large N limit: a

review, Phys. Rept. 385 (2003) 69 [hep-th/0306133].
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2.5 Quantization of non-Abelian gauge theories

By contrast with QED, the quantization of non-Abelian gauge theories, even

without matter fields, does not follow from simple heuristic arguments.

Due to gauge invariance, not all components of the gauge field Aµ(x)

are dynamical and simple canonical quantization is impossible. Tricks that

worked for QED, like the direct elimination of the auxiliary components in

the Coulomb gauge fail.

All concepts required to quantize non-Abelian gauge theories, like the

so-called Faddeev–Popov method and ghosts are based on field integrals.

BRST symmetry, a new fermion-like symmetry has emerged from this

formalism. BRST symmetry has opened the way for supersymmetry.
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2.5.1 The quantization problem

The gauge field Aµ(x) transforms under the adjoint representation of a

Lie group G (e.g., SU(N)). If it is represented as an element of the Lie

algebra L(G) and g(x) is a space-time dependent group element, a gauge

transformation, an affine transformation, reads

Aµ(x) 7→ g(x)Aµ(x)g
−1(x) + g(x)∂µg

−1(x).

For matter fields, gauge invariance is enforced by replacing derivatives by

covariant derivatives: Dµ = 1 ∂µ +Aµ.

For the gauge field action, the associated curvature

Fµν(x) = [Dµ,Dν ] = ∂µAν − ∂νAµ + [Aµ,Aν ] ,

is a tensor (i.e., transforms linearly) for gauge transformations:

Fµν(x) 7→ g(x)Fµν(x)g
−1(x).
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The local gauge action

A(A) =
1

4g2

∫

d4x trFµν(x)F
µν(x),

then is gauge-invariant.

In the field integral formalism, the straightforward field integral represen-

tation of the evolution operator

U =

∫

[dAµ] exp [iA(A)/~] ,

is not defined because the action A, being gauge-invariant, does not depend

on one of the integration fields.

It is necessary to integrate only once over each gauge copy, that is to

limit the integration to a section of gauge field space cutting each gauge-

orbit once.
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A typical covariant section is (Landau gauge)

Φ(A) ≡
∑

µ

∂µA
µ(x) = 0 .

The difficult problem then is to determine the measure on the gauge section.

Quite remarkably, and this is typical for path integral methods, the method

can be inferred from the consideration of finite dimensional integrals.

2.5.2 Faddeev–Popov method: the idea

The goal is to factorize the integration over gauge transformations. One

starts from a non-gauge invariant equation for the space-dependent group

element g(x), for example,

Φ(Ag
µ) ≡ ∂µA

g
µ(x)− ν(x) = 0 ,

where Ag
µ is the gauge transform by g of Aµ and ν(x) an arbitrary field.
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The variation of the equation with respect to g: δg(x) = ω(x)g(x), ω(x)

belonging to the Lie algebra, has the form

δΦ(Ag
µ) = [M(Ag

µ)ω](x), M = ∂µDµ .

One then introduces spinless fermions C̄ andC, the Faddeev–Popov ‘ghosts’,

and a boson field λ all transforming under the adjoint representation.

One uses the identity

1 =

∫

[dg dC̄dC dλ] exp
[

−Sgauge(A
g
µ, C̄,C,λ,ν)

]

with

Sgauge =

∫

ddx tr
{

λ(x) [Φ(Aµ)(x)− ν(x)] +C(x)M(A)C̄(x)
}

.

The identity involves the generalization of field integration to Grassmann

fields.
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Introducing the identity in the formal representation of the partition func-

tion, one obtains

Z =

∫

[dg dC̄ dC dλ dAµ]

× exp

[

1

4g2

∫

ddx trF2
µν(x)− Sgauge(A

g
µ, C̄,C,λ,ν)

]

.

After the change variables Ag
µ 7→ Aµ, the integration over g(x) factorizes

and yields an infinite multiplicative constant.
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After a few additional simple manipulations, one obtains the quantized

partition function

Z =

∫

[

dAµ dC̄ dC dλ
]

exp
[

−S(Aµ, C̄,C,λ)
]

,

where S, in the covariant gauge Φ = ∂µAµ, is the local action:

S(Aµ, C̄,C,λ)

=

∫

ddx tr

[

− 1

4e2
F2
µν +

ξe2

2
λ2(x) + λ(x)∂µAµ(x) +C(x)∂µDµC̄(x)

]

.
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