
Lecture 11: FROM NON-RELATIVISTIC TO

RELATIVISTIC FERMIONS



The assumption of a finite-dimensional vector space of one-particle states

is quite restrictive for fermions since the total number of fermions is then

bounded. More interesting applications require replacing, for one-particle

states, finite dimensional vector spaces by Hilbert spaces.

We thus generalize the formalism of the preceding lecture, replacing one-

particle finite-dimensional complex vector spaces by Hilbert spaces. We first

determine the equation of state for independent fermions and then extend

the analysis to interacting fermions. We show how a generalization of the

path integral of section 10.14 allows expressing the partition function of

fermion systems as an integral over Grassmann fields.

In a first part we discuss non-relativistic quantum statistical physics of

fermions in the grand canonical formulation and then extend the construc-

tion to relativistic quantum field theory.
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11.1 Fermion states: Hilbert space

11.1.1 Independent fermions

For independent fermions, the equation of state can still be expressed in

terms of the one-particle quantum Hamiltonian H(1) in the form (10.63),

〈N〉 = tr
1

eβ(H(1)−µ) +1
.

As an illustration, we consider a gas of free fermions of mass m in a cubic

box of linear size L and, thus, of volume Ld in dimension d. The one-particle

quantum Hamiltonian is

H(1) = p̂2/2m.

In a box, momenta are quantized, the precise form depending on the bound-

ary conditions.
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Assuming periodic boundary conditions for convenience, but this plays no

role in the large volume limit, one finds

p = 2π~n/L , n ∈ Z
d,

the corresponding energy being E = p2/2m.

The derivation of the equation of state in d space dimensions then follows

from the arguments presented in section 5.1.3. In the infinite volume limit

L→ ∞, one finds for the density

ρ(β, µ) =
L→∞

〈N〉
Ld

=
1

(2π~)d

∫

ddp

eβ(p2/2m−µ)+1
. (11.1)

In isotropic space the Fermi surface thus is the sphere p2/2m = µ for µ > 0.

769



11.1.2 Fock space

We now generalize the construction of sections 10.11-10.12 to Hilbert spaces.

We consider systems of identical fermions that are described by wave func-

tions ψn(x1, . . . , xn), xi ∈ R
d, antisymmetric functions of their arguments

(because fermions have no other quantum numbers). Therefore, the argu-

ments of a generating functional must be functions ϕ(x) that are generators

of an infinite dimensional Grassmann algebra and satisfy

ϕ(x)ϕ(x′) + ϕ(x′)ϕ(x) = 0 .

We then define the functional (the product of ϕ’s is ordered)

Ψ(ϕ) =
∑

n=0

1

n!

(

∫

∏

i

ddxi ϕ(xi)

)

ψn(x1, . . . , xn).
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The scalar product of two generating functionals is defined in terms of a

Grassmann field integral, which generalizes expression (10.34):

(Ψ1,Ψ2) =

∫

[dϕ(x)dϕ̄(x)]Ψ1(ϕ)Ψ2(ϕ) exp

[∫

ddx ϕ̄(x)ϕ(x)

]

,

normalized by (1, 1) = 1. The explicit calculation of the scalar product re-

quires the corresponding Gaussian two-point function, which can be written

as a scalar product. One finds
(

ϕ(x), ϕ(y)
)

= δ(d)(x− y).

In particular, the Fock space is the space of functionals with finite norm,

that is, such that

‖Ψ‖2 = (Ψ,Ψ) =
∑

n=0

1

n!

∫

ddx1 . . . d
dxn |ψn(x1, . . . , xn)|2 <∞ .

When ‖Ψ‖ = 1, the nth term in the sum is the probability that the fermion

system is in an n-particle state.
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11.1.3 Operators and kernels

The identity kernel that generalizes expression (10.37), is

I(ϕ, ϕ̄) = exp

[

−
∫

ddx ϕ̄(x)ϕ(x)

]

.

We now consider the interacting Hamiltonian H of section 5.2 with the form

(5.8) in the n-particle space.

We set H = T+V, where T is the kinetic term, which in the sub-space

of n-particle wave functions is represented by

Tn = − ~
2

2m

n
∑

i=1

∇2
xi

and V is a pair interaction represented by

Vn =
∑

i<j≤n

V (xi − xj) with V (x) = V (−x).
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The formal expression of the kinetic term is the same as in the boson case.

The potential term remains also the same, but with a specific order of fields

in products.

With the conventions of section 10.12, the particle number operator and

the Hamiltonian have the kernel representation

〈ϕ|N|ϕ̄〉 = ϕ(x)ϕ̄(x)I(ϕ, ϕ̄), 〈ϕ|H|ϕ̄〉 = H(ϕ, ϕ̄)I(ϕ, ϕ̄)

with

H(ϕ, ϕ̄) = − ~
2

2m

∫

ddxϕ(x)∇2
xϕ̄(x)

+ 1
2

∫

ddx ddy ϕ(x)ϕ(y)V (x− y)ϕ̄(y)ϕ̄(x).
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11.2 Partition function: the field integral

The derivation of a field integral representation then follows closely the

arguments already presented in the boson case in section 5.2, except that it

is necessary to carefully keep track of the ordering of factors in field products

and of the signs. As a generalization of expression (10.61), the field integral

representation of the partition function of the Fermi gas follows:

Z(β, µ) =

∫

[dϕ(t, x)dϕ̄(t, x)] exp[−S(ϕ̄, ϕ)] (11.2)

with the anti-periodic boundary conditions

ϕ(β/2, x) = −ϕ(−β/2, x), ϕ̄(β/2, x) = −ϕ̄(−β/2, x),
and the euclidean action

S(ϕ̄, ϕ) =
∫

dt ddx ϕ̄(t, x)

(

∂

∂t
+

~
2

2m
∇2
x + µ

)

ϕ(t, x)

+ 1
2

∫

dt ddx ddy ϕ̄(t, x)ϕ(t, x)V (x− y)ϕ̄(t, y)ϕ(t, y) .(11.3)
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The equation of state. Quite generally, the equation of state is obtained

by differentiating the partition function (11.2). Assuming a periodic box of

linear size L, one finds the density

ρ(β, µ) =
1

βLd
∂ lnZ
∂µ

=
1

βLd~

∫

dt ddx 〈ϕ(t, x)ϕ̄(t, x)〉 = 〈ϕ(0, 0)ϕ̄(0, 0)〉 ,
(11.4)

where translation invariance in space and time has been used.

We now verify that, in free field theory, the equation of state reduces to

the equation (11.1) of free fermions, and then comment briefly about the

effect of interactions.
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11.2.1 The free field theory

The action of the free theory reduces to

S(ϕ̄, ϕ) =
∫

dt ddx ϕ̄(t, x)

(

∂

∂t
+

~
2

2m
∇2
x + µ

)

ϕ(t, x).

In a free (Gaussian) theory, all quantities can be expressed in terms of the

two-point function. The two-point function

〈ϕ̄(t, x)ϕ(t′, x′)〉 ≡ ∆(t− t′, x− x′)

satisfies the equation

(

∂

∂t
− ~

2

2m
∇2
x − µ

)

∆(t, x) = δ(t)δ(d)(x),

with anti-periodic boundary conditions.
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Setting

∆(t, x) =
1

(2π~)d

∫

ddp eipx/~ ∆̃(t, p),

one finds
(

∂

∂t
+

p2

2m
− µ

)

∆̃(t, p) = δ(t).

Using the result (10.55), one obtains

∆̃(t, p) = e−κ(p)t
[

θ(t)− 1

eκ(p)β +1

]

,

where κ(p) = p2/2m− µ and θ(t) is here the step function.

The equation of state. Introducing this result in equation (11.4), one ob-

tains

ρ(β, µ) = − 1

(2π~)d

∫

ddp ∆̃(0, p)

=
1

(2π~)d

∫

ddp

[

−θ(0) + 1

eκ(p)β +1

]

.
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This expression coincides with the result (11.1) obtained directly when θ(0)

is chosen to vanish,

ρ(β, µ) =
1

(2π~)d

∫

ddp

eβ(p2/2m−µ)+1

and, otherwise, differs by an infinite constant that can be removed by adding

a constant linear in µ to the action.

11.2.2 Interactions: the δ-function potential

An interesting interacting example is provided by the two-body pseudo-

potential

V (x) = g δ(d)(x),

where δ(d) is Dirac’sd-dimensional function.

The action then becomes local, in the sense that it becomes the integral

of a Lagrangian density depending only on the field and its derivatives.
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In the case of fermions without internal degrees of freedom, the two-body

interaction then vanishes since it involves the squares of Grassmann vari-

ables, and the fermions are free. A more interesting example is provided by

systems where fermions have an internal degree of freedom with two possi-

ble values (like the spin for an electron). The action then depends on two

pairs of fields ϕα(t, x), α = 1, 2 and the interaction no longer vanishes:

S(ϕ̄, ϕ) =
∫

dt ddx

[

∑

α

ϕ̄α(t, x)

(

∂

∂t
+

~
2

2m
∇2
x + µ

)

ϕα(t, x)

+ gϕ̄1(t, x)ϕ1(t, x)ϕ̄2(t, x)ϕ2(t, x)

]

. (11.5)

The action and the corresponding field integral are then invariant under

U(2) unitary transformations

ϕα 7→
∑

β

Uαβϕβ , ϕ̄α 7→
∑

β

U∗
αβϕ̄β with UU† = 1 .
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Indeed, the kinetic term is a complex scalar product, and for the interaction

term one obtains | detU |2 = 1. This symmetry is a combination of the U(1)

particle number conservation and the SU(2) spin group symmetry.

The one-dimensional quantum system is completely integrable, in the

sense that all eigenstates of the Hamiltonian are linear combinations of a

finite number of plane waves (Bethe ansatz).

Finally, note that this system has a relativistic generalization, the Thirring

model, which is also integrable in one space dimension.

Mean-field approximation. Interesting physics is associated to an attrac-

tive interaction, that is g < 0. However, unlike for bosons, the steepest

descent method yields no direct insight into this problem. A possible strat-

egy relies on introducing an auxiliary boson field χ(t, x) and rewriting the

quartic fermion interaction as an integral over χ with an action quadratic in

the fermions. The fermion integral becomes Gaussian and can be performed.

The remaining χ integral can be evaluated by the steepest descent method.
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11.3 Fermi gas: evolution operator

The Fermi gas. The generalization of the formalism of section 10.14.4 to

fields allows to describe the time evolution of the Fermi gas in the formalism

of second quantization. The evolution operator for the non-relativistic Fermi

gas in the presence of a chemical potential µ coupled to the particle number

N, is given by a field integral, continuation to real time of the expression

(11.3). Here we find

〈ϕ′′|U(t′′, t′) |ϕ̄′〉 = 〈ϕ′′| e−i(t′′−t)(H−µN)/~ |ϕ̄′〉

=

∫

[dϕ̄(t, x)dϕ(t, x)] exp[iA(ϕ, ϕ̄)/~],

where the fields {ϕ(t, x), ϕ̄(t, x)} are generators of a Grassmann algebra,

and satisfy the boundary conditions

ϕ̄(t, x′) ≡ ϕ̄′(x), ϕ(t, x′′) ≡ ϕ′′(x).
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In the example of an external potential V1 (and then µ = 0) and a pair

potential V2, the action A(ϕ, ϕ̄) is

A(ϕ, ϕ̄) = −i~ϕ̄(t, x′)ϕ(t, x′)

+

∫

dt ddx ϕ̄(t, x)

(

−i~ ∂
∂t

− ~
2

2m
∇2
x − V1(x)

)

ϕ(t, x)

− 1
2

∫

dt ddx ddy ϕ̄(t, x)ϕ(t, x)V2(x, y)ϕ̄(t, y)ϕ(t, y). (11.6)

For example, in the absence of an external potential V1, the action for

N -component fermions ϕα, ϕ̄α and a pseudo-potential V2 = Gδαβδ(x − y)

becomes local:

A(ϕ, ϕ̄) =

∫

dt ddx

[

∑

α

ϕ̄α(t, x)

(

−i~ ∂
∂t

− ~
2

2m
∇2
x + µ

)

ϕα(t, x)

− 1
2G

(

∑

α

ϕ̄α(t, x)ϕα(t, x)

)2]

− i~
∑

α

ϕ̄α(t, x′)ϕα(t, x′).
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11.4 Relativistic fermions

In previous sections, we have described the basic tools required for con-

structing theories with Fermi fields: quantum mechanics with Grassmann

variables in section 10.13, a field integral representation of the statistical

operator e−βH for the non-relativistic Fermi gas in the formalism of second

quantization and an expression for the evolution operator in section 10.14.4.

In the case of relativistic fermions, the new feature is the specific role

played by the spin structure of fermions. Therefore, unlike what we have

done with scalar bosons, we begin with the real time formalism, in the spirit

of section 3.11, a direct euclidean presentation being less intuitive.

We analyse the free action for Dirac fermions and explain the relation

between fields and particles. We derive an expression for the scattering ma-

trix. We discuss the non-relativistic limit of a model of self-coupled massive

Dirac fermions.
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We have devoted lecture 6 to perturbation theory and general functional

methods. We outline here only the aspects that are specific to fermions. As

for the scalar field theory, we first calculate the Gaussian integral, which

corresponds to a free field theory. Then adding a source term to the ac-

tion, we obtain the generating functional of correlation functions. The field

integral corresponding to a general action with an interaction expandable

in powers of the field, can be expressed in terms of a series of Gaussian

expectation values, which can be calculated, for example, with the help of

Wick’s theorem.

In section 11.4.1, we note the connection between spin and statistics for

free fermions. In section 11.11, we verify the property in a simple perturba-

tive calculation.

For completeness, in appendix A11, we describe a few properties of the

spin group, the algebra of γ matrices, and the corresponding spinors.
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11.4.1 Massive Dirac fermions

We consider massive relativistic fermions in four dimensions. We describe

in the real time formulation the structure of fermion states in the free field

theory, and construct the S-matrix.

In the formalism of field integrals, fermion fields are generators of a

Grassmann algebra. In a relativistic invariant theory, they are also spinors

ψ̄α(x), ψα(x), 1 ≤ α ≤ 4, four-component vectors transforming under the

action of the spin group.

In real time the spin group is Spin(1, 3), which we do not discuss exten-

sively. It is associated with the relativistic group (Lorentz group) SO(1, 3) of

space–time pseudo-orthogonal transformations. In section 11.8 and in more

detail in appendix A11, we describe instead the euclidean analytic continu-

ation Spin(4) of the spin group. We use throughout the corresponding four

hermitian γ-matrices. With our conventions, they satisfy

γµγν + γνγµ = δµν , γ1 = γT1 , γ3 = γT3 , γ2 = −γT2 , γ4 = −γT4 . (11.7)
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The free action. The action for a free massive Dirac field can be written as

A0(ψ̄, ψ) =

∫

dt d3x
∑

α,β

ψ̄α(t, x)

[

1

i
(γ0)αβ∂t + γαβ · ∇x +mδαβ

]

ψβ(t, x) ,

(11.8)

where, here, we denote by γ0 the matrix γ4 associated with the time variable

t ≡ x0 ≡ −ix4, γ standing for (γ1, γ2, γ3).

The action is relativistic invariant in the sense that it is invariant under

the transformations:

(ψΛ)α (t, x) =
∑

β

Λ−1
αβψβ(t

′, x′),
(

ψ̄Λ

)

α
(t, x) =

∑

β

ψ̄β(t
′, x′)Λβα

where the matrix Λ belongs to the spin group Spin(1, 3) (see section A11.1.4

adapted to real time) and (t′, x′) = R(t, x), whereR(Λ) is the corresponding

4 × 4 matrix, element of the group SO(1, 3) isomorphic to a subgroup of

Spin(1, 3).
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The group SO(1, 3) preserves the metric tensor g, corresponding to the

diagonal matrix with coefficients (+1,−1,−1,−1):

RgRT = g (11.9)

(RT denotes the transpose of the matrixR of elements Rµν .) and detR = 1.

After the linear change of variables R(t, x) 7→ (t′, x′), the invariance of

the action relies on the identity

3
∑

ν=0

RµνΛγ̃νΛ
−1 = γ̃µ with γ̃0 = γ0 , γ̃ = iγ .

In relativistic conventions, one introduces a field ψ̄ that is not the conju-

gate of ψ (at variance with our usual notation), because its transformation

properties under the spin group makes the action explicitly covariant.

Indeed, matrices Λ belonging to the fundamental representation of the

spin group Spin(1, 3), satisfy γ0Λ
†γ0 = Λ−1, as one verifies by adapting the

expressions of appendix A11 to real time.
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However, to identify the action (11.8) with an action of the form (10.65b)

resulting from a Hamiltonian formalism, it is necessary to express ψ̄ in terms

of the conjugate field ψ†, a notation we use for relativistic fermions. With

our conventions

ψ† = −ψ̄γ0 . (11.10)

Then,

A0(ψ, ψ
†) =

∫

dt d3xψ†(t, x) [i∂t − γ0(γ · ∇x +m)]ψ(t, x) .

Since the γ matrices are hermitian, we find A0 = A0
† and thus the corre-

sponding Hamiltonian is hermitian.

To diagonalize the quadratic form, we proceed by Fourier transformation,

setting

ψ(t, x) =

∫

d3p̂ eip̂x ψ̃(t, p̂), ψ†(t, x) =

∫

d3p̂ e−ip̂x ψ̃†(t, p̂).
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The free action becomes

A0(ψ, ψ
†) = (2π)3

∫

dt d3p̂ ψ̃†(t, p̂) [i∂t + h(p̂)] ψ̃(t, p̂),

where h(p̂) = h†(p̂) is the hermitian matrix

h(p̂) = −γ0 (iγ · p̂+m) . (11.11)

In contrast with the scalar case, due to the spin structure the Hamiltonian

is not completely diagonalized, but the diagonalization has been reduced to

a simple matrix problem. One verifies that

h2(p̂) = ω2(p̂), ω(p̂) =
√

p̂2 +m2 .

It is convenient to introduce the matrix

γ5 = γ1γ2γ3γ4 ⇒ γ5 = γ†5 , γ
2
5 = 1 .
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The matrix h has two eigenvalues ±ω(p̂). Since

γ0γ5h(p̂)γ5γ0 = −h(p̂),

if a spinor u(p̂) is an eigenvector with eigenvalue ω(p̂), γ0γ5u(p̂) (γ0γ5 is

associated with time reversal) is an eigenvector with eigenvalue −ω(p̂). The
two corresponding subspaces have equal dimensions.

The two orthogonal, hermitian projectors P± on the positive and negative

energy sectors are

P± = 1
2 [1± h(p̂)/ω(p̂)] , ⇒ P+ + P− = 1 , P 2

± = P± , P+P− = 0 .

(11.12)

We note that with the simplest assignment of ψ as the Grassmann field

associated with creation operators, states can be created with both positive

and negative energies. This means that we have misidentified the vacuum

state, which must be the ground state.

790



As we have shown in section 10.14.4, by exchanging the role of conjugate

fields we change the sign of the one-particle energy (a property specific to

fermions).

In contrast to what one might naively have guessed, as in the scalar case

the fields ψ and ψ† must be decomposed into a sum of analytic and anti-

analytic components, to ensure that one-particle states have positive energy.

We thus define

χ∗
−(t, p̂) = [2ω(p̂)]1/2P−ψ̃(t, p̂), ϕ+(t, p̂) = [2ω(p̂)]1/2P+ψ̃(t, p̂) (11.13a)

ϕ†
+(t, p̂) = [2ω(p̂)]1/2ψ̃†(t, p̂)P+ , χT−(t, p̂) = [2ω(p̂)]1/2ψ̃†(t, p̂)P− .(11.13b)

Conversely,

ψ̃(t, p̂) =
1

√

2ω(p̂)

(

χ∗
−(t, p̂) + ϕ+(t, p̂)

)

(11.14a)

ψ̃†(t, p̂) =
1

√

2ω(p̂)

(

χT−(t, p̂) + ϕ†
+(t, p̂)

)

. (11.14b)
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The action becomes

A0(χ−, ϕ+) = (2π)3
∫

dt
d3p̂

2ω(p̂)

[

ϕ†
+(t, p̂)

(

i∂t + ω(p̂)
)

ϕ+(t, p̂)

+χ†
−(t, p̂)

(

i∂t + ω(p̂)
)

χ−(t, p̂)
]

.

The spectrum thus contains two 2-component particles of mass m, ϕ+

transforming under the fundamental representation of the static spin group

Spin(3) ≡ SU(2), χ− under the conjugated and equivalent representation.

To verify the equivalence, we set

ϕ−(t, p̂) = C†χ−(t, p̂), (11.15)

where C is a unitary matrix, C†C = 1. The field χ− satisfies PT−χ− = χ−

(equation (11.13b)).
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If we can find a matrix C such that

C†PT−C = P+ ,

then P+ϕ− = ϕ−, and the two fields ϕ± have the same transformation

properties (see equation (11.13a)). We use the explicit expressions (11.11),

(11.12) of P±. Since C is unitary, the equation reduces to

C†hT (p̂)C = −h(p̂) ⇔ C†
(

iγT · p̂+m
)

γT0 C = −γ0 (iγ · p̂+m) .

One verifies that the matrix

C = γ1γ3

satisfies (equation (A11.23))

C−1γTµC = −γµ .

and thus has the required property. (For details see appendix A11.2.5, where

we discuss charge conjugation.)
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The action can then be rewritten as

A0(ϕ+, ϕ−) = (2π)3
∫

dt
d3p̂

2ω(p̂)

∑

ǫ=±

ϕ†
ǫ(t, p̂)

(

i∂t + ω(p̂)
)

ϕǫ(t, p̂). (11.16)

The final form of the action shows that the Dirac field carries two equal

mass particles transforming under the fundamental representation of the

static spin group Spin(3) ≡ SU(2), spin 1/2 particles, related by charge

conjugation (in the case of charged particles they have opposite charge).

In these variables, the free Hamiltonian reads

H0 = (2π)3
∫

d3dp̂ ω(p̂)

(

ϕ+(p̂)
δ

δϕ+(p̂)
− δ

δϕ−(p̂)
ϕ−(p̂)

)

.

Written in normal order, the Hamiltonian is

H0 = (2π)3
∫

d3dp̂ ω(p̂)

(

ϕ+(p̂)
δ

δϕ+(p̂)
+ ϕ−(p̂)

δ

δϕ−(p̂)

)

+ E0(Dirac) .
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The ground state (vacuum) energy E0(Dirac) is negative, and proportional

to the free scalar vacuum energy (5.33):

E0(Dirac) = −4E0(scalar).

We are now in a situation analogous to the scalar case, and the non-

relativistic Fermi gas of section 10.14.4. The generating functional of n-

particle wave functions, which is an element of Fock’s space, is a general

Grassmann analytic function of ϕ±.

The particle number operators for both particles commute with the Hamil-

tonian,

N± = (2π)3
∫

d3p̂ ϕ±(p̂)
δ

δϕ±(p̂)
, [N±,H0] = 0 ,

a property that no longer holds in general for a local interacting theory.
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Remarks.

(i) By adding to one Dirac fermion 4 scalar bosons of the same mass

m, one obtains a theory with zero vacuum energy. One can show that this

boson–fermion free theory then has a special fermion-type symmetry called

supersymmetry.

(ii) The problem of the negative energy states can only be solved because

fermions anti-commute. This is the reflection of the connection between spin

and statistics, a property specific to local relativistic quantum field theory.
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11.4.2 Space reflections

A reflection along the i = 1, 2, 3 axis corresponds to the transformation Πi:

Πi : ψΠi
(x) = γ5γiψ(x̃), ψ̄Πi

(x) = ψ̄(x̃)γiγ5

with

x̃µ = xµ for µ 6= i and x̃i = −xi .

The mass term in action (11.8) is clearly invariant. In the term 6∂ the space

reflection changes ∂i in −∂i, but then γ5γi anti-commutes with γi and com-

mutes with all other γµ matrices. The total action (11.8) is thus invariant.

The reflection matrices acting on coordinates (x0, x1, x2, x3) are matri-

ces of determinant −1. The product of the SO(1, 3) group and reflections

thus generates the whole group O(1, 3), still defined by the condition (11.9)

but with detR = ±1. The corresponding spin group contains O(1, 3) as a

subgroup.
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11.5 Chiral symmetry and massless fermions

Chiral symmetry. We consider the U(1) group of chiral transformations

ψ(t, x) 7→ eiθγ5 ψ(t, x), ψ̄(t, x) 7→ ψ̄(t, x) eiθγ5 , θ ∈ R. (11.17)

The transformation of ψ̄ is consistent with hermitian conjugation because

ψ† = −ψ̄γ0.
In expression (11.8) the kinetic part

ψ̄(t, x) (−iγ0∂t + γ · ∇x)ψ(t, x)

is invariant while the mass term mψ̄ψ changes sign.

Therefore, the condition of chiral symmetry leads to a massless fermion

theory. Such a symmetry has deep consequences, in particular, implying an

important difference between scalar bosons and Dirac fermions. In contrast

with bosons, the condition for fermions to be massless can be enforced by

a symmetry of the action.
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Chiral components. We show in section A11.1.4 that the set of the six ma-

trices

σ̃µν = 1
2 [γµ, γν ], 0 ≤ µ < ν ≤ 3 ,

generates the spin group Spin(4) but then also Spin(1, 3). These matri-

ces commute with γ5: [γ5, σ̃µν ] = 0. Thus, as further discussed in section

A11.2.4, the spinor representation can be reduced.

One can define chiral components ψ± of the fermion field

ψ±(x) =
1
2 (1± γ5)ψ(x) .

and correspondingly ψ̄±(x):

ψ̄±(x) = ψ̄(x) 12 (1± γ5) ,

often denoted by ψR(x), ψL(x), ψ̄R(x), ψ̄L(x) for right and left components,

by reference to the propagation in time.
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However, with two of these spinors it is possible to construct only a massless

theory:

S0(ψ̄−, ψ+) = −
∫

d4x ψ̄−(x)6∂ψ+(x), (11.18)

because ψ̄−ψ+ = ψ̄+ψ− = 0. To construct an action for a massive propa-

gating fermion the four spinors are needed.

The action (11.18), in contrast with the action (11.8), is not invariant

under reflection, since reflection exchanges chiral components:

γ5γµ (1 + γ5) = (1− γ5) γ5γµ .

The representation of the semi-direct product of the spin group and space

reflections is thus irreducible. This group has a subgroup isomorphic to

O(1, 3).
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11.6 Interacting theory and S-matrix

The expression of the S-matrix in an interacting theory follows from a simple

extension of the method explained in the scalar case. One has only to be

careful of signs. One verifies that the S-matrix is given by

S(ϕ, ϕ̄) =

∫

[dψ̄dψ] exp iA(ψ̄
√
Z + ψ̄c, ψ

√
Z + ψc),

that is, again a field integral in a background field, where the classical anti-

commuting fields ψ̄c, ψc are solutions to the free field equations, which can

be parametrized in the form (11.14), (11.15):

ψ̃c(p̂) = C∗ϕ−(p̂) + ϕ+(p̂), ψ̃†
c(p̂) = ϕ−(p̂) + ϕ̄+(p̂)C

T , ψ̄c = −ψ†
cγ0 ,

and P+ϕ± = ϕ±.

A renormalization constant Z is also required here, to obtain S-matrix

elements with the proper normalization.
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In the same notation, the unitarity of the S-matrix takes the form

∫

[dϕ̄′(p̂)dϕ′(p̂)]S∗(ϕ′, ϕ̄)S(ϕ′, ϕ̄) exp

[

(2π)3
∫

d3p̂

2ω(p̂)

∑

ε=±

ϕ̄′
ε(p̂)ϕ

′
ε(p̂)

]

= exp

[

(2π)3
∫

d3p̂

2ω(p̂)

∑

ε=±

ϕε(p̂)ϕ̄ε(p̂)

]

.
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11.7 Massive fermions: the non-relativistic limit

In analogy with the discussion for scalar bosons of section 5.12, we show

here how a non-relativistic quantum theory emerges as the low energy, low

momentum limit of a relativistic theory involving massive fermions.

As an example, we consider self-interacting fermions with the the action

A(ψ̄, ψ) =

∫

dt d3x

[

ψ̄

(

1

i
γ0∂t + γ · ∇x +m

)

ψ + 1
2G
(

ψ̄ψ
)2
]

,

which we express in terms of ψ, ψ† (equation (11.10)):

A(ψ, ψ†) =

∫

dt dx
[

ψ†(t, x) [i∂t − γ0(γ · ∇x +m)]ψ(t, x) + 1
2G
(

ψ†γ0ψ
)2
]

.

Due to the spin structure and the linearity in ∇x of the action, extracting

the non-relativistic limit requires slightly more work than in the scalar case.
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However, one can use the transformations that lead to the action (11.16).

In the kinematic term one then expands the one-particle energy,

ω(p̂) =
√

p̂2 +m2 = m+ p̂2/2m+O(m−3).

In the interaction terms, one neglects possible momentum dependences rel-

ative to the mass.

The projectors P± defined by equation (11.12) reduce to P± = 1
2 (1± γ0).

The transformation between fields ψ and ϕ± becomes local. Choosing a

different normalization, one finds

ϕ−(t, x) = P+C
†ψ∗(t, x), ϕ+(t, x) = P+ψ(t, x),

ϕ†
+(t, x) = ψ†(t, x)P+ , ϕ†

−(t, x) = ψT (t, x)CP+ ,

or, conversely,

ψ(t, x) = ϕ+(t, x) + C∗ϕ∗
−(t, x).
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For γ matrices it is convenient to choose a basis in which γ0 is diagonal and

we restrict, below, the spinor indices to the non-vanishing components of

ϕ±. Using the relation,

−ψ̄(t, x)ψ(t, x) = ψ†(t, x)γ0ψ(t, x) = ϕ†
+(t, x)ϕ+(t, x) + ϕ†

−(t, x)ϕ−(t, x),

one obtains the action

A(ϕ±, ϕ
†
±) =

∫

dt d3x

[

∑

ǫ=±

ϕ†
ǫ(t, x)

[

i∂t +m−∇2
x/2m)

]

ϕǫ(t, x)

+ 1
2G

(

∑

ǫ=±

ϕ†
ǫϕǫ

)2]

.

One then proceeds in analogy with the boson case. One translates the one-

particle energy by the mass m, setting

ϕ±(t, x) 7→ eimt ϕ±(t, x), ϕ†
±(t, x) 7→ e−imt ϕ†

±(t, x).
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One neglects in the interaction all terms that depend explicitly on time.

One finds

A(ϕ±, ϕ
†
±) =

∫

dt d3x

[

∑

ǫ=±

ϕ†
ǫ(t, x)

[

i∂t −∇2
x/2m)

]

ϕǫ(t, x)

+ 1
2G

(

∑

ǫ=±

ϕ†
ǫϕǫ

)2]

.

This action describes a many-body theory with two fermions of the same

mass and with spin, the spin playing the role of an external quantum number

decoupled from space-time.

Borrowing the result of section 10.14.4, and comparing with the action

(11.6), one infers the non-relativistic HamiltonianH, up to an infinite energy

shift. One verifies that in the non-relativistic limit the number of particles

is conserved and, therefore, sectors with different particle number decouple:

N±α =

∫

dxϕ±α(x)
δ

δϕ±α(x)
⇒ [N±α,H] = 0 .
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A general n-particle contribution to the generating functional of wave func-

tions can be written as

Φ(ϕ) =
1

n!

∫

dx1 . . .dxn φε1α1,ε2α2,...,εnαn
(x1, . . . , xn)ϕε1α1

(x1)

× ϕε2α2(x2) . . . ϕεnαn
(xn),

where φε1α1,ε2α2,...,εnαn
(x1, . . . , xn) is a completely antisymmetric wave func-

tion.

In the n-particle sector, the Hamiltonian reads

Hn = − 1

2m

n
∑

i=1

∇2
xi

−G
∑

i<j

δ(xi − xj).

The fermions interact through a two-body δ-function pseudo-potential that,

in the case of fermions can be repulsive or attractive. The spin acts only

through the Pauli principle which dictates the possible symmetries of the

wave function Φ.
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Remark. In two dimensions (i.e., one space dimension), the fermion theory

we have considered here is equivalent to the well-known massive Thirring

model.

The non-relativistic limit, the δ-function model, can be exactly solved by

the Bethe ansatz, that is, a complete set of wave-functions is provided by

a superposition of a finite number of plane waves in each of the n! sectors

corresponding to all possible ordering of particle positions.

Its relativistic generalization is also integrable, because particle produc-

tion does not arise (a possibility restricted to two dimensions).
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11.8 Free euclidean relativistic fermions

We now perform the analytic continuation to euclidean time. This allows

discussing quantum statistics of relativistic fermions and, quite generally,

simplifies perturbative calculations.

We first describe the symmetries of euclidean relativistic fermion actions,

like invariance under the spin group, under other continuous symmetries like

phase rotation or chiral transformations and under several discrete symme-

tries like hermiticity, reflection and charge conjugation, which determine the

free action as well as the coupling to other fields.

Some of the discrete symmetries have a form somewhat different from

what one is familiar with in real time quantum field theory. Indeed, after

continuation to imaginary time, symmetries that involve a complex conju-

gation are no longer directly symmetries of the euclidean action.
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For example, initial hermiticity translates in another symmetry and time

reversal has a natural definition that makes it indistinguishable from space

reflections.

The technical basis for the discussion, like properties of the spin group

and the definition of γ matrices, as well as our conventions and notation,

can be found in appendix A11.

Euclidean Dirac fermions. The free fermion action S0(ψ̄, ψ) for general-

ized massive Dirac fermions, continuation to imaginary time of the standard

action for spinor fields (11.8), can be written as

S0(ψ̄, ψ) = −
∫

d4x
∑

α,β

ψ̄α(x)
[

(6∂)αβ +mδαβ

]

ψβ(x), (11.19)

where the fields ψ̄α(x), ψα(x) are also generators of a Grassmann algebra.

In expression (11.19), we have introduced the traditional notation

6∂ ≡
∑

µ=1,...,4

γµ∂µ .
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11.8.1 Hermitian conjugation

According to the discussion of section 10.13, hermiticity of the Hamiltonian

is equivalent to invariance of the euclidean action under complex conjugation

followed by euclidean time reversal.

However, one has here to take into account a peculiarity of the relativistic

formalism, the hermitian conjugate of ψ is not ψ̄ but instead (equation

(11.10)) ψ† = −ψ̄γ4, where γ4 is the γ matrix associated with the euclidean

time component.

When one combines these two transformations, one verifies that they can

be realized differently, in a way that no longer singles out the time variable.

One defines ψ̄ now as the hermitian conjugate of ψ, instead of ψ†, and after

hermitian conjugation perform the transformation

ψ(x) 7→ γµψ(x̃), ψ̄(x) 7→ ψ̄(x̃)γµ , with x̃ = Pµx , (11.20)

where Pµ is the space reflection along the µ axis.
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Acting on a space vector x, Pµ changes the sign of its component µ:

Pµx = x̃ with x̃ :

{

x̃µ = −xµ,
x̃λ = xλ for λ 6= µ .

(11.21)

We have chosen a generic component µ to emphasize that all euclidean

components are equivalent. The symmetry corresponding to the product of

these two transformations is called reflection hermiticity.

Applying the transformation on the action (11.19), after hermitian con-

jugation, one finds

S†
0(ψ̄, ψ) = −

∫

d4x ψ̄(x) (−6∂ +m)ψ(x),

because ∂µ is anti-hermitian. In the transformation (11.20), the mass term

is invariant and in 6∂ the contribution
∑

λ 6=µ γλ∂λ changes sign as a conse-

quence of the anti-commutation with γµ while the remaining term changes

sign from ∂µ 7→ −∂µ.
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The determinant resulting from the integral over ψ and ψ̄ in the functional

integral is thus real. Eigenvalues of the operator 6∂ +m are real or appear

as complex conjugate pairs.

The action (11.18) has also reflection hermiticity as a symmetry. Indeed,

S†
0(ψ̄−, ψ+) =

∫

d4x ψ̄+(x)6∂ψ−(x),

since γ5 is hermitian. But then in the second transformation,

(1− γ5)γµ = γµ(1 + γ5),

in such a way that the initial chirality is recovered.
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11.8.2 Spin group and reflections

Both actions (11.18) and (11.19) are invariant under the transformations

of the spin group Spin(4) ≡ SU(2)× SU(2) (see section A11.2.6), analytic

continuation of Spin(1, 3). The spinors ψ and ψ̄ transform as

(ψΛ)α (x) =
∑

β

Λ†
αβψβ(Rx),

(

ψ̄Λ

)

α
(x) =

∑

β

ψ̄β(Rx)Λβα,

where Λ belong to the spin group and the matrix R(Λ) is the corresponding

element of SO(4) (equation (A11.20)). After the change of variables Rx 7→
x′, the invariance of the action follows from the identity

∑

ν

RµνΛγνΛ
† = γµ ,

which is implied by equation (A11.20).
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Reflections. Space and time reflections are now indistinguishable. A reflec-

tion along the µ = 1 axis corresponds to the transformation Π1 (section

A11.2.4):

Π1 : ψΠ1(x) = γ5γ1ψ(x̃), ψ̄Π1(x) = ψ̄(x̃)γ1γ5 with x̃ = (−x1, x2, x3, x4).

The mass term in action (11.19) is clearly invariant. In the term 6∂ the

space reflection changes ∂1 in −∂1, but then γ5γ1 anti-commutes with γ1

and commutes with all other γµ matrices. The total action (11.19) is thus

invariant.

The action (11.18), in contrast with the action (11.19), is not invariant

under reflection, since reflection exchanges chiral components.
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11.8.3 Charge conjugation, charge conservation

Charge conjugation. We introduce a unitary matrix C and transform spinors

as

ψα(x) =
∑

β

ψ̄′
β(x)C

†
βα , ψ̄α(x) = −

∑

β

Cαβψ
′
β(x). (11.22)

In terms of the new fields ψ′ and ψ̄′ the action (11.19), after an integration

by parts, becomes

S0(ψ̄
′, ψ′) = −

∫

d4x ψ̄′(x)
(

−C†6∂TC +m
)

ψ′(x).

The action (11.19) is thus invariant if the matrix C satisfies

C†γTµC = −γµ . (11.23)

A solution for the charge conjugation matrix is C = γ1γ3 (see also section

A11.2.5).
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In the case of the action (11.18), the transformation (11.22) leads to (γ5 =

γT5 , γ5C = Cγ5)

6∂(1+γ5) 7→ −C†(1+γ5)
T 6∂T C = −(1+γ5)C

†6∂T C = (1+γ5)6∂ = 6∂(1−γ5) .

Since

6∂(1 + γ5) 7→ 6∂ (1− γ5) ,

charge conjugation is not a symmetry. However, charge conjugation multi-

plied by space reflection, which exchanges chiral components, is a symmetry.

To justify the denomination charge conjugation we consider charged fields

ψ and ψ̄, with charges ∓e, coupled to an external electromagnetic field

Aµ(x). The action then takes the form

S(ψ̄, ψ) = −
∫

d4x ψ̄(x) (6∂ +m+ ie 6A)ψ(x).

After charge conjugation, as a consequence of equation (11.23) (see also

equation (A11.23)) the sign of the charge e has changed.
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Self-conjugate spinors. In dimension four, it is possible to construct a con-

sistent theory for self-conjugate spinors, that is, that satisfy ψ̄ = Cψ. They

correspond to neutral fermion fields, and are called Majorana spinors. The

existence of Majorana neutrinos has been proposed for theoretical and ex-

perimental reasons but is not established.

Fermion number conservation. If we assign a fermion number +1 to ψ

and −1 to ψ̄ we see that the action (11.19) conserves fermion number. To

fermion number conservation corresponds a U(1) invariance of the action:

ψθ(x) = eiθ ψ(x), ψ̄θ(x) = e−iθ ψ̄(x). (11.24)

For charged fermions the fermion number is proportional to the electric

charge.

The existence of Majorana particles leads to some form of fermion number

violation.
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11.9 Partition function. Correlations

In section 11.2 we have derived an expression for the statistical operator of

a system of non-relativistic fermions in the form of a field integral. Here we

generalize the expression to a relativistic quantum field theory, using the

formalism of euclidean fermions introduced in section 11.8.

We define the partition function and introduce the generating functional

of correlation functions, continuation to imaginary time of the Green’s

fermions which lead to the S-matrix. We show how to calculate them in

a perturbative expansion.
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11.9.1 The partition function

From the combined analyses of sections 10.13 and 11.8, we infer that the

partition function for self-interacting massive Dirac fermions is given by an

integral over Grassmann fields of the form (t ≡ x4 is the euclidean time)

Z(β) =

∫

[dψ(t, x)dψ̄(t, x)]

× exp

[

−S(ψ̄, ψ) + µ

∫ β

0

dt

∫

d3x ψ̄(t, x)γ4ψ(t, x)

]

(11.25)

with

S(ψ̄, ψ) = −
∫ β

0

dt

∫

d3x
[

ψ̄(t, x)(6∂ +m)ψ(t, x) + V
(

ψ̄(t, x), ψ(t, x)
)]

,

(11.26)

where 1/β is the temperature and µ the chemical potential. Fermion fields

satisfy anti-periodic boundary conditions in the euclidean time direction:

ψ(t ≡ x4 = 0, x) = −ψ(β, x), ψ̄(0, x) = −ψ̄(β, x).
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The term coupled to the chemical potential µ is hermitian, is proportional

to the conserved fermion charge (section 12.1), and thus corresponds to a

quantum operator that commutes with the Hamiltonian, and has the correct

non-relativistic limit.

In what follows we specialize, for simplicity, to zero temperature and

zero chemical potential. In this limit, the boundary conditions play no role,

and we no longer distinguish between space and time; x denotes all four

coordinates.

11.9.2 Correlation functions

We introduce Grassmann sources η̄, η and consider the generating functional

of ψ, ψ̄ field correlation functions,

Z(η̄, η) =

∫

[

dψ(x)dψ̄(x)
]

× exp

{

−S(ψ̄, ψ) +
∫

d4x
[

η̄(x)ψ(x) + ψ̄(x)η(x)
]

}

. (11.27)

821



Then,
n
∏

i=1

δ

δη(xi)

n
∏

j=1

δ

δη̄(yj)
Z(η, η̄)

∣

∣

∣

∣

η=η̄=0

= Z(0)
[

(−1)n
〈

ψ̄(x1) . . . ψ̄(xn)ψ(y1) . . . ψ(yn)
〉]

.

Because the sources η(x), η̄(x) are generators of a Grassmann algebra, cor-

relation functions are antisymmetric in their arguments, in agreement with

Fermi–Dirac statistics.

The Gaussian integral. The Gaussian integral with external sources reads

ZG(η̄, η) =

∫

[

dψ(x)dψ̄(x)
]

× exp

[

−S0(ψ̄, ψ) +

∫

d4x
(

η̄(x)ψ(x) + ψ̄(x)η(x)
)

]

, (11.28)

where S0(ψ̄, ψ) is the free action (11.19):

S0(ψ̄, ψ) = −
∫

d4x ψ̄(x) (6∂ +m)ψ(x).
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As usual we shift variables ψ 7→ ψ′ to eliminate linear terms, setting

ψ(x) + (6∂ +m)−1 η(x) = ψ′(x), ψ̄(x) + η̄(x) (6∂ +m)−1 = ψ̄′(x).

Normalizing the field integral (11.28) by Z(0, 0) = 1, we obtain

ZG(η̄, η) = exp

[

−
∫

d4x d4y η̄(y)∆F(y, x)η(x)

]

,

in which the fermion propagator ∆F is given by

∆F(y, x) =
1

(2π)4

∫

d4p e−ip(x−y)
(m− i6p)
p2 +m2

. (11.29)

One verifies that on mass-shell (p2 = −m2), m− i6p is a projector on a two-

dimensional space. This reflects the property that physical massive fermion

states can be classified according to the static spin group Spin(3) ≡ SU(2),

the subgroup of Spin(4) that leaves the momentum p invariant.
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The fermion two-point correlation function in a free or Gaussian theory is

then

〈

ψ̄α(x)ψβ(y)
〉

0
= − δ

ηα(x)

δ

η̄β(y)
ZG(η̄, η) = (∆F)βα (y, x). (11.30)

A generalization of equation (10.64) to the action (11.26) yields the identity

Z(η̄, η) = exp

[∫

d4xV

(

− δ

δη(x)
,

δ

δη̄(x)

)]

ZG(η̄, η).

The identity leads to the perturbative expansion of a field theory with

self-interacting fermions. Alternatively, the field integral (11.27) can be ex-

panded in powers of V, η, η̄ and all terms evaluated with the corresponding

Wick’s theorem for fermion fields, a straightforward extension of the form

(10.21).

824



Wick’s theorem. Wick’s theorem can be written in terms of free field expec-

tation values as
〈

∏

i=1,n

ψ̄αi
(xi)ψβi

(yi)

〉

0

=
∑

permutations
P of {1,2,...,n}

sgn(P )
∏

i=1,n

〈

ψ̄αP (i)
(xP (i))ψβi

(yi)
〉

0
,

where sgn(P ) is the signature of the permutation P .

Theories with bosons and fermions. Many field theories involve both fermions

and bosons. A simple example, which is studied later, corresponds to an ac-

tion S(ψ̄, ψ, φ) of the general form

S(ψ̄, ψ, φ) =
∫

d4x
{

−ψ̄(x) [6∂ +M + gφ(x)]ψ(x) + 1
2 (∇xφ(x))

2

+ 1
2m

2φ2(x) + 1
24λφ

4(x)
}

, (11.31)

in which ψ, ψ̄ are Grassmann fields and φ a real field.
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Correlation functions can the be derived from the generating functional

Z(η̄, η, J) =

∫

[

dψ dψ̄ dφ
]

exp

{

−S(ψ̄, ψ, φ)

+

∫

d4x
[

η̄(x)ψ(x) + ψ̄(x)η(x) + J(x)φ(x)
]

}

, (11.32)

in which η, η̄ are Grassmann fields and J is a real field. The functional

Z(η̄, η, J) generates both φ field and ψ, ψ̄ field correlation functions. For

free fields, it is given by

ZG(η̄, η, J) = exp

[∫

d4x d4y
(

1
2J(x)∆(x, y)J(y)− η̄(x)∆F(x, y)η(y)

)

]

.

In the example (11.31), the integral over fermions is Gaussian and can also

be performed explicitly.
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This leads to a scalar field theory with additional non-local interactions:

∫

[

dψ dψ̄
]

exp

∫

d4x
[

ψ̄(x) (6∂ +M + gφ(x))ψ(x) + η̄(x)ψ(x) + ψ̄(x)η(x)
]

∝ exp [−SF(φ, η, η̄)]

with

SF = − tr ln [6∂ +M + gφ(x)]+

∫

d4x d4y η̄(y) [6∂ +M + gφ(·)]−1
(y, x)η(x) .

The expansion of SF(φ, 0, 0) in powers of φ, generates a set of one fermion

loop Feynman diagrams (see section 6.4). A similar integral over boson fields

would have generated a contribution of the form + tr ln. Hence, compared

to boson loops, fermion loops are multiplied by an additional minus sign.
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11.10 Generating functionals

We have discussed connected functions and proper vertices in the case of

a boson field theory. We have briefly extended these notions to Grassmann

variables in section 10.6.1. The extension to fermion fields is straightforward.

Let ψ̄, ψ be Dirac fermion fields and S(ψ̄, ψ) the corresponding local ac-

tion. We denote by η̄ and η the sources for ψ and ψ̄. Then, W(η, η̄) =

lnZ(η, η̄) is still the generating functional of connected correlation func-

tions.

Following the conventions of section 11.9, if one writes the source terms

in the field integral as η̄ψ+ ψ̄η, then one defines the Legendre transform of

W by

Γ(ψ̄, ψ) +W(η, η̄) =

∫

dx
[

η̄(x)ψ(x) + ψ̄(x)η(x)
]

, (11.33a)

ψ(x) =
δW
δη̄(x)

, ψ̄(x) = − δW
δη(x)

. (11.33b)
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The equations (11.33b) are equivalent to

η(x) =
δΓ

δψ̄(x)
, η̄(x) = − δΓ

δψ(x)
.

With these conventions, one easily verifies that in the tree approximation

Γ(ψ̄, ψ) = S(ψ̄, ψ).

All the other algebraic properties derived for bosons generalize to the fermion

case. However, we recall here that a Gaussian integration over fermion fields

yields a determinant instead of the inverse of a determinant for a complex

scalar. This implies that, in Feynman diagrams, fermion loops are affected

by an additional minus sign compared to boson loops.
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11.11 Connection between spin and statistics

In section 11.4.1, we have noticed that fields transforming under the funda-

mental (spin 1/2) representation of the spin group could only be quantized

as fermions. This connection between spin and statistics is a deep conse-

quence of locality, hermiticity of the Hamiltonian and relativistic invari-

ance: fermions transform under representations of odd degree of the spin

group, while bosons transform under the SO(4) group. This implies that

in four dimensions bosons must have integer spin while fermions must have

half-integer spin.

We illustrate here this property, which can be proven with a great deal

of generality, by an explicit calculation.
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It is simple to prove that, as a consequence of the hermiticity of the Hamil-

tonian, the two-point function has a spectral representation in terms of a

positive measure. We have translated this result into the relativistic kine-

matics in section 5.11. All possible intermediate states contribute with the

same sign. This result can easily be generalized to the discontinuity in the

physical domain of diagonal scattering amplitudes. Let us then show that

the sign of fermion loops implies a relation between spin and statistics.

Boson contribution. We consider the leading order contribution from a

scalar field φ to the two-point function of a coupled scalar field χ. The

φ-field action is

S(φ) =
∫

d4x
[

1
2 (∇xφ(x))

2
+ 1

2m
2φ2(x) + 1

2gφ
2(x)χ(x)

]

.

The integration over φ yields a (non-local) contribution to the χ action

(ln det = tr ln):

δS(χ) = 1
2 tr ln(−∇2

x +m2 + gχ).
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If we expand this expression to order g2 we find a term linear in χ that

shifts the χ field expectation value and a quadratic term that modifies the

two-point function in the Gaussian approximation. One verifies that the

corresponding contribution to δW
(2)
χ2 , the χ two-point function in Fourier

variables, is

δW
(2)
χ2 = 1

2g
2∆2

χ(p)B(p) + const.

with (Fig. 8.2)

B(p) =
1

(2π)4

∫

d4q

(q2 +m2)
[

(p+ q)
2
+m2

] .
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Equation (9.12) gives the expression for the massless case in dimensional

regularization:

B(p) =
Nd
ε

−Nd ln p ,

where Nd is the loop factor and N4 = 1/8π2. Setting s = −p2 > 0, one

infers
1

2i

[

B(p)|s+iǫ −B(p)|s−iǫ|ǫ→0+

]

=
1

16π
θ(s) .

A convenient integral representation of the massive diagram is obtained by

introducing Feynman’s parametrization 9.2.3, which indeed shows that the

function has a cut for s > (2m)2, the region of physical φ-particles emission,

with a positive imaginary part. One finds

1

2i
[B(p)|s+iǫ −B(p)|s−iǫ] =

1

16π
θ(s− 4m2)

√

s− 4m2

s
,

a result which is consistent with the representation (5.62) for δW
(2)
χ2 .
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By contrast, if one considers the contribution coming from scalar fermions,

the tr ln is replaced by − tr ln, and the contribution has the opposite sign,

which is inconsistent with hermiticity.

Dirac fermions. We now calculate the contribution of spin 1/2 Dirac

fermions. After Gaussian integration, the contribution to the χ action is

δS(χ) = − tr ln(6∂ +m+ gχ),

which, expanded to order g2, yields the contribution to the χ two-point

function,

δW
(2)
χ2 (p) = − g2

(2π)4
tr

∫

d4q (−i6q +m)(−i6p − i6q +m)

(q2 +m2) [(p+ q)2 +m2]

= − 4g2

(2π)4

∫

d4q (m2 − pq − p2)

(q2 +m2) [(p+ q)2 +m2]
.

We use the identity

m2 − pq − q2 = 2m2 + 1
2p

2 − 1
2

[

(p+ q)2 +m2 + q2 +m2
]

.
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The two terms inside the brackets cancel a denominator and thus yield a

(divergent) constant contribution, which has no discontinuity. Then,

δW
(2)
χ2 (p) = −4g2(p2 + 4m2)∆2

χ(p)B(p) + const. .

In the region of physical particle emission s = −p2 > (2m)2 the factor

(p2 + 4m2 = 4m2 − s), which reflects the spin structure, is negative and

cancels the negative sign due to the fermion loop.
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11.12 The Gross–Neveu–Yukawa model: a Higgs-top toy model

Since the Higgs mass corresponds to a moderate self-coupling, even for a

semi-quantitative understanding of RG trajectories, it is necessary to in-

clude the couplings at least to the top quark and vector bosons. Nevertheless,

even when vector bosons are neglected, a general though more qualitative

picture emerges. Therefore, we discuss here a model that tries to represent

the Higgs–top physics, the Gross–Neveu–Yukawa (GNY) model.

In the GNY model, fermions receive masses by spontaneous chiral sym-

metry breaking. Even without gauge symmetry, no Goldstone boson is gen-

erated because the chiral symmetry is discrete.

The model is renormalizable in four dimensions. Using RG arguments one

can show that, in the limit of large cut-off, the ratio of fermion and boson

masses can be predicted as a consequence of IR freedom and the natural

assumption that coupling constants have generic values at the cut-off scale.
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More generally, the renormalization group flow can be studied as a function

of the physical masses when the physical ratio differs from the limiting value.

11.12.1 The Gross–Neveu–Yukawa model

The GNY model involves a set of N massless Dirac fermions {ψi, ψ̄i} and

a scalar field H.

It has a discrete chiral Z2 symmetry under which the fields transform like

ψ 7→ γ5ψ, ψ̄ 7→ −ψ̄γ5, H 7→ −H , (11.34)

which prevents the addition of a fermion mass term to the action.

It has also a U(N) symmetry that is implemented by the transformation

ψ 7→ Uψ , ψ̄ 7→ U†ψ̄ .

The model exhibits a phase where 〈H〉 6= 0, which illustrates the physics of

spontaneous chiral symmetry breaking and fermion mass generation.
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A renormalizable symmetric action then takes the form (a cut-off Λ, con-

sistent with the symmetries, is implied)

S
(

ψ̄,ψ, H
)

=

∫

d4x

[

−ψ̄ · (6∂ + gH)ψ + 1
2 (∇xH)2 + 1

2uΛ
2H2 +

λ

4!
H4

]

.

Indeed, the scalar field H has dimension 1, the fermion field dimension 3/2

in such a way that u and the coupling constants g and λ are dimensionless.

Moreover, the action contains all possible terms consistent with renormal-

izability and symmetry.

The renormalized action. Calling µ the renormalization scale and gr, λr

the renormalized couplings, one can write the renormalized action as

Sr(H,ψ, ψ̄) =

∫

d4x
{

−Zψ
[

ψ̄(x) ·
(

6∂ + grZgZ
1/2
H H(x)

)

ψ(x)
]

+ 1
2ZH

[

(∇xH(x))
2
+ urZmH

2(x)
]

+ Zλ
λr
4!
Z2
HH

4(x)

}

. (11.35)

where Zψ, Zg, ZH , Zm, Zλ are renormalization constants.
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Remark. Note that if the H4 interaction would have been omitted, renor-

malization theory and renormalization group tell us that the effective H4

interaction can perhaps vanish at one scale but not at all scales.

In what follows we set

Λ2u = Λ2uc + τ ,

where uc is defined by the property that for τ = 0 the physical masses of ψ

and H vanish. The new parameter τ , in the framework of macroscopic phase

transitions, plays the role of the deviation from the critical temperature.

The phase transition in the tree approximation. In the tree approximation,

Stree

(

ψ̄,ψ, H
)

=

∫

d4x
[

−ψ̄ · 6∂ψ− g Hψ̄ ·ψ+ 1
2 (∇xH)

2
+ 1

2τH
2+

λ

4!
H4
]

,

and a phase transition occurs, for τ = 0, between a massless fermion sym-

metric phase for τ > 0 and a phase for τ < 0 where the chiral symmetry is

spontaneously broken and a fermion mass is generated.
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In the broken phase, the H expectation value

〈H〉 = ±
√

−6τ/λ ,

gives a mass to the fermions by a mechanism reminiscent of the Standard

Model of weak-electromagnetic interactions. The fermion and boson masses

are then

mψ = g 〈H〉 , mH =

√

λ

3
〈H〉 ⇒ mH

mψ
=

1

g

√

λ

3
.

The H expectation value cancels in the mass ratio.
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11.12.2 RG equations: β-functions

Beyond the tree approximation, the model can be discussed, like the φ4

theory, by RG techniques. This involves evaluating the divergent parts of

the diagrams of Fig. 11.1–11.4.

For |τ | ≪ Λ2 (this is the usual fine tuning problem), the corresponding

renormalized (1PI) vertex functions of 2l fermion fields and n scalar fields

satisfy the RG equations
[

Λ
∂

∂Λ
+ βg2

∂

∂g2
+ βλ

∂

∂λ
− lηψ − 1

2nηH − ηmτ
∂

∂τ

]

Γ(l,n) = 0 . (11.36)

At one-loop order, the RG β-functions are

βλ =
1

8π2

(

aλ2 + bλg2 + cg4
)

, βg2 =
d

8π2
g4

with

a = 3
2 , b = 4N, c = −24N, d = 2N + 3 .
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(a) (b)

Fig. 11.1 – One-loop H4 divergent contributions.

Fig. 11.2 – Boson two-point function: contribution from the fermion loop (the

fermions and bosons correspond to continuous and dotted lines, respectively).
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Fig. 11.3 – Fermion two-point function at one-loop.

Fig. 11.4 – Three and four-point functions: other divergent one-loop diagrams.
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11.12.3 IR freedom and mass ratio

One easily verifies that the origin λ = g2 = 0 is IR stable. The model GNY,

like the φ4 field theory, is thus trivial or IR free, that is, Gaussian up to

logarithmic corrections that vanish for infinite cut-off.

We assume that the dimensionless couplings λ(Λ) and g(Λ) are generic (i.e.,

of order 1, numerically 8π2, which is the loop factor) at the cut-off scale Λ.

Solving the RG equations, one infers that the coupling constants at a scale

µ≪ Λ decrease like

g2(µ) ∼ 8π2

(2N + 3) ln(Λ/µ)
, λ(µ) ∼ 8π2R∗(N)

(2N + 3) ln(Λ/µ)

with

R∗(N) = 1
3

[

−(2N − 3) +
√

4N2 + 132N + 9
]

.
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In particular, choosing µ ∼ 〈H〉 and if the mass scale 〈H〉 ≪ Λ, one

concludes that the ratio of H and fermion masses goes to the limit

m2
H

m2
ψ

=
λ(〈H〉)
3g2(〈H〉) = 1

3R∗(N) = 1
9

(

−(2N − 3) +
√

4N2 + 132N + 9
)

.

(11.37)

As a function of N , when N varies between 1 and ∞, the ratio mH/mψ

varies from about 1.20 to 2, which corresponds to the ψ̄ψ threshold and the

large N limit.

IR freedom of the theory, the assumptions that the couplings are generic

at the cut-off scale and that the cut-off scale is large enough, fix the ratio

between the masses of the top and Higgs particles.
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11.12.4 The general renormalization group flow at one-loop

Identifying the boson with the Higgs field and the fermion with the top

field, one can put numbers on the vacuum expectation value and effective

couplings at physical scale µ = O(〈H〉). From,

〈H〉 = 246.Gev , mψ = 173.2Gev , mH = 125.Gev ,

one infers λ(µ) = 0.775, g2(µ) = 0.496. The main neglected contributions

correspond to Higgs couplings to W and Z vector bosons and, therefore,

the picture can only be semi-quantitative but the analysis is here much

simplified and, thus, more transparent.

More generally, two-dimensional RG flows can be easily studied because

RG trajectories can only meet at fixed points, here g = λ = 0.

One verifies immediately that the lines g = 0 and λ = R∗g
2 are fixed

trajectories and thus cannot be crossed. By contrast, the line λ = 0 can be

formally crossed and the RG trajectories then enter an unphysical region.
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g2

λ

Fig. 11.5 – RG flow: the dotted line on the left is an unphysical fixed line.

We note that the coupling constants at physical scale (or renormalized)

are small. This justifies using perturbation theory and indicates that IR

freedom is relevant since it predicts small renormalized couplings when the

initial couplings at a large momentum cut-off scale are of order 1.
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Fig. 11.6 – Precise RG flow (Degrassi et et al 2012).

However, the physical ratio R = λ/3g2 ≈ 0.52 is smaller than what is

predicted by the model. More realistic RG calculations, including vector

bosons, have been performed.
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They seem to indicate that the physical Higgs mass is very close to a fixed

RG trajectory. Depending on the precise top mass, deviations appear but

at a very high energy scale, at least 109 GeV.

This RG result is puzzling because it suggests that the Standard Model

could be valid up to such a high scale. However, then the problem of the

fine-tuning of the Higgs mass, which is of the order of (Λ/mH)
2 (Λ is the

scale of new physics), which had been disregarded until recently, becomes

extremely severe.
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11.13 An effective field theory: the Gross–Neveu model

The Gross–Neveu (GN) model is also described in terms of an U(N) sym-

metric action for a set of N > 1 massless fermions {ψi, ψ̄i}, but interacting
through an attractive four-fermion self-interaction,

S(ψ̄,ψ) = −
∫

ddx
[

ψ̄(x) · 6∂ψ(x) + 1
2Λ

2−dG
(

ψ̄(x) ·ψ(x)
)2
]

, G > 0 ,

(11.38)

reminiscent of the Fermi–Feynman–Gell-Mann model of weak interactions.

Like the GNY model, in addition to the U(N) symmetry, in even dimensions

the model has a discrete chiral Z2 symmetry, which in four dimensions

corresponds to the transformation

ψ 7→ γ5ψ, ψ̄ 7→ −ψ̄γ5 . (11.39)

(In two dimensions γ5 is replaced by σ3.) This symmetry prevents the ad-

dition of a fermion mass term.

850



The model has the same fermion content and symmetries as the GNY model

but the perturbative GN model displays only the symmetric massless phase.

This is a situation reminiscent of the correspondence between the (φ2)2

and the non-linear σ-model. The main difference is that the role of the

spontaneously broken and the explicitly symmetric phase are interchanged.

Indeed, it is always the massless phase that is unstable in low dimensions.

The model requires a symmetric UV cut-off, for example,

6∂ 7→ 6∂(1−∇2
x/Λ

2 + · · ·),

and for d = 2 is affected by IR divergences which require an IR cut-off (like

a fermion mass, which breaks explicitly the chiral symmetry).

In four dimensions, the GN model is not renormalizable and provides

an interesting example of an effective field theory, similar in structure to

the Fermi model of weak interactions, except that the interaction is scalar-

scalar.
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The analysis of the model at and near dimension two as well as in the large

N limit, strongly suggests that the GN model has the same physics as the

GNY model: at a value Gc of the fermion self-coupling G, a phase transition

occurs and above Gc a phase with symmetry breaking, spontaneous fermion

mass generation and a scalar bound state appears.

From an RG viewpoint, the value Gc corresponds to an UV fixed point,

which is repulsive for large distance physics. Above Gc, the condition of

small masses implies a fine-tuning of G such that G−Gc ≪ 1.

The existence of a UV fixed point realizes the condition of asymptotic

safety. In the limit G−Gc ≪ 1, below dimension 4 it allows defining a field

theory that has both universal large distance and short distance physics and

thus defining a renormalized theory consistent on all scales.

In particular, the GN model is asymptotically free in two dimensions

(Gc = 0), the dimension in which it is renormalizable, where it displays

only spontaneous symmetry breaking and a massive phase.
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11.13.1 Four dimensions: an effective field theory.

The action (11.38) then reads

S(ψ̄,ψ) = −
∫

d4x

[

ψ̄(x) · 6∂ψ(x) + G

2Λ2

(

ψ̄(x) ·ψ(x)
)2
]

, G > 0 ,

(11.40)

where a momentum cut-off Λ is implicitly assumed. The fermion field has

dimension 3/2, the coupling constant G is attractive and dimensionless.

The model is non-renormalizable and dimensional analysis implies that the

interaction is suppressed by a factor 1/Λ2. In the spirit of effective field

theory, other local interactions could be added to the action but they are

suppressed at least by a factor 1/Λ4.

Though the interaction is small and the tree approximation is expected

to give the leading contribution, the theory is not renormalizable and diver-

gences appear at higher orders in the perturbative expansion, which may

cancel the 1/Λ2 factors. This problem has to be analysed.
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One-loop contributions to vertex functions. At one-loop order, the contribu-

tions to the two, four, six and eight-point functions are divergent.

The contributions to the two-point function are constants that cancel due

to chiral symmetry.

To evaluate the four-point function, which has a quadratic divergence, we

use the propagator (11.29) for m = 0 and the expression (10.27) with the

correspondence
∑

i

7→
∑

i,α

∫

d4x , ∆ji 7→ ∆αβ
ij (y, x) = −i δij

(2π)4

∫

d4p e−ip(x−y)
6pαβ
p2

Vij 7→ δ(4)(x− y).

The first diagram of Fig. 10.4 is proportional to

N
G2

Λ4

∫

d4q
tr 6q(6q + p)

q2(p+ q)2
= 4N

G2

Λ4

∫

d4q
(q2 + pq)

q2(p+ q)2

= 2N
G2

Λ4

(

2

∫

d4q

q2
−
∫

d4q
p2

q2(p+ q)2

)

.
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The first integral is proportional to Λ2 and acts like a renormalization,

finite but dependent on the cut-off function, to the coupling constant G.

The second integral contains a local logarithmically divergent contribution

equivalent to an interaction of the form

lnΛ

Λ4

∫

d4x ψ̄(x) ·ψ(x)∇2
x

(

ψ̄(x) ·ψ(x)
)

and a cut-off independent finite contribution of order G2/Λ4.

The other diagrams again generate constant contributions of order 1/Λ2

that renormalize G, various contributions of the form of chiral invariant local

interactions with two derivatives of order lnΛ/Λ4 and, finally, contributions

that is short distance insensitive of order 1/Λ4.

The six-point function generates a (ψ̄ψ)2ψ̄6∂ψ local term of order lnΛ/Λ6

as well as finite contribution multiplied by 1/Λ6. The eight-point function

generates a local (ψ̄ψ)4 term of order lnΛ/Λ8 and a finite contribution

multiplied by 1/Λ8.
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Higher orders. Quite generally, at higher orders, divergent contributions

generate chiral invariant local interactions multiplied by powers of Λ de-

termined by dimensional analysis (ψ̄ψ has dimension three), multiplied by

possible powers of lnΛ. In addition, finite contributions are also generated,

suppressed by increasing powers of Λ.

From this analysis, it would seem that physics is entirely governed by the

first orders of perturbation theory. The only possible trouble could come

from the increasing powers of lnΛ that are generated at higher orders and

which could sum to powers of Λ, invalidating the perturbative power count-

ing.
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11.13.2 The Gross–Neveu model in two dimensions

In perturbation theory the GN model is renormalizable in two dimensions.

The (ψ̄ψ)2 interaction can be multiplicatively renormalized. As a function

of the cut-off Λ, vertex functions satisfy the RG equations
[

Λ
∂

∂Λ
+ β(G)

∂

∂G
− n

2
ηψ(G)

]

Γ̃(n) (pi;G,Λ) = 0 . (11.41)

A direct calculation of the RG β-function yields

β(G) = −(N − 1)
G2

π
+ (N − 1)

G3

2π2
+O

(

G4
)

. (11.42)

The field renormalization RG function ηψ(G) is

ηψ(G) =
2N − 1

8π2
G2 +O

(

G3
)

. (11.43)

The negative sign of the leading term of the β-function shows that the model

is asymptotically free: the Gaussian fixed point G = 0 is repulsive at low

momentum and attractive for high momenta.
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The spectrum is non-perturbative and a number of arguments (in particular

the 1/N expansion that is studied in section 11.13.4) lead to the conclusion

that the chiral symmetry is always spontaneously broken and a fermion

mass generated.

S-matrix considerations have then led to the conjecture that, for N finite,

the exact spectrum is given by

mn =M
2(N − 1)

π
sin

(

nπ

2(N − 1)

)

, n = 1, 2, . . . < N, N > 2 ,

where the parameter M is a mass-scale with a dependence on the coupling

constant given by RG arguments. Since it is an RG invariant, it satisfies
(

Λ
∂

∂Λ
+ β(G)

∂

∂G

)

M(Λ, G) = 0 .

For dimensional reasons, M = ΛF (G). The RG equation reduces to

F (G) + β(G)F ′(G) = 0 . (11.44)
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Thus,

M = ΛF (G) ∝ Λexp

(

−
∫ G dg′

β(g′)

)

∝ ΛG1/2(N−1) e−π/(N−1)G,

the coefficient being non-perturbative.

In particular the ratio between the masses of the fundamental fermion

and the lowest lying boson is

mσ

mψ
= 2 cos

(

π

2(N − 1)

)

. (11.45)

11.13.3 d = 2 + ε dimensions

The perturbative expansion has a dimensional continuation. For d = 2 + ε

dimensions, ε > 0, in the framework of a double expansion in powers of G

and ε, the β-function is given by

β(G) = εG− (N − 1)
G2

π
+ (N − 1)

G3

2π2
+O

(

G4
)

.
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The origin G = 0 is now an IR fixed point and for G small, the physics is

perturbative with chiral symmetry and massless fermions. However, for ε

small, the β-function has another zero,

Gc =
πε

N − 1
+O(ε2) ⇒ β′(Gc) = −ε+O(ε)2.

This zero corresponds to a UV fixed point relevant for large momentum

behaviour, realizing the condition of asymptotic safety. Continuity with d =

2 suggests that it is also a transition point between the small G symmetric,

perturbative phase and a phase with spontaneous chiral symmetry breaking

and massive particles. The conjecture is comforted by the results of the large

N expansion.
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Near Gc, equation (11.44) then leads to

M =∝ Λexp

(

−
∫ G dg′

β(g′)

)

∝ Λ|G−Gc|−1/β′(Gc) .

Therefore, for |G−Gc| ≪ 1 a new mass scale is generated, much smaller than

the cut-off. For G < Gc, it is a crossover scale between the low momentum

perturbative behaviour and a large momentum critical behaviour (governed

by critical exponents). For G > Gc, it provides a scale to the fermion and

scalar physical masses.

11.13.4 The large N expansion

One can solve the GN model for N large. To generate a systematic 1/N

expansion, we introduce a scalar field H and write the GN action in the

equivalent form

S
(

ψ̄,ψ, H
)

=

∫

d4x

[

−ψ̄(x) ·
(

6∂ +H(x)
)

ψ(x) +
Λ2

2G
H2(x)

]

. (11.46)
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Indeed, the Gaussian H integration amounts to replacing H by the solution

of the H field equation:

δS
δH(x)

=
Λ2

G
H(x)− ψ̄(x) ·ψ(x) = 0 .

After this substitution, the initial GN action is recovered.

Integrating over (N − 1) components of the field ψ, one obtains (ψ ≡ ψ1)

S
(

ψ̄, ψ,H
)

=

∫

d4x

[

−ψ̄ (6∂ +H)ψ +
Λ2

2G
H2

]

− (N − 1) ln det(6∂ +H).

(11.47)

The large N limit is taken with H finite and G = O(1/N). Then, the

action is proportional to N for N large, and in the large N limit it can

be calculated by the steepest descent method: the integral is dominated by

space-independent fieldsH that minimize the action (11.47) (with ψ̄, ψ = 0).
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Since one looks only for space-independent fields H(x), one needs only the

action for H(x) = H, where H is the field expectation value,

S (0, 0, H)

N × volume
∼ Λ2

2NG
H2 − 1

volume
ln det(6∂ +H).

First, in the four dimensional space corresponding to γ matrices, the deter-

minant satisfies

detγ(6∂ +H) = detγ γ5(6∂ +H)γ5 = detγ(−6∂ +H) = [detγ(−∇2
x +H2)]2.

Then, the determinant in position space is given by

ln det(−∇2
x +H2) = tr ln(−∇2

x +H2)

=
1

volume

∫

d4x
〈

x| ln(−∇2
x +H2)|x

〉

=
1

(2π)4

∫

d4p ln(p2 +H2).
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Thus,
S (0, 0, H)

N × volume
∼ Λ2

2NG
H2 − 2

(2π)4

∫

d4p ln(p2 +H2).

Differentiating with respect to H, one obtains an equation for the expecta-

tion value of H for N large, generally called a gap equation,

Λ2H

NG
− 4H

(2π)4

∫ Λ d4q

q2 +H2
= 0 , (11.48)

(a cut-off Λ is implied). This equation has always the trivial solution H = 0

corresponding to a chiral-symmetric phase.

However, for G > Gc where Gc is given by

1

Gc
=

4N

(2π)4
1

Λ2

∫ Λ d4q

q2
, (11.49)

another solution is found with H 6= 0, which gives the lowest action and

which corresponds to spontaneous breaking of chiral symmetry.
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Note that Gc has an infinite cut-off limit but which depends on the specific

cut-off function.

Using equation (11.49) inside (11.48), one obtains an equation for the

expectation value of H in the broken phase, as a function of G. Setting

υ = Λ2 (G−Gc)

4NGGc
,

one finds

υ =
H2

(2π)4

∫ Λ d4q

q2 (q2 +H2)
∼ 1

8π2
H2 ln(Λ/H) . (11.50)

Returning to the expression (11.47), one sees that, at this order, the fermion

mass is given by

mψ = H .

It is small with respect to the cut-off only for υ ≪ Λ2 and thus G very close

to Gc; this implies a fine tuning of the coupling constant.
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Moreover, at υ fixed, the fermion mass decreases in the large cut-off limit

as

m2
ψ ∼ 8π2υ

ln(Λ/
√
v)
,

a result reminiscent of the GNY model.

Finally, from the large N action one can derive the inverse H-propagator

at leading order by differentiating the action twice with respect to H(x).

Using the gap equation, one finds in the massive phase

∆−1
H (p) =

4N

2(2π)4
(

p2 + 4H2
)

∫ Λ d4q

(q2 +H2) [(p+ q)2 +H2]
. (11.51)

The propagator vanishes for p2 = −4H2, which corresponds to the ψ̄ψ

threshold, showing that the GNmodel generates a scalar bound state, which,

in this limit, has a mass mH = 2mψ, result consistent with the large N limit

of equation (11.45) and of equation (11.37) in the GNY model.
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A systematic comparison between the GN and the GNY models then shows

that, in the large N limit, the two models differ only by their parametriza-

tion. This observation generalizes to all orders in 1/N for large cut-off.

Within the large N expansion, the GN and GNY models are equivalent.

11.13.5 A few concluding remarks

The study of the GN model leads to a few remarks. First, even when one

probes only a region of small momenta and small masses compared to the

cut-off, one encounters a value Gc of the dimensionless coupling G (which

is not universal but does not scale with the ratio between microscopic and

physical scale) at which the concept of perturbative effective field theory

looses it relevance. Near and above Gc, physics becomes non-perturbative.

At leading order, for N large, the RG β-function can be calculated and

one finds

β(G) = 2G− 2G2/Gc +O (1/N) .
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Near Gc a non-trivial large momentum scale (but small compared with

the cut-off) called crossover scale, is generated, which allows to define a

renormalized field theory consistent for all scales for dimensions 2 ≤ d < 4.

Above Gc, chiral symmetry is spontaneously broken, a fermion mass is

generated and a scalar bound state appears. However, the fine-tuning prob-

lem that is typical of theories with scalar particles is not solved because

masses remain small with respect to the cut-off only for G−Gc ≪ 1.

Finally, the analysis of the large N expansion to all orders strongly indi-

cates that the GN and GNY models are equivalent.
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APPENDIX A11

EUCLIDEAN DIRAC FERMIONS, SPIN GROUP AND γ MATRICES

The appendix is somewhat mathematical. The convention of summation

over repeated indices are used, except when stated explicitly otherwise.

We describe the formalism of euclidean fermions, analytic continuation to

imaginary time of relativistic fermions with spin. In this continuation, the

relativistic pseudo-orthogonal group SO(1, 3) transforms into the orthogo-

nal group SO(4) (rotations in four dimensions). Correspondingly, euclidean

fermions transform under the spin group Spin(4) ≡ SU(2)× SU(2), which

is locally isomorphic to the group SO(4).

We first define an abstract Clifford algebra, show that it is invariant under

SO(4) transformations, and use it to construct the spin group Spin(4).



We then exhibit a realization of the Clifford algebra in terms of hermitian

matrices, Dirac γ matrices in a specific basis. A unitary representation of

the euclidean spin group follows.

Finally, we evaluate traces of products of γ-matrices, quantities that are

relevant to perturbative calculations, and define the Fierz transformation.

A11.1 Orthogonal and spin groups

In this section, we define a Clifford algebra and exhibit its relation with the

O(4) orthogonal group. We then construct the corresponding spin group.

A11.1.1 Clifford algebra

Let γµ, 1 ≤ µ ≤ 4, be the generators of an associative algebra on R, satis-

fying the commutation relations

γµγν + γνγµ = 2 δµν1 , (A11.1)

where 1 is the unit element.
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They generate an algebra called Clifford algebra C(4) isomorphic to the

algebra generated by the operators (θi + ∂/∂θi), in the notation of section

10.2.1, acting on Grassmann algebras.

It follows from the relations (A11.1) that the elements of C(4) form a real

vector space of dimension 16, spanned by 1 and the products γµ1
γµ2

. . . γµp
,

with µ1 < µ2 < · · · < µp.

Automorphism: the element γ5. In C(4), the product of all generators

γ5 = γ1γ2γ3γ4 =
1

4!

∑

µ,ν,ρ,σ

ǫµνρσγµγνγργσ , (A11.2)

where ǫµνρσ is the totally antisymmetric tensor with ǫ1234 = 1, anti-commutes

with all generators. One verifies,

γ25 = 1 . (A11.3)

It allows defining an automorphism P in C(4) by
P(γµ) ≡ γ5γµγ5 = −γµ . (A11.4)
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It splits C(4) into two vector spaces, C−(4) and C+(4), containing odd and

even elements, respectively,

P(C±) = ±C± ,

where only C+(4) is a sub-algebra.

Finally the relations (A11.1), (A11.3) and (A11.4) can be summarized by

γiγj + γjγi = 2 δij , for 1 ≤ i, j ≤ 5 . (A11.5)

We will use Greek letters µ, ν... to indicate that we exclude the value 5 for

the index.

Centre of the algebra. One verifies that the centre of the algebra, that

is, the set of elements which commute with all C(4), reduces to r1, r ∈ R

(multiples of the unit).
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A11.1.2 Clifford algebra and orthogonal group

We consider linear transformations acting on the generators γ 7→ γ′,

γ′µ =
∑

ν

Rµνγν , detR 6= 0 , (A11.6)

where R of elements Rµν is a real matrix, which preserve the relations

(A11.1). Then,

γ′µγ
′
ν + γ′νγ

′
µ =

∑

ρ,σ

RµρRνσ (γργσ + γσγρ) = 2
∑

ρ

RµρRνρ1 = 2δµν1 .

Therefore, the matrix R is orthogonal since

∑

ρ

RµρRνρ = δµν .

The relations (A11.1) are invariant under the orthogonal group O(4) (rota-

tions-reflections in four-dimensional euclidean space).
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The element γ5. An orthogonal transformation of matrix R acting on the

generators transforms γ5 into γ5 detR = ±γ5. Thus, γ5 is invariant under

the subgroup SO(4) (rotations) for which detR = 1 and changes sign under

reflections for which detR = 1.

Remark. If in the right hand side of equation (A11.1) the tensor δµν is

replaced by another metric tensor gµν , the symmetry group becomes the

group that leaves the metric gµν invariant. In the case of the diagonal

metric +1,−1,−1,−1 one obtains the relativistic group O(1, 3).

A11.1.3 Clifford algebra and spin group

We consider the set of invertible elements Λ of C(4) that satisfy

Λ−1γµΛ =
∑

ν

Rµν(Λ)γν , (A11.7)

where the elements Rµν of the matrix R are real. The elements Λ form a

group that we denote by G(4) (the unit and the inverse belong to the set).
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The relation (A11.7) induces a homomorphism of groups. Indeed, if

Λ1 7→ R1 , Λ2 7→ R2 ,

to the product Λ1Λ2 corresponds the product of real matrices R1R2.

The relation (A11.7) implies

Λ−1γµΛΛ
−1γρΛ = Λ−1γµγρΛ =

∑

ν,σ

RµνRρσγνγσ .

Adding the symmetric relation µ ↔ ρ, and using the relations (A11.1), we

obtain
∑

ν

RµνRρν = δµρ .

Therefore, the real matrices R form a group, subgroup of the orthogonal

group O(4) (rotations–reflections) and the transformations (A11.7) realize

a subgroup of the transformations (A11.6).
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Remarks.

(i) If Λ corresponds to R and λ 6= 0 a non-vanishing real number, then

λΛ corresponds the same matrix R.

(ii) If Λ belongs to the group G(4) and is associated with the matrix R,

then a short calculation shows that

Λ−1γ5Λ = detR γ5 ⇔ γ5Λ = detRΛγ5 . (A11.8)

From this commutation relation, we conclude:

Even elements of G(4) are associated to orthogonal matrices with deter-

minant 1, that is, belonging to the subgroup SO(4) (rotations) of O(4).

By contrast, odd elements are associated with orthogonal matrices with

determinant −1.

(iii) For example, the generators γρ are invertible and they satisfy the

relation (A11.7) with matrices Rρ with elements

Rρµν = 2δρµδρν − δµν . (A11.9)
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Thus, they belong to the group G(4). One verifies that indeed Rρ is an

orthogonal matrix with determinant −1.

(vi) The element γ5 also belongs to the group G(4) and corresponds to

the rotation matrix −1, an element of SO(4) since

(γ5)
−1γµ γ5 = −γµ . (A11.10)

Finally, since γµ is associated with the orthogonal matrix (A11.9), the prod-

uct

Πµ = γ5γµ , (A11.11)

corresponds to a reflection Pµ along the µ axis, xµ 7→ −xµ (as defined by

(11.21)). Note that

P 2
µ = 1 but (Πµ)

2 = −1 .
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A11.1.4 Spin group and Lie algebra

We now show by explicit construction that to a subgroup of G(4), the spin

group Spin(4), obtained by dividingG(4) by the Abelian factor, is associated

to the whole group SO(4).

One can define a topology in the Clifford algebra since it has the form of

a finite-dimensional vector space. With such a topology the groups G(4) or

Spin(4) are Lie groups and we can discuss their Lie algebras.

We consider the elements

σ̃µν = 1
2 [γµ, γν ]. (A11.12)

Only six elements σ̃µν are linearly independent; a basis is, for example, σ̃µν

with µ < ν. Using the relations (A11.1), one verifies that for µ 6= ν (no

summation over µ, ν being implied)

σ̃2
µν = (γµγν)

2 = −1 .
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To σ̃µν (µ 6= ν) we associate the elements

Λ(θ) = exp[− 1
2θσ̃µν ] , θ ∈ R (A11.13)

= cos(θ/2)1− sin(θ/2) σ̃µν .

The elements Λ(θ) for a given matrix σ̃µν generate a group isomorphic to

the Abelian groups U(1) or SO(2) and correspond to rotations of angle θ/2.

A straightforward calculation leads to

Λ−1(θ)γρΛ(θ) =







γρ for ρ 6= µ and ρ 6= ν,
cos θγµ − sin θγν for ρ = µ,
cos θγν + sin θγµ for ρ = ν.

Therefore, Λ(θ) is an element of G(4) and the corresponding orthogonal

matrix R represents a rotation of angle θ leaving the space orthogonal to

the (µ, ν) plane invariant.

The whole group SO(4) can be generated by a product of such rotations.
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Lie algebras and groups. The generators of the Lie algebra of the group

SO(4) in the defining representation are 4× 4 antisymmetric matrices Tρσ

with elements

(Tρσ)αβ = δραδσβ − δρβδσα ,

where only six are independent. If θρσ is an arbitrary antisymmetric matrix,

with this normalization

1
2

∑

ρ,σ

(Tρσ)αβ θρσ = θαβ .

A general element R of SO(4) can thus be written as

R = eθ = exp

[

1
2

∑

ρ,σ

Tρσθρσ

]

. (A11.14)

Spin group. It follows from the homomorphism between groups that the

matrices σ̃µν/2 satisfy the commutation relations of the generators Tµν of

the Lie algebra of the group SO(4).
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Exponentiating one finds a general representation of the elements of the

spin group Spin(4), subgroup of the group G(4),

Λ = exp

[

1
4

∑

µ,ν

θµνσ̃µν

]

. (A11.15)

The centre of the spin group contains only one non-trivial element, −1,

which corresponds in (A11.13) to θ = 2π. Therefore, the spin group Spin(4)

and SO(4) are not isomorphic since the two elements ±Λ of the spin group

correspond to the same rotation matrix.

Finally, as we have shown above, the addition of one reflection Πµ = γ5γµ,

an odd element of the group G(4), allows generating the whole O(4) group.

Therefore, the group of transformations (A11.7) contains as subgroup the

whole group of transformations (A11.6).
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A11.2 The γ matrices: a hermitian representation

We now construct an explicit representation of the Clifford algebra C(4)
generated by hermitian (and thus unitary) matrices of minimal size. We

use for the matrices representing the generators the same notation γµ, 1 ≤
µ ≤ 4.

Since the dimension of C(4) is 16, the Clifford algebra cannot be repre-

sented by matrices of dimension smaller than 4. We now give an inductive

construction (2 7→ 4) of hermitian matrices γµ satisfying the defining rela-

tions (A11.1), which can be generalized to all even dimensions.

A11.2.1 The dimension two

For d = 2, the standard Pauli matrices play the role of γ matrices and

realize the algebra C(2):

σ1 =

(

0 1
1 0

)

, σ2 =

(

0 −i
i 0

)

. (A11.16)
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The third Pauli matrix σ3 plays the role of the matrix γ5 (equation (A11.2)):

σ3 = iσ1σ2 =

(

1 0
0 −1

)

. (A11.17)

The three matrices are hermitian. The matrices σ1 and σ3 are symmetric,

and σ2 is antisymmetric.

A11.2.2 Dimension four

We now consider the matrices

γi = σ1 ⊗ σi =

(

0 σi
σi 0

)

, 1 ≤ i ≤ 3 ,

γ4 = σ2 ⊗ 12 =

(

0 −i12

i12 0

)

,

in which 12 is the unit matrix in two dimensions.
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The matrices γi are tensor products involving the matrices σi and 12. A

straightforward calculation shows that if the matrices σi satisfy relations

(A11.1), the matrices γi, i = 1, . . . , 4, satisfy the same relations.

Since γ5 = γ1γ2γ3γ4, one finds

γ5 = σ3 ⊗ 12 =

(

12 0
0 −12

)

.

By inspection, we see that the γ matrices are all hermitian. In addition

γTi =

(

0 σTi
σTi 0

)

, 1 ≤ i ≤ 3 .

Therefore, if σi is symmetric or antisymmetric, γi has the same property.

The matrix γ4 is antisymmetric, and γ5 is symmetric. It follows immediately

that, in this representation, all γ matrices with odd index are symmetric,

all matrices with even index are antisymmetric:

γTi = (−1)i+1γi , 1 ≤ i ≤ 5 .
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A11.2.3 Spin group: a unitary representation

When the generators of the Clifford algebra are represented by hermitian

matrices, the generators σ̃µν of the spin group are represented by anti-

hermitian, traceless, matrices (for which we use below the same notation).

The complex vectors on which the representation acts are called spinors.

Instead of the anti-hermitian matrices σ̃µν , one often uses the hermitian

matrices

σµν =
1

i
σ̃µν =

1

2i
[γµ, γν ] . (A11.18)

Then for µ 6= ν the matrices σµν have the property

σ2
µν = 1 .

The matrices belonging to the representation of the spin group Spin(4) can

be written as

Λ = exp

(

i
4

∑

µ,ν

σµνθµν

)

, (A11.19)
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where θµν is a real antisymmetric matrix. Since Λ is the exponential of an

anti-hermitian traceless matrix, it is a unitary matrix of determinant one:

the representation of the spin group Spin(4) is a unitary group, subgroup

of the unitary group SU(4).

The relation (A11.7) can be written as

ΛγµΛ
† =

∑

ν

γνRνµ . (A11.20)

Introducing a space vector pµ, we can write the equation in an equivalent

form:

Λ
∑

µ

pµγµΛ
† =

∑

µ

(pR)µγµ with (pR)µ =
∑

ν

Rµνpν .

In this form the equation shows explicitly that the group SO(4) is isomor-

phic to the adjoint representation of the spin group Spin(4).
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As we have seen, the spin group and SO(4) have the same Lie algebra but

are not isomorphic because ±Λ correspond to the same rotation matrix.

The matrix Rµν can be calculated explicitly from equation (A11.20) in

terms of Λ by taking a trace:

Rµν = tr
(

Λ†γµΛγν
)

/ tr1 . (A11.21)

Spin groups in dimensions two to four. For d = 2, the spin group is

isomorphic to a group SO(2), but as we have seen, a rotation of angle

θ/2 in the spin group corresponds to a rotation of angle θ in the adjoint

representation which is also isomorphic to SO(2), a peculiarity of Abelian

groups.

For d = 3, the spin group is SU(2) and is associated to the group SO(3).

For d = 4, the spin group SU(2)× SU(2) and is associated withSO(4).
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A11.2.4 Reflections and chiral components

Reducibility. In four dimensions, since the elements of the spin group are

even elements of the Clifford algebra, γ5 commutes with the whole spin

group:

[Λ, γ5] = 0 .

Therefore, the unitary representation of Spin(4) is reducible. The repre-

sentation is reduced by projecting spinors ψ onto the two eigenspaces of

γ5 using the projectors (1± γ5)/2. This defines two spinors ψ±, the chiral

components of the spinor ψ:

ψ± = 1
2 (1± γ5)ψ . (A11.22)
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Space reflections and chiral components. To generate the full orthogonal

group we have still to represent reflections. The elements ±Πµ, (Πµ = γ5γµ,

see equation (A11.11)) correspond to reflections Pµ (equation (11.21)) that

act on a position vector x by changing the sign of the µ component. The

anti-commutation relation,

γ5Πµ = −γ5Πµ ,

implies

Πµ
1
2 (1 + γ5) = 1

2 (1− γ5) Πµ.

A reflection exchanges chiral components. The representation of the spin

group associated with the group O(4) is thus irreducible.
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A11.2.5 Charge conjugation

We exhibit unitary matrices C such that

C† γTµ C = −γµ ⇔ C γµC
† = −γTµ . (A11.23)

Since the matrices γµ are hermitian γTµ = γ∗µ.

In the representation of section A11.2, we can take

C = ±γ1γ3 ⇒ C†C = 1 .

(In two dimensions, σ2 corresponds to charge conjugation.)

The unitary matrix

C̃ = Cγ5 , (A11.24)

then satisfies

C̃† γTµ C̃ = γ̂†C† γTµ Cγ̂ = −γ̂†γµγ̂
= γµ . (A11.25)
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The matrix γ5 is symmetric. Under C or C̃, it transforms like

C†γT5 C = γ5 .

Spin group: conjugate representation. We now apply the transformation

(A11.23) to an element Λ of the unitary representation of the spin group,

using the form (A11.19),

C exp

(

1
8

∑

µ,ν

θµν [γµ, γν ]

)

C† = exp

(

1
8

∑

µ,ν

θµν [γ
∗
µ, γ

∗
ν ]

)

,

and thus

Λ∗ = CΛC†.

This identity shows that the unitary representation and the representation

obtained by complex conjugation are equivalent. The same property holds

for the matrix C̃.
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Finally,

Cγ5C
† = γ∗5 ,

and this extends the property to reflections.

For reasons which will become clear later we call these transformations

charge conjugation.

Charge conjugation and chiral components. The transformation proper-

ties of γ5 imply

C†(1 + γT5 )C = (1 + γ5).

In dimension four, C respects chirality. Charge conjugation multiplied by a

reflection like CΠµ has the opposite property.

A11.2.6 Summary

With the conventions of section A11.2, the 4× 4 γ-matrices take the form

γi=1,2,3 =

(

0 σi
σi 0

)

, γ4 =

(

0 −i12

i12 0

)

, γ5 =

(

12 0
0 −12

)

.
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The matrices σµν then become

σij = ǫijk

(

σk 0
0 σk

)

for i, j, k ≤ 3 , σi4 =

(

σi 0
0 −σi

)

for i ≤ 3 .

We recognize in the matrices

σ±
i = 1

4

∑

j,k

ǫijkσjk ± 1
2σi4 ,

the generators of the group SU(2) × SU(2). The projectors 1
2 (1 ± γ5) de-

compose a Dirac spinor into the sum of two vectors transforming as the

(1/2, 0) and (0, 1/2) representations of the group (Weyl spinors). A reflec-

tion exchanges the two vectors (as expected since the representation then is

no longer reducible). In terms of Weyl spinors the construction of invariants

with respect to the spinor group reduces to considerations about SU(2).
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A useful remark in this context, is that the representation and its complex

conjugate are equivalent since

U∗ = σ2Uσ2 ∀ U ∈ SU(2)

(see also section A11.2.5) and thus if ϕ and χ are two SU(2) spinors the

combination
∑

α,β

ϕα (σ2)αβ χβ = −i
∑

α,β

ǫαβϕαχβ ,

where ǫαβ is the antisymmetric tensor (ǫ12 = 1), is an SU(2) invariant.

We recall that for charge conjugation we can take C = γ1γ3 = 12 ⊗ σ2.

A11.2.7 Traces of products of γ matrices

Perturbative calculations involving relativistic fermions often require the

calculation of traces of products of γ matrices, which we, therefore, explain
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in detail. It is possible to calculate traces within an explicit matrix repre-

sentation, but here we define the trace as a linear mapping of the Clifford

algebra (A11.1) to real or complex numbers that satisfies the cyclic condi-

tion. We normalize the trace by the value of the trace of the unit matrix,

the only quantity that depends explicitly on the representation. We thus

set tr1 = 4.

The trace of any element of C(4) is a linear combination of traces of

products of generators. Then, to evaluate the traces, one needs only the

cyclic property and the relations (A11.5).

One finds that the only non-vanishing traces contains as factors only even

powers of each generator.
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Traces of odd elements.Therefore, all products of an odd number of gener-

ators vanish. For example,

tr γµ = 0 , tr[γµγνγρ] = 0 , . . . .

Also from the definition of γ5, we conclude

tr γ5γµ = 0 , tr γ5γµγνγρ = 0 , . . . .

The direct proof is simple. Denoting by ΓA such a product, we obtain the

chain of identities

tr ΓA = trΓAγ5γ5 = tr γ5ΓAγ5 = − tr ΓA .

Product of even numbers of generators γµ. First, taking the trace of the

defining relation (A11.1), we obtain

tr γµγν = 4 δµν .
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To calculate the trace of the product of an even number 2n of genera-

tors, tr γµ1 . . . γµ2n , we successively commute γµ2n through all other factors

γµ1
, . . . , γµ2n−1

, using the commutation relations (A11.1). We then generate

a linear combination of traces of the products of (2n − 2) generators. At

each commutation the sign changes. After all commutations, as a conse-

quence of the cyclic property of the trace, we recover the opposite of the

initial expression. As a consequence, we find

tr γµ1
. . . γµ2n

= δµ1µ2n
tr
(

γµ2
. . . γµ2n−1

)

− δµ2µ2n

× tr
(

γµ1γµ3 . . . γµ2n−1

)

+ · · ·+ δµ2n−1µ2n tr
(

γµ1 . . . γµ2n−2

)

.

Therefore,we prove by induction a kind of Wick’s theorem for the trace of

a product of an even number of generators γµ:

tr γµ1 . . . γµ2n = 4
∑

all possible pairings
of (1,2,...,2n)

sgn(P )δµP1µP2
. . . δµP2n−1

µP2n
,
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in which sgn(P ) is the signature of the permutation P when P2m−1 < P2m

for 1 ≤ m ≤ n.

The element γ5. Of special interest are the traces of products of the form

tr γ5γµ1 . . . γµ2n . From Wick’s theorem, it follows immediately that

tr γ5γµγν = 0 .

Then, in terms of the completely antisymmetric tensor ǫµ1...µ4
normalized

by ǫ1234 = 1, one obtains

tr γ5γµ1 . . . γµ4 = 4 ǫµ1...µ4 . (A11.26)

We shall see later that relation (A11.26), which is specific to dimension

four, has deep consequences. In particular, dimensional regularization does

not preserve this relation and this is the source of possible anomalies (i.e,

obstacles to a quantization preserving symmetries) in field theories that are

chiral invariant in the classical approximation.
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A11.3 The Fierz transformation

Within the algebra of γ matrices it is possible to define a basis of 16 her-

mitian matrices orthogonal by the trace. We denote these matrices by ΓA.

Then,

tr ΓAΓB = 4δAB .

Any fermion two-point correlation function can then be expanded on such

a basis. A four-point fermion correlation function can be expanded on a

basis formed by the tensor products of these matrices.

However, in this case one has to first separate the four fermion fields

into two pairs of fields and there are three ways of doing it. A connection

between these different bases can be found through a Fierz transformation.

We first express that any 4×4 matrix X can be expanded on the Γ basis:

Xab =
1
4

∑

A

tr
(

XΓA
)

ΓAab . (A11.27)

899



We choose a matrix X of the form

Xab = ΓBcbΓ
C
ad .

Identity (A11.27) becomes

ΓBcbΓ
C
ad =

1
4

∑

A

(

ΓBΓAΓC
)

cdΓ
A
ab.

An expansion of the product ΓBΓAΓC on the basis of Γ matrices, yields a

decomposition of any element of one basis onto another:

ΓBΓAΓC = 4
∑

D

MBC
ADΓD ⇒ ΓBcbΓ

C
ad =

∑

A,D

MBC
ADΓDcdΓ

A
ab.

Examples

For d = 4 a basis is

1, γµ, γ5, iγ5γµ, σµν .
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We leave as an exercise to verify that the subset

1⊗ 1, γµ ⊗ γµ, γ5 ⊗ γ5, iγ5γµ ⊗ iγ5γµ, σµν ⊗ σµν

transforms into itself with a matrix M4 of square 1:

M4 =
1

4











1 1 1 1 1
4 −2 −4 2 0
1 −1 1 −1 1
4 2 −4 −2 0
6 0 6 0 −2











.
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Exercises

Recall that in these lectures we use a Euclidean (or imaginary time) nota-

tion, in particular for fermions, 6∂ = γµ∂µ, (1 is the unit element)

γµγν + γνγµ = 2 δµν1 ,

γ5 = γ1γ2γ3γ4 ⇒ γ25 = 1 .

The modified minimal subtraction scheme (MS). In the calculation of low

order Feynman diagrams, a factor

Nd =
area of the sphere Sd−1

(2π)d
=

2

(4π)d/2Γ(d/2)
, (A11.28)

L being the number of loops of the diagram, is generated naturally. To avoid

expanding Nd in ε = 4 − d, it is convenient to rescale the loop expansion

parameter to suppress this factor, for instance, by multiplying each Feynman

diagram by a factor (N4/Nd)
L, where L is the number of loops.
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Exercise 11.1

Calculation of RG β-functions of the GNY model. Determine the RG func-

tions of the GNY model, in particular, verifying the expressions for the

two β-functions, using dimensional regularization and working in the MS

scheme. This involves a determination of the divergent part at one-loop of

various two, three and four point functions.

We give below some elements of the calculation of the divergent parts.

The boson diagrams: one-loop divergences

Fig. 11.1 displays the two one-loop divergent diagrams generated by the

H4 interaction.

In the massless theory, the contribution to the H two-point function,

Ω0 =
1

(2π)d

∫

ddq

q2
,

vanishes in dimensional regularization.
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The second diagram contributes to the H four-point function. In the

massless limit,

Bd(p) =
1

(2π)d

∫

ddq

q2(p− q)2

= − π

sin(πd/2)

Γ2(d/2)

Γ(d− 1)
Nd p

4−d ≡ Nd b(d)p
−ε (A11.29)

with

b(d) = − π

sin(πd/2)

Γ2(d/2)

Γ(d− 1)
=

1

ε

(

1 + 1
2ε+O

(

ε2
))

.

Then,

〈H1H2H3H4〉1PI|g=0 = λ− 1
2λ

2 [Bd(p12) +Bd(p13) +Bd(p14)] +O(λ3),

where Hi ≡ H(pi) and pij ≡ pi + pj . Expanding for ε → 0, one finds the

divergent contribution

〈H1H2H3H4〉1PI,div.

∣

∣

∣

g=0
= −3Nd

2ε
λ2. (A11.30)
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Diagrams involving fermion propagators: One-loop divergences

We evaluate below only the one-loop divergent parts of the additional

diagrams involving fermion propagators.

Boson two-point function.The diagram of figure 11.2 has a factor Ng2, the

sign coming from the Legendre transformation cancelling the sign coming

from the fermion loop. It is then multiplied by

1

(2π)d

∫

ddq
tr i6qi (6q + 6p)
q2(p+ q)2

= 2p2Bd(p) = Nd
2

ε

(

1 + 1
2ε+O

(

ε2
))

p2−ε,

(A11.31)

where we have used the identity

2(q2 + p · q) = (p+ q)2 + q2 − p2.

The contributions of the two first terms then vanishes in dimensional regu-

larization. Therefore, the divergent part is

〈HH〉1PI,1 loop, div. = Nd
2N

ε
g2.
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Fermion two-point function. Taking into account the sign coming from

the Legendre transformation, the diagram of figure 11.3 has a factor −g2.
Moreover, the diagram is proportional to 6p:

1

(2π)d

∫

ddq

(p− q)2
i6q
q2

= i6pX(p)

and thus multiplying both sides with 6p and taking the trace, one infers

1

(2π)d

∫

ddq

(p− q)2
i6q
q2

=
i6p
p2

1

(2π)d

∫

ddq p · q
(p− q)2q2

= 1
2 i6pBd(p) , (A11.32)

where the identity 2p · q = p2 + q2 − (p− q)2 has been used. The divergent

part is
〈

ψ̄ψ
〉

1PI,1 loop, div.
= −g2Nd

i6p
2ε
.
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The 〈ψ̄ψH〉 vertex function. Figure 11.4 displays the remaining two Feyn-

man diagrams. The diagram on the left has a factor −g2 multiplied by

1

(2π)d

∫

ddq

(p1 − q)2
i6qi (6q − 6p1 − 6p2)
q2(q − p1 − p2)2

.

Evaluated at p1 = −p2 = p (zero boson momentum), the diagram reduces

to

1

(2π)d

∫

ddq(i6q)2
q4(p− q)2

= −Bd(p) = −Nd
ε

(

1 + 1
2ε+O

(

ε2
))

p−ε. (A11.33)

Its divergent part is

〈

ψ̄ψH
〉

1PI,1 loop, div.
= g3

Nd
ε
.

The 〈HHHH〉 vertex function. The diagram in the right of figure 11.4

has a factor Ng4, the sign of the Legendre transformation cancelling the
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sign of the fermion loop. It is multiplied by

SQ(p1, p2, p3, p4) =
1

(2π)d

∫

ddq
tr [i6qi (6q + 6p1) i (6q + 6p1 + 6p2) i (6q − 6p4)]
q2(q + p1)2(q + p1 + p2)2(q − p4)2

to which five diagrams corresponding to permutations of {p2, p3, p4} have

to be added.

Evaluating the diagram for vanishing opposite momenta, for instance for

p2 = p4 = 0, p1 = −p3 = p, one simply finds the contribution

SQ(p, 0,−p, 0) = 1

(2π)d
tr

∫

ddq

(

i6q
q2

)2(
i(6q + 6p)
(p+ q)2

)2

= 4Bd(p) =
4Nd
ε

(

1 + 1
2ε+O

(

ε2
))

p−ε. (A11.34)
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The total one-loop divergence coming from the six diagrams, to which

the contribution (A11.30) has to be added, is then

〈HHHH〉1PI,1 loop, div. =
(

− 3
2λ

2 + 24Ng4
) Nd
ε
.

Exercise 11.2

RG equations. Determine the RG flow for the GNY model explicitly by

solving the RG equations at one-loop order and discuss the solution. It will

be convenient to parametrize the scale parameter as et.
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