
Lecture 12: SYMMETRIES AND SYMMETRY BREAKING



Up to now, we have discussed quantum field theory mainly from the point

of view of general algebraic properties, power counting, renormalization

and renormalization group though, occasionally, we have made references

to some symmetry properties.

In this chapter, we discuss the physical and algebraic consequences of

some symmetries of action, in particular for what concerns renormalization.

We deal only with global linear continuous symmetries corresponding to

compact Lie groups because they imply interesting formal properties; con-

sequences of discrete symmetries can also be studied but with somewhat

different methods. Also, we deal below only with infinitesimal group trans-

formations and, therefore, topological properties of groups will play no role.

We consider explicitly dimension four, though most of the algebraic dis-

cussion can generalized to generic dimensions, except fermion chiral sym-

metry, which is special to even dimensions.



Renormalization and symmetries. When the action in the tree approxima-

tion has some symmetry properties, it can be expected that the renormalized

action will not have the most general form allowed by pure power counting

arguments but will, instead, keep some trace of the initial symmetry. Tech-

nically, this means that, as a consequence of the symmetry, the divergences

generated in perturbation theory are not of generic form and, therefore, the

renormalization constants are not all independent.

The analysis of this problem is based on the following strategy:

(i) We first introduce a regularization that preserves the symmetry.

(ii) We then prove identities, generally called Ward–Takahashi (WT)

identities (for historical reasons), consequences of the symmetry of the ac-

tion and satisfied by the generating functional of vertex functions.



(iii) These identities imply relations between the divergences of correla-

tion functions and thus between the counter-terms that render the theory

finite. From these relations we derive the generic form of counter-terms.

Such an analysis is based on a perturbative loop expansion.

(iv) Finally, we read off the properties of the renormalized action.

More generally, some non-trivial relations survive when soft symmetry

breaking terms are added to the action. We specifically consider the ex-

amples of linear symmetry breaking and the important limiting case of

spontaneous symmetry breaking.

Finally, in section 12.5 we apply the formalism to the physical example

of chiral symmetry breaking in low-energy effective models of hadrons.



12.1 Algebraic preliminaries

Before beginning the discussion, we describe our notation and conventions

for group and Lie algebras. Quite generally, we use boldface for vectors or

matrices when we want to emphasize the vector or matrix character without

listing arguments, for example, φ represents the vector of components φi.

12.1.1 Conventions and notation

We consider continuous symmetries corresponding to various Lie groups and

algebras. In this context, we adopt the following set of conventions except

if explicitly stated otherwise: for continuous symmetries we only consider

compact Lie groups. Fields φ, from the group point of view, will be N -

component vectors transforming linearly under an orthogonal or unitary

representation R(G) of a Lie group G. Since unitary representations can

always be rewritten as orthogonal representations, in the general discussion

we consider only orthogonal representations.
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The vector φ then transforms like

φ′i =
∑

j

Rij(g)φj , g ∈ G , RRT = 1 . (12.1)

To the group corresponds a Lie algebra L(G) whose generators can be rep-

resented by N × N real antisymmetric matrices tα. The trace of two an-

tisymmetric matrices defines a scalar product. We can use it to normalize

the matrices by

tr tαtβ = −Nδαβ . (12.2)

With this convention the structure constants fαβγ of the Lie algebra defined

by

[tα, tβ ] =
∑

γ

fαβγt
γ , (12.3)

are completely antisymmetric in the three indices.
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The basis of the Lie algebra is fixed up to an orthogonal transformation. In

the special case of unitary groups, we also sometimes represent the genera-

tors by hermitian or anti-hermitian matrices (this is a matter of convenience)

and then normalize them by (in the hermitian case),

tr tαtβ = Nδαβ .

As a consequence, as in the orthogonal case, the structure constants defined

by

[tα, tβ ] = i
∑

γ

fαβγt
γ

and, thus,

fαβγ =
2

N
Im tr

(

tαtβtγ
)

,

are also completely antisymmetric.
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To a group element close to the identity g = 1 +
∑

α ωαtα + O|ω|2 corre-

sponds a variation δφi = φ′i − φi of the vector φi of the form

δφi =
∑

α,j

tαijφjωα . (12.4)

12.1.2 Examples

For illustration purpose, describe two groups relevant to this lecture.

The SU(2) and SO(3) groups. To the group SU(2) of 2× 2 unitary ma-

trices with determinant 1 corresponds the Lie algebra generated by the

hermitian Pauli σ matrices, which satisfy (see also sections A11.1.4, A11.2)

trσiσj = 2δij , [σi, σj ] = 2i
∑

k

ǫijkσk ,

where ǫijk is the completely antisymmetric symbol with ǫ123 = 1.
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The adjoint representation of SU(2) is the group SO(3) of 3× 3 orthogonal

matrices of determinant 1 (rotations in three dimensions). Indeed,
∑

i,j

Rijxjσi = Λ(x · σ)Λ† with x ∈ R
3, Λ ∈ SU(2), R ∈ SO(3).

This implies the relation (see also equation (A11.21))

Rij =
1
2 tr[σiΛσjΛ

†].

A 2× 2 unitary matrix can be parametrized as

Λ = cos(θ/2) + i sin(θ/2)n · σ , n2 = 1 . (12.5)

Then,

Rij = cos θ δij + (1− cos θ)ninj − sin θ
∑

k

ǫijknk .

This explicit expression shows that indeed R belongs to SO(3) and proves

that SU(2) and SO(3) have the same Lie algebra. In the adjoint represen-

tation, the generators are antisymmetric real matrices.
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The groups SU(2) × SU(2) and SO(4). These groups, euclidean continua-

tions of relativistic groups, have already been discussed in appendix A11.

Since chiral symmetry plays a role in this lecture, we only recall here the

relation between the two groups.

A real four-vector x ≡ (x1, x2, x3, x4) can be represented by a 2×2 matrix,

which expressed in terms of Pauli matrices, has the form

M(x) = x41+ i

3
∑

i=1

xiσi ⇒ MM† = x21 .

The matrix M is thus proportional to a unitary matrix.

We consider now the linear action of the group SU(2) × SU(2), with

elements (U1,U2) ∈ SU(2), on the vector x defined by

M′(x) = U1M(x)U†
2.

The matrix M′(x) satisfies

M′(x)M′(x)† = U1M(x)M†(x)U†
1 = x21 .
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The four-dimensional real representation of the group SU(2)× SU(2) pre-

serves the length of vectors and thus is a subgroup of O(4), which we have

shown in appendix A11 is the group SO(4) of rotations in four dimensions.

12.1.3 Lie algebra and differential operators

A few algebraic remarks concerning the representation of the Lie algebra in

terms of differential operators are useful, in particular, for the discussion of

the renormalization of symmetries in complicated situations.

The variation of a differentiable function S(φ) under an infinitesimal

transformation (12.4) can be written as

δS(φ) =
∑

α,i,j

tαijφj
∂S
∂φi

ωα . (12.6)

We introduce the differential operators

Dα =
∑

i,j

tαijφj
∂

∂φi
.
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The variation (12.6) can then be rewritten in a compact form as

δS(φ) =
∑

α

ωαDαS .

In particular, an invariant function S(φ) satisfies

DαS = 0 . (12.7)

The differential operators Dα are generators of the Lie algebra of the group

G realized as differential operators acting on functions of φi. The expected

commutation relations

[Dα,Dβ ] =
∑

γ

fαβγDγ , (12.8)

can be verified by direct calculation, using the commutation relations (12.3)

of the generators tα.
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We shall mainly be concerned with situations in which φ is a field depending

on a space variable x, and S is the action, functional of φ. The operator Dα

then has the typical form

Dα =

∫

ddx
∑

i,j

tαijφj(x)
δ

δφi(x)
, (12.9)

but the analysis is the same.

12.2 Linear global symmetries

Definition. We call global symmetry a symmetry which corresponds to a

transformation of the fields whose parameters are space-independent. More

precisely, let φi(x) be a set of fields transforming linearly under an orthog-

onal representation R(G) of a compact Lie group G:

φi(x) 7→ φ′i(x) =
∑

j

Rij(g)φj(x). (12.10)
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The transformation (12.10) is global if the group element g does not depend

on the space variable x. Sometimes the expression rigid symmetry is also

used to avoid confusions with ‘global’ in the sense of global topological prop-

erties of the symmetry group. In what follows we explore the consequences

of invariance only under infinitesimal group transformations.

Infinitesimal group transformations. In the notation of section 12.1.1, we

write the variation δφ of φ under transformation (12.10) as

δφi(x) =
∑

j,α

tαijφj(x)ωα , (12.11)

in which ωα are the space-independent parameters of the transformation.

A classical action S(φ) invariant under such a transformation then satis-

fies

DαS(φ) ≡
∫

ddx
∑

i,j

tαijφj(x)
δS

δφi(x)
= 0 . (12.12)
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12.2.1 Regularization

In the case of linearly realized global symmetries, it is always possible to

find a regularization which preserves the symmetry of the action. For scalar

boson fields, one can use dimensional, lattice or momentum cut-off regular-

izations.

In the latter case, one modifies the propagator by adding to the tree action

S(φ) quadratic invariant terms involving higher order derivatives:

φ(x)·(−∇2
x+m

2)φ(x) 7→ φ(x)·(−∇2
x+m

2)

rmax
∏

r=1

(1−∇2
x/M

2
r )φ(x), (12.13)

in which the massesMr > 0 scale with the cut-off Λ. By choosing rmax large

enough, it is always possible to render the theory finite. The regularization

terms are obviously symmetric since they are invariant under arbitrary or-

thogonal transformations.
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In four dimensions, in the case of massless chiral fermions, if the transfor-

mation involves the matrix γ5, like

δψi(x) = γ5
∑

α,j

tαijψj(x)ωα ,

the substitution

ψ̄(x)6∂ψ(x) 7→ ψ̄(x)6∂
rmax
∏

r=1

(1−∇2
x/M

2
r )ψ(x),

preserves chiral symmetry.

12.2.2 WT identities: the example of scalar field theories

We consider the generating functional of correlation functions Z(J) corre-

sponding to the symmetric action S(φ) (equation(12.12)):

Z(J) =

∫

[dφ] exp

[

−S(φ) +
∫

dxJ(x) · φ(x)
]

. (12.14)
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To derive the consequences of equation (12.12) for Z(J), we perform an

infinitesimal change of variables of the form of a transformation (12.11),

setting

φi(x) = φ′i(x) +
∑

j,α

tαijφ
′
j(x)ωα , (12.15)

in the field integral (12.14). As a consequence of the symmetry as expressed

by equation (12.12), the action S(φ) and, therefore, the regularized action

SΛ(φ) are left invariant under the transformation (12.15).

The measure of integration [dφi] in the field integral (12.14) is the flat

euclidean measure, which is invariant under all orthogonal transformation.

The only variation comes from the non-symmetric source term. This im-

plies

0 = δZ(J) =

∫

[dφ′] δ [source term] exp

[

−S(φ′) +
∫

dx
∑

i

Ji(x)φ
′
i(x)

]

.
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The variation of the source term is

δ [source term] =

∫

dx
∑

i,j,α

Ji(x)t
α
ijφ

′
j(x)ωα .

This leads to the equation

0 =
∑

α

ωα

∫

[dφ]

∫

dx
∑

i,j

Ji(x)t
α
ijφj(x) exp

[

−S(φ) +
∫

dy J(y) · φ(y)
]

.

(12.16)

We have now renamed φ′i, φi since φ
′ is a dummy integration variable.

Equation (12.16), being valid for any set of parameters ωα, can be rewrit-

ten for each component α. Finally, we use the identity
∫

[dφ]φi(x) exp

[

−S(φ) +
∫

dy J(y) · φ(y)
]

=
δ

δJi(x)

∫

[dφ] exp

[

−S(φ) +
∫

dy J(y) · φ(y)
]

.
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It allows us rewriting equation (12.16) as an equation for the functional

Z(J):
∫

dx
∑

i,j

tαijJi(x)
δZ(J)

δJj(x)
≡ −DαZ(J) = 0 , (12.17)

with the definition (12.9) and using tαij = −tαji. Equation (12.17) immedi-

ately implies an identical equation for the generating functional W(J) =

lnZ(J) of connected correlation functions:

DαW(J) = 0 . (12.18)

Expanding equation (12.18) in a power series of the source J(x), one obtains

identities relating various connected correlation functions that characterize

the physical implications of the symmetry of the action.

Remark. More general identities satisfied by the generating functional

Z(J), like the quantum equation of motion, can also be obtained by per-

forming infinitesimal changes of variables in the field integral.
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Vertex functions. For renormalization purpose, it is necessary to also derive

an equation for the generating functional Γ(ϕ) of vertex functions, which is

given by the Legendre transformation

Γ(ϕ) +W(J) =

∫

dxJ(x) ·ϕ(x)

with

ϕi(x) =
δW
δJi(x)

.

Equation (12.18) expressed in terms of ϕ and Γ then becomes

DαΓ(ϕ) = 0 . (12.19)

The equation implies that the regularized functional Γ(ϕ) is invariant un-

der the transformation (12.11) and, thus, symmetric. Equation (12.19), ex-

panded in powers of ϕ, yields WT identities for vertex functions.
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12.2.3 Renormalization

We assume now that a field theory is renormalizable by power counting.

The issue then is to find out whether it can be renormalized in a way that

preserves the symmetry of the initial action.

To investigate this question, we perform a loop expansion,

Γ(ϕ) =

∞
∑

ℓ=0

Γℓ(ϕ)g
ℓ,

where the parameter g is a coupling constant playing the formal role of ~ and

introduced to organize the loop expansion. At leading order Γ0(ϕ) = S(ϕ),
where S(ϕ) is the regularized tree approximation to the renormalized action.

Since equation (12.19) is linear in Γ(ϕ) and independent of g, all function-

als Γℓ(ϕ) also satisfy equation (12.19). The regularized one-loop functional

Γ1(ϕ) thus satisfies

DαΓ1(ϕ) = 0 . (12.20)
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We then perform an asymptotic expansion of Γ1(ϕ) in terms of the regular-

izing parameter. For example, for the cut-off regularization, the divergent

contributions will involve powers and logarithms of the cut-off, in dimen-

sional regularization poles in the deviation from the initial dimension. Be-

cause equation (12.20) is valid for any value of the regularizing parameter,

it is valid for each term in the expansion and thus for the sum Γdiv.
1 (ϕ) of

the divergent contributions. Thus,

DαΓ
div.
1 (ϕ) = 0 . (12.21)

General renormalization theory tells us that Γdiv.
1 (ϕ) is a general local func-

tional of the fields restricted only by power counting; equation (12.21) tells

us in addition that it is symmetric. Adding −Γdiv.
1 (ϕ) (the one-loop counter-

term) to the action renders the theory one-loop finite (an example of mini-

mal subtraction).
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The one-loop renormalized action is still symmetric and, therefore, the mod-

ified two-loop functional Γ2(ϕ) still satisfies equation (12.19). After one-loop

renormalization Γ2(ϕ) has only local divergences. Γdiv.
2 (ϕ) again defined by

minimal subtraction satisfies equation (12.21) and all arguments can be

repeated. It is clear that the arguments can be generalized to all orders.

We conclude that the renormalized action Sr, sum of the initial action

and all counter-terms, is the most general local functional of the field φi
compatible with power counting and symmetry.

A reader familiar with perturbative calculations will realize that this is

a sophisticated derivation of a straightforward result. However, since the

same strategy, suitably adapted, allows discussing more general situations,

it has seemed useful to explain it first in a very simple example.

Finally, we have renormalized here the field theory using a minimal sub-

traction scheme. Additional finite renormalizations which are consistent

with the symmetry can still be performed.
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12.3 Linear symmetry breaking

For some applications (see for example section 12.5) it is useful to consider

the following situation: the action S(φ) is the sum of a G-symmetric part

Ssym.(φ), that is, invariant under the transformation (12.10), and a term

linear in the fields breaking the symmetry :

S(φ) = Ssym(φ)−
∫

c · φ(x)dx , (12.22)

in which c is a constant vector.

An example of such a situation is provided by the action

S(φ) =
∫

dx
[

1
2 (∇xφ(x))

2
+ 1

2uφ
2(x) + 1

4!g
(

φ2(x)
)2 − c · φ(x)

]

,

(12.23)

in which φ(x) is an N -component vector and g, u are constants. The action

S(φ) is the sum of a G ≡ O(N) invariant part and a linear symmetry

breaking term.
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An important role is played by the subgroup H of the group G that leaves

the vector c invariant (sometimes called the little group). Since the complete

action is then invariant underH, one already knows that the field theory can

be renormalized while preserving the H-symmetry. In the preceding O(N)

example, the remaining symmetry corresponds to the subgroup O(N − 1).

Loop expansion. The loop expansion corresponding to action (12.23) is

obtained by the following method: at leading order, one looks for a minimum

of the classical action, which corresponds to a constant field v0 satisfying

δS
δφi(x)

∣

∣

∣

∣

φ(x)=v0

=
δSsym.

δφi(x)

∣

∣

∣

∣

φ(x)=v0

− ci = 0

with the condition
δ2Ssym.

δφi(x)δφj(y)

∣

∣

∣

∣

φ(x)=v0

≥ 0 ,

in the kernel sense.
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In the example (12.23), v0 satisfies the equation

(

u+
g

6
v2
0

)

v0 = c . (12.24)

If the action has several minima, one is in general instructed to choose the

absolute minimum of the action, though this is irrelevant from the point

of view of formal perturbation theory. The quantity v0 is the expectation

value (vacuum expectation value in the particle physics framework) of the

field φ in the tree approximation.

One then translates the field φ 7→ χ, setting

φ(x) = v0 + χ(x).

After translation, the action no longer contains a linear term and the per-

turbative calculation proceeds in the standard manner.
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However, the example (12.23) shows that after translation the mass term

is no longer symmetric and a non-symmetric χ3 interaction has been gen-

erated. Correlation functions will no longer be symmetric and the form of

the UV divergences from the point of view of the symmetry is a priori

unknown. It is thus important to understand whether the structure of the

renormalized action reflects in some way the structure of the action (12.22).

The answer here follows from a simple argument. With obvious notation,

we have

Z(J) = Zsym.(J+ c)

and, thus,

W(J) = Wsym.(J+ c).

Equation (12.18) then implies

∫

dx
∑

i,j

[Ji(x) + ci] t
α
ij

δW(J)

δJj(x)
= 0 .
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Expanding in powers of Ji(x), one obtains a set of relations (WT identities)

between connected correlation functions which can be most conveniently

expressed in the momentum representation:

∑

i,j

cit
α
ijW̃

(n+1)
jk1...kn

(0, p1, . . . , pn)

+
n
∑

r=1

∑

j

tαkrjW̃
(n)
k1...kr−1jkr+1...kn

(p1, . . . , pn) = 0 . (12.25)

The 1PI functional Γ is given by the Legendre transformation

Γ(ϕ) +W(J) =

∫

dxJ(x) ·ϕ(x),

ϕi(x) =
δW
δJi(x)

=
δWsym.(J+ c)

δJi(x)
.

(12.26)
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In the symmetric situation these relations read instead

Γsym.(ξ) +Wsym.(J) =

∫

dxJ(x) · ξ(x),

ξi(x) =
δWsym.(J)

δJi(x)
·

(12.27)

Replacing J(x) by J(x) + c in the relations (12.27), one obtains

Γsym.(ϕ) +Wsym.(J+ c) =

∫

dx (J(x) + c) ·ϕ(x),

ϕi(x) =
δWsym.(J+ c)

δJi(x)

(12.28)

and, therefore, comparing (12.26) with (12.28),

Γ(ϕ) = Γsym.(ϕ)−
∫

dx c ·ϕ(x).
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This identity proves that the divergences of both functionals Γ(ϕ) and

Γsym.(ϕ) are identical. Therefore, if one replaces the regularized symmetric

action by the renormalized symmetric action, the theory becomes finite for

any vector c. This is casually expressed by stating that the linear breaking

term is not renormalized.

To generate vertex functions, one has to translate ϕ by the φ-field expec-

tation value setting

φ(x) = v + χ(x) (12.29)

with
δΓ

δϕi(x)

∣

∣

∣

∣

ϕ(x)=v

= 0 ⇔ δΓsym.

δϕi(x)

∣

∣

∣

∣

ϕ(x)=v

= ci , (12.30)

and δ2Γ(v)/δφiδφj ≥ 0.

Vertex functions are then the coefficients of the expansion of Γ(ϕ) in

powers of χ. In the tree approximation, one recovers v = v0.
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The WT identities satisfied by Γ(ϕ) can be inferred from the identity (12.19)

for Γsym.:
∫

dx
∑

i,j

tαij

[

δΓ

δϕi(x)
+ ci

]

ϕj(x) = 0 ,

which after the translation (12.29) becomes
∫

dx
∑

i,j

tαij

[

δΓ

δχi
(χ+ v) + ci

]

(χj + vj) = 0 . (12.31)

Application. We now show that this identity leads to some non-trivial

relations between the vertex functions. Setting χ = 0, we obtain
∑

i,j

tαijcivj = 0 , (12.32)

which implies that the breaking vector c and the expectation value v are left

invariant by the subgroup H of G. In the example of the SO(N) symmetry,

equation (12.32) implies that the vector v is proportional to the vector c.
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Differentiating once with respect to χk(y) and then setting χ = 0, we relate

the one- and two-point functions:
∫

dx
∑

i,j

vjt
α
ijΓ

(2)
ik (x− y) +

∑

i

tαikci = 0 (12.33)

with

Γ
(2)
ij (x− y) =

δ2Γ(χ+ v)

δχi(x)δχj(y)

∣

∣

∣

∣

χ=0

.

In terms of the Fourier transform Γ̃
(2)
ij (p) of the two-point function,

Γ
(2)
ij (x− y) =

∫

d4p

(2π)4
e−ip(x−y) Γ̃

(2)
ij (p),

equation (12.33) becomes

∑

i,j

vjt
α
jiΓ̃

(2)
ik (0) +

∑

i

tαkici = 0 . (12.34)
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This equation determines the geometrical structure of the zero momentum

propagator in the presence of the linear symmetry breaking term.

In the O(N) example, the identity (12.34) yields the value of the propa-

gator Γ̃
(2)
T of the components of the field orthogonal to the vector c, at zero

momentum:

Γ̃
(2)
T (0) = c/v .

Equation (12.34) is the last equation that involves c explicitly. The terms

of higher degree in χ are functions only of the expectation value v. By

identifying the coefficient of degree (n + 1) in χ, one obtains a relation

between the Fourier transform of the (n+1)-point function Γ̃(n+1) with one

momentum set to zero and the n-point function Γ̃(n):

∑

j,k

vjt
α
jkΓ̃

(n+1)
ki1...in

(0, p1, . . . , pn)+
n
∑

r=1

∑

i

tαirkΓ̃
(n)
i1...ir−1kir+1...in

(p1, . . . , pn) = 0 .

(12.35)
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For example, the equation for n = 2 reads

∑

i,j

vjt
α
jiΓ̃

(3)
ikl(0, p,−p) +

∑

i

(

tαliΓ̃
(2)
ik (p) + tαkiΓ̃

(2)
il (p)

)

= 0 .

If we choose to renormalize by fixing the value of the primitively divergent

correlation functions at some given point in momentum space, then the set

of WT identities implies relations between the different parameters. Apart

from the vector v, the non-symmetric theory depends on the same num-

ber of independent parameters as the symmetric theory. In the example of

the O(N) symmetric (φ2)2 field theory in four dimensions, it is possible to

impose one arbitrary renormalization condition on Γ̃
(4)
1111(pi) and two con-

ditions on Γ̃
(2)
11 (p). All others are given by the WT identities (12.35) used

for n = 1 to 4.
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12.4 Spontaneous symmetry breaking

Spontaneous symmetry breaking (SSB) is a possible limit of linear symmetry

breaking when the breaking parameter goes to zero. In this limit, the action

becomes symmetric, but depending on the values of other parameters (in

our examples the coefficient of φ2(x) in the action), the physics may or may

not become symmetric.

Many physical models in particle physics are based on the concept of

SSB. The reason is that the mechanism of SSB allows devising models with

broken symmetries which depend on no more parameters than the symmet-

ric models. The appearance of massless particles (Goldstone modes) is, in

general, the most characteristic feature of such models (except for gauge

symmetries).

The study of SSB plays also an essential role in critical phenomena.
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Fig. 12.1 – Spontaneous symmetry breaking: an O(2)-symmetric potential.

SSB, in the perturbative framework, is associated with degenerate classical

minima (see Fig. 12.1). Each minimum is the starting point of a perturbative

expansion. A problem then immediately arises: should one choose only one

minimum or sum over the contributions of all minima?
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In fact the correct procedure depends on the real physical situation beyond

perturbation theory, SSB or restored symmetry.

In the absence of phase transitions, one must sum over all minima. Quan-

tum fluctuations restore the symmetry broken in the classical approximation

and the true quantum ground state is unique.

For group invariant correlation functions, all minima give the same con-

tribution and the summation yields only a global normalization factor.

For non-invariant correlation functions a summation over all minima is

equivalent to a group average and projects onto invariant functions: the

exact correlation functions are invariant and the field has no expectation

value.

By contrast, when a phase transition occurs, in the several phase region

SSB is related to a breaking of ergodicity and one must choose one specific

minimum. Correspondingly, the quantum ground state is degenerate.

Below, we assume that the latter situation is realized.
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12.4.1 Classical analysis: the O(N) example

As an example, we consider the O(N) model with the the action (12.23)

and discuss the expectation value of the field in the tree or classical approx-

imation. The action density for a constant field φ is

E(φ) ≡ S(φ) /volume = 1
2uφ

2 + 1
4!g(φ

2)2 − c · φ .

As long as c does not vanish, it is possible to pass continuously from a

situation in which the parameter u is positive to a situation in which u is

negative without encountering any singularity. For instance, the expectation

value v is, at c fixed, a regular function of u at u = 0. By contrast, if c

vanishes, the expectation value v vanishes identically for u > 0 and takes a

non-trivial value for u < 0 such that

|v| =
√

−6u/g . (12.36)
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E(φ) E(φ)

φ1

|v|

φ1

u > 0 u < 0

Fig. 12.2 – Section of the φ-action density.

This can be easily understood by displaying the action density for both

situations (see Fig. 12.2). In the second case, the classical minimum of the

action density is degenerate and the minima are located on a sphere with a

radius given by equation (12.36).
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Starting from a given minimum, it is possible to describe all other minima

by acting on the vector v with the symmetry group , here the O(N) group.

Assuming a situation of SSB, we construct a perturbation theory around

one minimum v that, at leading order, is the field expectation value. We

then shift the field:

φ(x) = v + χ(x) .

The χ-field mass matrix is obtained by calculating the second derivatives

of the action density at the minimum. Using equation (12.36), one finds

∂E
∂φi∂φj

∣

∣

∣

∣

φ=v

=
(

u+ 1
6gv

2
)

δij +
1
3gvivj =

1
3g vivj .

The matrix has (N − 1) zero eigenvalues corresponding to eigenvectors or-

thogonal to v. This is not surprising since the potential E(φ) is flat along a

group orbit.
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The physical consequence is that spontaneous breaking of a continuous sym-

metry implies the existence of Goldstone modes, from the point of view of

particle physics massless scalar particles called Goldstone bosons.

12.4.2 General continuous symmetry group

We now examine the situation of a general group G and a symmetric action

that has degenerate minima. We denote by v the location of the minimum

chosen to expand perturbation theory, and thus the field expectation value

at leading order.

We introduce the subgroup H of G, little group (stabilizer) of the vector

v, that is, the subgroup ofG that leaves the vector v invariant. By definition,

the p generators of the Lie algebra L(H) of H satisfy

L(H) : 1 ≤ α ≤ p ⇒
∑

j

tαijvj = 0 .
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We denote by L(G/H) the vector space (it is not an algebra!) generated by

the complementary set in the Lie algebra L(G) of G. The set L(G/H) is

characterized by
∑

α>p

∑

j

ωαt
α
ijvj = 0 ⇒ ωα = 0 for all α .

For α > p, the vectors (vα)i =
∑

j t
α
ijvj are thus linearly independent. We

then parametrize the field φ in the form of a group element acting on a

vector:

φ(x) = exp

(

∑

α>p

tαξα(x)

)

(

v + ρ(x)
)

= v +
∑

α

ξα(x)tαv + ρ(x) + · · · ,

in which ρ(x) has components only in the subspace orthogonal to all vectors

tαv. In the O(N) example, ρ has only one component along v.

This parametrization is such that the mapping of fields {ρ(x), ξα(x)} 7→
φ(x)− v can be inverted for small fields.
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This property ensures that if the fluctuations of the field φ around its ex-

pectation value are in some sense small, perturbation theory is at least

qualitatively sensible.

Inserting the parametrization into the action we note the following: the

contributions to the action which are derivative-free depend only on ρ(x)

because they are G-invariant. The dependence in the fields ξα(x) is entirely

contained in the terms with derivatives, therefore, these fields are massless.

We conclude that spontaneous breaking of symmetry of a group G to a

subgroup H, the group which leaves the field expectation value invariant,

yields a number of massless Goldstone bosons equal to the number of gen-

erators of G that do not belong to H. This result is valid in the classical

approximation. We now generalize it to the full quantum theory.
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12.4.3 WT identities and spontaneous symmetry breaking

To connect continuously the two phases, symmetric and with SSB, without

encountering any singularity, we start from the situation u > 0, c = 0; we

give to c a non-vanishing value, perform the continuation from u > 0 to

u < 0, and again take the vanishing c limit. We then assume the existence

of non-trivial solutions to the equation

δΓ

δϕi(x)

∣

∣

∣

∣

ϕ(x)=v

= 0 .

Since the WT identities (12.31) hold for any value of the parameters and

we have proceeded by analytic continuation, in the u < 0, c = 0 limit the

equation
∫

dx
∑

i,j

tαij
δΓ(χ+ v)

δχi(x)
(χj + vj) = 0 ,

still holds, the direction of vi being fixed by equation (12.32).
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Goldstone modes. One important consequence of WT identities is obtained

by taking the c = 0 limit in equation (12.34):

∑

i,j

vjt
α
jiΓ̃

(2)
ik (0) +

∑

i

tαkici = 0 ⇒
c=0

∑

i,j

vjt
α
jiΓ̃

(2)
ik (0) = 0 . (12.37)

To give an interpretation of the equation, as in the classical analysis we in-

troduce the subgroup H of G, little group (stabilizer) of the vector v. Since

for α > p, the vectors (vα)i =
∑

j t
α
ijvj are linearly independent, equation

(12.37) implies that the real symmetric matrix Γ̃ij(0) has as many eigenvec-

tors with eigenvalue zero as there are generators in L(G/H), confirming the

classical analysis. The corresponding components of the field are Nambu–

Goldstone modes, massless scalar particles associated with the spontaneous

breaking of the G-symmetry.
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Discrete symmetries. Discrete symmetries do not lead to WT identities and

the preceding analysis does not apply.

However, it can be easily proved that when the initial unrenormalized

action is symmetric, the renormalized action remains symmetric.

Correlation functions in the presence of an additional linear symmetry

breaking term can be expanded in power series of the breaking parameter.

The coefficients are symmetric correlation functions. Therefore, it remains

true that the counter-terms which render the symmetric theory finite renor-

malizes the theory with linear symmetry breaking.
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12.5 Approximate chiral symmetry in hadron physics

One of the striking feature of Strong Interactions in low energy Particle

Physics is the observation of approximate spontaneously broken SU(N) ×
SU(N) chiral symmetries, which manifest themselves, in particular, in the

small masses of the pseudoscalar mesons. In particular, the π-meson is es-

pecially light, an indication that the explicit breaking of the SU(2)×SU(2)

symmetry is small.

Within the framework of the Standard Model of particle physics, this

property is a consequence of the small masses of the u and d quarks (see

for example section 11.8.3) and the vector-like coupling of quarks to gluons.

The mass of the s quark and thus the explicit breaking of the SU(3) ×
SU(3) symmetry are larger as can be seen from the masses of the K and η

pseudoscalar mesons.
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Note that, according to the power counting analysis, since a fermion mass

operator in a renormalizable field theory in four dimensions has dimension

3, the concept of a symmetry broken by fermion mass terms is indeed mean-

ingful.

The search for analytic methods to derive low energy properties of hadrons

directly from Quantum ChromoDynamics (QCD) , the fundamental theory

of quarks and gluons, has up to now proved elusive.

Most direct results are thus obtained from computer intensive studies of

discretized lattice versions of QCD (see lecture 15). For years, progress has

been slow but a number of precise results have now been obtained. The

most serious numerical difficulties were related to the dynamics of quarks,

in particular, from the point of view of chiral properties.

Here instead, we describe how effective low energy theories based on ob-

served hadrons like protons, neutrons, π-mesons... can be constructed.
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In such theories the chiral symmetry is explicitly broken by terms linear

in some scalar fields, which have the transformation properties of fermion

mass terms and which, together with the pseudoscalars, transform under

representations of the chiral group. Therefore, we face the situation we have

discussed at some length in section 12.3.

12.5.1 The chiral symmetry: general structure

The action for N free massless Dirac fermions in four dimensions reads

S(ψ, ψ̄) = −
∫

d4x
∑

i

ψ̄i(x)6∂ψi(x).

It has a U(N)×U(N) chiral symmetry corresponding to the transformations

ψ′ =
[

1
2 (1+ γ5)U+ + 1

2 (1− γ5)U−

]

ψ , (12.38)

ψ̄′ = ψ̄
[

1
2 (1+ γ5)U

†
− + 1

2 (1− γ5)U
†
+

]

, (12.39)

where U± are two N ×N unitary matrices corresponding to the two U(N)

groups.
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We couple the fermions to spinless bosons forming a N×N complex matrix

M(x). One verifies that the interaction term,

−g
∫

d4x
∑

i,j

ψ̄i

[

1
2 (1+ γ5)Mij +

1
2 (1− γ5)M

†
ij

]

ψj ,

is invariant under the transformations (12.38,12.39) provided the matrix M

transforms like

M′ = U−MU
†
+ . (12.40)

The total action also satisfies reflection hermiticity as defined in section

11.8.1. Under a charge conjugation C, M transforms like

MC = MT . (12.41)

It can be made invariant under a space reflection P (section 11.8.2) if M

transforms like

MP (x) = M†(x̃), (12.42)

in which x̃ is obtained from x by changing the sign of one component.
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Therefore, the matrix Σ = (M + M†)/
√
2 represents a set of scalar fields

and Π = (M −M†)/
√
2 a set of pseudoscalar fields. A possible action for

the boson fields symmetric under U(N)× U(N) transformations is then

S(M) =

∫

d4x tr
(

∇xM∇xM
† + V (MM†)

)

,

where V (ϕ) is a polynomial of the matrix ϕ. The addition of a term propor-

tional to detM + detM†, reduces the symmetry to SU(N)×SU(N)×U(1)

(the factor U(1) corresponds to the baryonic charge).

The most general symmetry breaking term linear in the boson fields,

consistent with the discrete symmetries (12.42) and (12.41), is

SB(M) = − 1√
2

∫

d4x trC
(

M+M†
)

,

in which C is a hermitian matrix:

C = C†.
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To the transformations (12.38,12.39) and (12.40) correspond two currents

(for more details see Appendix A12.1). It is convenient to consider the vector

current Vµ(x), which is associated with the Lie algebra of the diagonal

subgroup U(N) of U(N)× U(N) (U+ = U−) that conserves parity:

−iV α
µ (x) = −ψ̄tαγµψ + tr tα

{[

∂µM
†,M

]

+
[

∂µM,M†
]}

,

and the axial current Aµ(x) associated with the complementary set of gen-

erators in the Lie algebra, that is, L (U(N)× U(N)/U(N)):

−iAα
µ(x) = −ψ̄tαγ5γµψ + tr tα

{

[

∂µM
†,M

]

+
+
[

∂µM,M†
]

+

}

. (12.43)

The + index means that the expression between brackets is an anticommu-

tator.

If the matrix C is proportional to the identity, the chiral symmetry is bro-

ken, but the diagonal symmetry remains and the vector current is conserved.
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The axial current is conserved only if C vanishes:

∑

µ

∂µV
α
µ (x) = −i tr {[tα,C]Σ} ,

∑

µ

∂µA
α
µ(x) = tr

{

[tα,C]+Π
}

.

962



12.6 An example: the linear σ-model

The case N = 2 is of particular interest because the pion mass is especially

small and, thus, the explicit breaking of chiral symmetry is small.

Previous analysis leads to a theory with eight real boson fields. How-

ever, the group SU(2) (but not the group U(2)) has the property that a

representation and its complex conjugate are equivalent:

U = τ2U
∗τ2 , ∀ U ∈ SU(2),

in which τ2 is the usual Pauli matrix (we denote in this section the Pauli

matrices by τi rather than σi, as in appendix A11.2, to eliminate possible

confusion with the traditional notation for fields). Therefore,M and τ2M
∗τ2

have the same transformation law. The representation can be reduced and

the matrix M parametrized in terms of two fields σ(x) and π(x) in the form

M = τ2M
∗τ2 ≡ 1√

2
(σ + iτ · π) = 1√

2

[

σ + iπ0 π2 + iπ1
−π2 + iπ1 σ − iπ0

]

.
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The group SU(2) × SU(2) is the covering group of O(4) which is also the

symmetry group of the boson sector of the action. A breaking of the O(4)

symmetry by a term linear in the boson fields singles out one direction

in the 4-dimensional space and, therefore, reduces the O(4) symmetry to

a residual O(3) symmetry. We assume without loss of generality that the

linear breaking term is proportional to σ(x).

The action can then be written as

S =

∫

d4x
{

−N̄ (x) [6∂ + g(σ + iγ5τ · π)]N (x)

+ 1
2

[(

∇xσ(x)
)2

+
(

∇xπ(x)
)2]

+ V
(

σ2(x) + π2(x)
)

− cσ(x)
}

(12.44)

with

V (ρ) = 1
2uρ+

1
4!λρ

2.

The fermion doubletN (x) is identified with the two nucleon fields associated

to protons and neutrons.
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The action (12.44) has an exact SU(2) × U(1) symmetry, to which cor-

responds the conservation of the vector current, and implements the idea

of partially conserved axial current (PCAC) for SU(2). In the standard

normalization, which differs by a factor 2 from the definition (12.43) (see

equations (12.50,12.60)),

∑

µ

∂µAµ(x) = cπ(x). (12.45)

Finally, it follows from equation (12.42) that σ(x) is a neutral scalar field

and π(x) a pseudoscalar field (associated to the pi-meson), π0 being the

neutral component, while the combinations

π± = (π1 ± iπ2)/
√
2 ,

correspond to charged mesons, as charge conjugation shows.
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12.6.1 Tree approximation

Boson sector. We discuss the pattern of symmetry breaking in the classical

approximation. Furthermore, we consider only the case N = 2 because it is

the simplest and physically the most relevant. In the absence of fermions we

simply have the (φ2)2 field theory with O(4) symmetry. Equation (12.24)

gives the relation between the expectation value v of the field σ and the

symmetry breaking parameter c in the classical approximation:

v(u+ λv2/6) = c .

Setting

σ(x) = v + s(x),

in action (12.44), we read off the masses of the π and σ particles at the tree

order:

m2
π = u+ λv2/6 , m2

σ = u+ λv2/2 . (12.46)
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The assumption that accounts for the success of PCAC phenomenology is

that the explicit symmetry breaking term is small and one is close to a

situation of SSB. For the model (12.44) this means in particular that mπ is

small compared to mσ. With this assumption it is possible to predict some

general features of low energy π–π scattering. Introducing the standard

invariant variables

s = −(p1 + p2)
2 , t = −(p1 + p3)

2 , u = −(p1 + p4)
2,

we can write the connected amputated π-field four-point function at this

order as

[

W
(4)
ijkl

]

amp
=
s−m2

π

v2
m2

σ −m2
π

m2
σ − s

δijδkl +
t−m2

π

v2
m2

σ −m2
π

m2
σ − t

δikδjl

+
u−m2

π

v2
m2

σ −m2
π

m2
σ − u

δilδjk . (12.47)
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We have used the relations (12.46) to eliminate m and λ. The physical

scattering amplitude is obtained by setting all momenta on the mass shell:

p2i = −m2
π and then s+ t+ u = 4m2

π.

The expectation value v is experimentally accessible from the weak π-

meson decay as a consequence of relation (12.45) and is denoted tradition-

ally by fπ. Since mσ is supposed to be large compared tomπ, the expression

(12.47) makes quantitative predictions for s, t, u of order m2
π or smaller,

that is, at low energy. Values corresponding to infinite σ-mass are often

quoted. Although the π–π scattering amplitude, of course, cannot be mea-

sured directly, indirect methods provide an experimental confirmation of

the resulting pattern.

Fermion sector. In the symmetric phase, the mass of the fermion vanishes

for c = 0. The largest contribution to the fermion massmN is thus generated

by the Yukawa coupling and the σ expectation value

mN = gv .
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The Yukawa coupling constant g is arbitrary in the model and must be

extracted from some experimental information: at this order, the parameter

g can be identified with the coupling constant gπNN which governs the long

range part of the N–N potential due to π exchange. We then have the

relation between physical quantities:

gπNN = mN/fπ . (12.48)

This is the Goldberger–Treiman relation in the tree approximation. It agrees

semi-quantitatively with experiment since

gπNN = 13.6 ,
mN

fπ
≃ 939.

93.3
= 10. . (12.49)

Then all parameters but mσ are fixed. The low energy π–N scattering am-

plitude, for example, can be calculated. A definite prediction can be made

only for mσ infinite; it agrees reasonably well with experimental data.
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12.6.2 Beyond leading order approximation

Since the field theory model is renormalizable, it is possible to calculate

loop corrections. Then, several problems arise. First, there is a matter of

principle. The (φ2)2 field theory, as well as the theory (12.44) with fermions,

is IR free in four dimensions and thus physically acceptable only for a limited

range of energies or momenta.

More precisely, although the theory is renormalizable in perturbation the-

ory, it is impossible to send the cut-off Λ to infinity: the effective (renormal-

ized) couplings at a mass scale µ≪ Λ are bounded by const./ ln(Λ/µ)—this

is the triviality issue. Therefore, the addition of loop corrections is mean-

ingful only if the momenta and the coupling constants are small enough (in

a correlated way as stated above). A Landau ‘ghost’ is typically a manifes-

tation of this problem. Still the loop corrections may be useful to improve

the tree level amplitudes from the point of view of unitarity at low energy.
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Second, from the computational point of view several difficulties are en-

countered.

(i) Loop corrections become large at moderate energies. For example in

π–π scattering one encounters the ρ resonance. Then it becomes necessary

to apply a summation method to the perturbation series. Calculations have

been performed using the summation method of Padé approximants.

(ii) Since the σ mass is larger than 2mπ, the σ particle is unstable (it is a

resonance) because it can decay into two pions. In the exact π–π scattering

amplitude, the resonance leads to singularities in the second sheet of the

unitarity cut in the complex s-plane.

However, at any finite order in perturbation theory, the singularities asso-

ciated with the σ-particle are on the real axis since the width of the particle

is a non-perturbative effect. Fits of experimental data seem to impose a

rather small σ mass. Therefore, loop corrections are affected by unphysical

singularities even at rather low energy.
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This problem of the perturbative treatment of fields corresponding to

unstable particles remains to a large extent unsolved. One possible idea is

to make a systematic large mσ expansion, but the validity of the expansion

is then limited to energies smaller than 4m2
σ, that is, rather low energies.

(iii) Finally, perturbative corrections to the nucleon mass are large, and

this also adversely affects the position of singularities in scattering ampli-

tudes involving fermions.

Therefore, although much effort has gone into the study of the model

(12.44), only limited results have been obtained beyond the simple predic-

tions which rely on the geometry of the model and are, therefore, mostly

contained in WT identities as we explain below.
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12.6.3 The RG viewpoint

From the RG viewpoint, in four dimensions, the coefficient of σ(x), the

linear symmetry breaking term in the action (12.44), has dimension three

and thus scales as Λ3, up to logarithmic corrections, where Λ is the cut-off.

Therefore, it is of order 1 at the physical scale only it is extremely small at

the cut-off scale. By contrast with spontaneously symmetry breaking, this

implies another fine-tuning, in addition to the fine-tuning of the coefficient

of σ2(x).

Therefore, one may wonder why the preceding analysis is relevant for the

linear σ-model. There seems to be two reasons. First, the ratio between the

QCD scale and the π mass is not very large. Moreover, the masses of the u

and d quarks, responsible for the SU(2) × SU(2) symmetry breaking, are

extremely small, especially compared to the more natural top quark mass,

another mystery in the Standard Model of fundamental interactions.
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12.7 Ward–Takahashi identities

We have described the difficulties one encounters when one tries to derive

consequences from a phenomenological chiral action. However, some rela-

tions are valid beyond perturbation theory: the WT identities which are

direct consequences of the broken symmetry.

Unfortunately, equation (12.25) shows that the WT identities always in-

volve correlation functions with one π-field at zero momentum. Therefore,

they would lead to relations between observables only if the π-meson were

massless, that is, if the symmetry were spontaneously broken.

In reality, it is necessary to extrapolate from zero momentum to the pion

mass-shell. This extrapolation is model-dependent, and the results are only

reliable if the predictions at zero pion mass are already in qualitative agree-

ment with experiment.

974



12.7.1 Boson sector

First, we discuss again the boson sector. The interesting part of the WT

identities corresponds to the transformations

δπ(x) = −ωσ(x) , δσ(x) = ω · π(x). (12.50)

Calling J(x) the source for the π-field and K(x) the source for the σ-field,

we can write the WT identities for the generating functional of connected

correlation functions W(J,K) as

∫

dx

[

Ji(x)
δ

δK(x)
−
(

c+K(x)
) δ

δJi(x)

]

W = 0 . (12.51)

975



It is convenient to introduce some additional notation to take into account

the residual O(3) symmetry. We set

W̃
(2)
ij (p) = δijDπ(p),

W̃ (2)(p) = Dσ(p),

W̃
(3)
ij (p1, p2; p3) = δijDπ(p1)Dπ(p2)Dσ(p3)C(p1, p2; p3),

[

W̃
(4)
ijkl(p1, p2, p3, p4)

]

amp
= δijδklA(p1, p2, p3, p4) + δikδjlA(p1, p3, p2, p4)

+ δilδkjA(p1, p4, p3, p2),

with the conventions that indices correspond to π-fields, and in mixed π–σ

correlation functions the arguments of the π-fields are written first.
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Differentiating equation (12.51) with respect to Jj , and setting the sources

to zero, we obtain the equivalent of equation (12.34):

v = 〈σ〉 = cDπ(0) ≡ c/µ2, (12.52)

where µ2 = 1/Dπ(0) is now different from the pion mass squared m2
π.

Differentiating once with respect to Jj and K, we obtain

δijW̃
(2)(p)− W̃

(2)
ij (p) = cW̃

(3)
ij (0, p;−p),

and thus using equation (12.52),

D−1
π (p)−D−1

σ (p) = vC(0, p;−p). (12.53)

Setting p = 0 and defining m2
σ = D−1

σ (0) we get, in particular,

µ2 −m2
σ = vC(0, 0; 0).
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Differentiating thrice with respect to J , we obtain a relation between three-

and four-point correlation functions:

cW̃
(4)
ijkl(0, p2, p3, p4) = δijW̃

(3)
kl (p3, p4; p2) + 2 terms . (12.54)

It follows that

vA(0, p2, p3, p4) = C(p3, p4; p2)Dσ(p2)D
−1
π (p2). (12.55)

First, for p22 = −m2
π, the equation reduces to Adler’s consistency condition

A(0, p2(p
2
2 = −m2

π), p3, p4) = 0 . (12.56)

Moreover, setting p3 = 0 in equation (12.55) and eliminating the function

C between (12.53) and (12.55), one finds

v2A(0, p, 0,−p) = D−1
π (p)

[

Dσ(p)D
−1
π (p)− 1

]

. (12.57)
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The first term in the right hand side has a double zero at the pion mass.

Therefore, taking the derivative with respect to p2, we recover Weinberg’s

relation:

v2
∂

∂p2
(

A(0, p, 0,−p) +D−1
π (p)

)

∣

∣

∣

∣

p2=−m2
π

= 0 . (12.58)

These equations yield model- and parameter-independent constraints on the

π–π scattering amplitude, which unfortunately is slightly off-shell because

at least one of the π momenta vanishes. One verifies that the function A in

the tree approximation (12.47) satisfies both conditions (12.56, 12.58).

Another constraint on the π–π scattering amplitude is obtained, for ex-

ample, by setting all momenta to zero in (12.57):

v2A(0, 0, 0, 0) = µ2(µ2/m2
σ − 1). (12.59)

However, this equation involves an independent free parameter mσ. Again

one verifies that expression (12.47) satisfies equation (12.59) in the tree

approximation.
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12.7.2 Fermion sector

The infinitesimal transformations of the fermion fields, corresponding to the

equations (12.50) are

δψ = 1
2 iγ5τ · ωψ , δψ̄ = 1

2 iψ̄γ5τ · ω . (12.60)

We denote by η̄ and η the sources for the fermion fields. The generating

functional W(η, η̄, J,K) of connected correlation functions then satisfies the

WT identity:

∫

d4x

{

i

2

[

η̄(x)γ5τ
δ

δη̄(x)
− η(x)γ5τ

δ

δη(x)

]

− J(x)
δ

δK(x)

+(K(x) + c)
δ

δJ(x)

}

W(η, η̄, J,K) = 0 .

The relations relevant for particle physics correspond to K = 0.
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The Goldberger–Treiman relation. The simplest and best known identity is

obtained by differentiating with respect to η and η̄ and setting all sources to

zero. It is, actually, most conveniently written in terms of vertex functions:

vΓ̃
(3)
πNN (0; p,−p) = iτ

2

{

γ5, Γ̃
(2)
NN (p)

}

+
.

The index + in the right hand side means anticommutator in the space

of γ matrices. We have explicitly taken into account the property that the

fermion propagator is proportional to the identity in the group indices.

This relation between the inverse nucleon propagator and the πNN vertex

generalizes the relation (12.48).

The right hand side is known when the nucleons are on mass-shell. The

left hand side can be approximately related to the nucleon weak β-decay,

which involves the matrix element of the axial current at zero momentum

between nucleon states since the pion has the quantum numbers of the

divergence of the axial current, as can be seen in equation (12.45).
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Thus, one contribution to this matrix element has the pion pole. In the

strict chiral limit with zero mass pions, this would be the only contribution.

One assumes that since the pion mass is small, the chiral limit is a good

approximation. The relation then takes the traditional form

GA

GV
≃ gπNN

fπ
mN

,

called the Goldberger–Treiman relation.

Replacing by experimental numbers one finds 1.22 for the left hand side

and 1.36 for the right hand side, a notable improvement over the tree ap-

proximation (12.49).
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Other low energy relations. More generally, one can set K to zero, differ-

entiate once with respect to η and η̄, and an arbitrary number of times

with respect to J and, finally, set all momenta on mass-shell. One then ob-

tains model-independent relations (generalizing equation (12.56)) involving

amplitudes for the emission of one unphysical pion at zero momentum.

However, to determine completely the low energy π–N scattering ampli-

tudes, it is necessary to introduce also the NNσ vertex and the result then

depends on the σ-mass. The predictions for the π–N scattering lengths in

the infinite σ-mass limit agree well with experimental data.

One popular way to go beyond these geometrical considerations in the

low momentum, low quark mass regime, and in the spirit of effective field

theories, is chiral perturbation theory.
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12.8 (φ2)2 field theory and non-linear σ-model

We have seen that, from the phenomenological viewpoint, chiral models are

only predictive in the limit where the mass of the σ field, the component of

the scalar field along the direction of O(4) symmetry breaking, is large. This

suggests integrating out the massive component to generate an effective field

theory. However, this leads to a difficulty since the field with large mass is a

member of a multiplet and its elimination may lead to an explicit breaking

of the O(4) symmetry.

12.8.1 The O(N) symmetric (φ2)2 field theory in the broken phase

We consider the O(N) symmetric action for an N -component field φ,

S(φ) =
∫

d4x
[

1
2 (∇xφ(x))

2 + 1
2uφ

2(x) + 1
4!g
(

φ2(x)
)2
]

. (12.61)

984



In the spontaneously broken phase (u < uc), the O(N) symmetry is bro-

ken down to an O(N − 1) symmetry and this generates (N − 1) Goldstone

modes associated with massless scalar particles. At low momentum or large

distance, the physics is entirely dominated by the interaction between Gold-

stone modes. It is thus natural to try to integrate out the last massive com-

ponent of the N -component field. However, the problem is to avoid loosing

the information about the initial O(N) symmetry of the model.

The problem can be solved by an appropriate parametrization of the field

φ and the integration over the massive mode then leads to the the non-linear

σ-model.

The integration. We consider the partition function

Z =

∫

[dφ] exp[−S(φ)].

We change variables in the field integral, setting (meaningful only if 〈ρ〉 > 0)

φ(x) = ρ(x)φ̂(x) with φ̂2(x) = 1 .
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The field integral becomes (assuming a lattice or in the continuum a dimen-

sional regularization to deal with the non-trivial ρ measure):

Z =

∫

[

ρN−1(x)dρ(x)
]

[

dΩ(φ̂(x))
]

exp
[

−S(ρ, φ̂)
]

,

where Ω(φ̂) is the invariant measure on the sphere SN−1 and

S(ρ, φ̂) =
∫

d4x

{

1
2ρ

2(x)
(

∇xφ̂(x)
)2

+ 1
2 [∇xρ(x)]

2 + 1
2uρ

2(x)

+ 1
4!gρ

4(x)
}

. (12.62)

In the broken phase, the field ρ(x) has a non-zero expectation value 〈ρ〉 > 0

and is massive. If one interested only in momenta much smaller than the

ρ-mass or distances much larger than the corresponding correlation length,

one can integrate out perturbatively the ρ-field.
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The integration over the ρ(x) field generates an effective action Seff.(φ̂) for

the field φ̂:

exp
[

−Seff.(φ̂)
]

∝
∫

[

ρN−1(x)dρ(x)
]

exp
[

−S(ρ, φ̂)
]

. (12.63)

To calculate the integral, we first set

S(ρ) =
∫

d4x
[

1
2

(

∇xρ(x)
)2

+ 1
2uρ

2(x) + 1
4!gρ

4(x)
]

.

We define

Z(J) =

∫

[

ρN−1(x)dρ(x)
]

exp

[

−S(ρ)− 1
2

∫

d4x J(x)ρ2(x)

]

with Z(0) = 1. Then,

Seff.(φ̂) = − lnZ
[

J(x) =
(

∇xφ̂(x)
)2
]

.
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We calculate Z(J) by first expanding in powers of J .

Denoting by 〈•〉 an expectation value with respect to the normalized

measure corresponding to e−S(ρ), one finds

lnZ(J) = − 1
2

〈

ρ2
〉

∫

d4x J(x)

+ 1
8

∫

d4x d4y
〈

ρ2(x)ρ2(y)
〉

conn.
J(x)J(y) +O(J3).

For large ρ mass M , all successive contributions become local. The first

term,

Seff.(φ̂) =
1
2 〈ρ〉

2
∫

d4x
(

∇xφ̂(x)
)2

, (12.64)

has only two derivatives and thus governs the large distance behaviour. In

the expression (12.64) one recognizes the action of the non-linear σ-model.

It is the only action with two derivatives consistent with O(N) symmetry.

The second term has four derivatives and will be suppressed by a factor

1/M2 and is subleading at large distance.
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The perturbative ρ-integration. Each expectation value can be calculated

perturbatively. We denote by v the expectation value of ρ(x): v = 〈ρ(x)〉.
We set

ρ(x) = v + χ(x) ⇒ 〈χ(x)〉 = 0 ,

where v in the tree approximation is given by v2 = −6u/g.

In terms of χ, the action (12.62) becomes

S(χ) =
∫

d4x
[

1
2

(

∇xχ(x)
)2

+ 1
6gv

2χ2 + 1
6gvχ

3 + 1
24gχ

4
]

.

Neglecting all fluctuations of the field χ, one recovers the action (12.64) at

leading order:

S(0)
eff.(φ̂) =

1
2v

2

∫

d4x
(

∇xφ̂(x)
)2

. (12.65)

Loop corrections are calculated with the χ propagator

∆̃χ(p) =
1

p2 +M2
, M2 = 1

3gv
2,

and have then to be expanded for M large.

989



The contributions coming from the integration over χ first renormalize the

coefficient v2 of the term with only two derivatives in (12.65.)

The second term is proportional to the connected part of
〈

ρ2(x)ρ2(y)
〉

,

〈

ρ2(x)ρ2(y)
〉

−
〈

ρ2(x)
〉 〈

ρ2(y)
〉

=
〈

ρ2(x)ρ2(y)
〉

−
〈

ρ2(x)
〉 〈

ρ2(y)
〉

=
〈

χ2(x)χ2(y)
〉

−
〈

χ2(x)
〉 〈

χ2(y)
〉

+ 4v2 〈χ(x)χ(y)〉
= ∆2

χ(x− y) + 4v2∆(x− y).

The first term has been evaluated in section 8.1.1 (equation (8.2)). It has a

local expansion, derived from equation (8.3), where the leading contribution

is proportional to ln(Λ/M)δ(x− y), where Λ is a cut-off, the next contribu-

tion proportional to ∇2
xδ(x−y)/M2... .The second term has a leading order

contribution that is simply 4v2δ(x− y)/M2.

990



Therefore, all loop contributions, except for a renormalization of the leading

term, yield additional, irrelevant, φ-interactions with more derivatives, the

leading one being proportional to
∫

d4x((∇xφ̂)
2)2, and counterterms for the

non-linear σ-model, which in perturbation theory is more divergent that the

initial (φ2)2 field theory.

Domain of validity. From the way the effective action has been derived,

it is expected that its perturbative domain of validity is limited to the

broken phase u fixed, u < uc. In this regime, the non-linear σ-model (12.64)

completely describes the long distance properties of the (φ2)2 field theory.

For u close to uc or u > uc, the perturbative expansion of the non-linear σ

is no longer useful. Physics becomes non-perturbative and the configurations

for which ρ vanishes become important. The interpretation of the non-linear

σ model as a perturbative effective theory is no longer valid, as we verify

now more directly.
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12.9 Non-linear σ-model: perturbation theory, power counting

The non-linear σ is defined as the effective action resulting from the χ inte-

gration restricted to the leading term with two derivatives. It is convenient

to parametrize the action in d dimensions as

S(φ̂) = Λd−2

2g

∫

ddx
(

∇xφ̂(x)
)2
, (12.66)

where Λ is a cut-off of the order of the mass of massive component and g a

dimensionless coupling constant, which also plays the formal role of ~ and

thus orders the loop expansion.

The partition function is given by

Z =

∫

[dΩ(φ̂)] e−S(φ̂) . (12.67)

For g → 0 the field integral is dominated by the minima of the classical

action,
∣

∣

∣
∇xφ̂(x)

∣

∣

∣
= 0 ⇒ φ̂(x) = φ̂0 , φ̂2

0 = 1 ,
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where φ̂0 is an arbitrary constant unit vector.

The action (12.66) has a continuous set of degenerate and equivalent

minima which are related by O(N) transformations. Each minimum is the

starting point of a perturbative expansion. As we have already discussed in

section 12.4, if the symmetry is unbroken one should sum over the contri-

butions of all minima while if the symmetry is spontaneously broken one

should select the minimum that corresponds to the field expectation value.

This is a non-perturbative issue and we postpone its discussion. Here, we

choose one minimum and calculate its contribution in the form of a pertur-

bative expansion.

12.9.1 Formal perturbation theory

After a choice of the direction of spontaneous breaking, and we choose the

vector u = (1, 0, . . . , 0), the explicit calculation of the field integral (12.67)

still depends on a choice of a local parametrization of the sphere near u.
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Local parametrization. We choose here the components of φ̂,

φ̂ ≡ (σ(x),π(x))

with

σ(x) =
√

1− π2(x). (12.68)

With this parametrization, the infinitesimal group transformations that do

not belong to the unbroken O(N − 1) subgroup take the non-linear form

δπ = εσ(x),

which implies

δσ(x) = −ε · π .
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The O(4) example in four dimensions. In the case of the O(4) symmetry,

another popular choice is the following: vectors can be represented as 2× 2

matrices in the form

M = σ + iτ · π ,
and the group O(4) by SU(2)×SU(2) matrices acting by right and left mul-

tiplication, respectively. A vector with unit length can then be represented

by an SU(2) matrix of the form eiτ ·π.

The action then is proportional to

−
∫

d4x tr
[

e−iτ ·π(x)∇x e
iτ ·π(x)

]2

,

and the coupling to fermions to
∫

d4x N̄ (x) eiγ5τ ·π(x) N (x).

The measure is formally the product for all space points of the SU(2) in-

variant measure.
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The action. With the parametrization (12.68), the action (12.66) becomes

S(π) = Λd−2

2g

∫

ddx

[

(∇xπ(x))
2 +

(π(x) · ∇xπ(x))
2

1− π2(x)

]

.

For g small, the fields π(x) that contribute to the field integral, then, must

be such that |∇xπ(x)| ∼
√
g and, since we expand around π(x) = 0, the

field itself must satisfy

|π(x)| ∼ √
g .

The action is no longer a polynomial in the fields but since π is of order g1/2,

the action can be expanded in powers of π generating an infinite number

of interactions with arbitrary even powers of π and two derivatives. One

verifies that at finite loop order, to a given correlation function only a finite

number of terms contributes.
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Perturbative expansion. Values of π(x) of order 1 give exponentially small

contributions to the field integral (of order exp(−const./g)), which are neg-

ligible to any finite order of perturbation theory.

This has two implications:

(i) The restriction imposed by the parametrization (12.68), σ(x) > 0, is

irrelevant in perturbation theory.

(ii) Moreover, in the field integral, one can freely integrate over π(x)-field

components from +∞ to −∞, disregarding the constraint

|π(x)| ≤ 1 .

Perturbation theory, then, again relies on the evaluation of simple Gaussian

expectation values.
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The integration measure. For each space point x, the π integration measure

is dπ/
√
1− π2. However, the product for all x of

√

1− π2(x) is not defined.

Formally, it yields a ‘quantum’ addition to the action of the form

1
2δ

(d)(0)

∫

ddx ln
(

1− π2(x)
)

.

Since the measure term has no 1/g factor and starts contributing only at

one-loop order and yields additional vertices without derivatives.

This undefined infinite product is a reflection of the problem of ordering

in products of quantum operators. In the straightforward interpretation of

the field integral formalism, which involves only classical quantities, the

information about ordering is lost. The solution of this problem requires a

specific regularization.
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Regularizations. Dimensional regularization provides a purely perturbative

regularization in which the measure term can be omitted.

Lattice regularization provides both a perturbative and non-perturbative

regularization.

The addition of quadratic terms with higher order derivatives of the field

φ̂ preserves the O(N) symmetry and improves the behaviour of the propa-

gator but generates new interactions.

One can show that all diagrams except one-loop diagrams can be regu-

larized. The remaining one-loop divergences are unavoidable because they

have to cancel the divergent contributions coming from the measure (in a

lattice regularization).
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12.9.2 Propagator and power counting

The propagator ∆̃ij(p) of the π-field is

∆̃ij(p) = δij
gΛ2−d

p2
.

In the tree approximation, the π-field is massless. Returning to the analysis

of section 12.4, we conclude that, at leading order in perturbation theory,

the non-linear σ-model automatically realizes the O(N) symmetry in the

phase of spontaneous symmetry breaking, the massless π-field correspond-

ing to the Goldstone modes. The massive partner of the π-field in the linear

realization, the σ component, has been eliminated by the constraint (12.68).

This constraint formally freezes the fluctuations of φ2(x) and sends, in the

classical limit, the σ mass to infinity.

Note that these properties are independent of the specific parametrization

(12.68) of φ̂(x).
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Power counting. The form of the propagator shows that the dimension [π]

of the π-field, in the sense of power counting, is

[π] = 1
2 (d− 2).

The dimension of a vertex containing 2n π-fields thus is

[

∂2π2n
]

= n(d− 2) + 2 .

As a consequence,

(i) for d = 2, the non-linear σ model is renormalizable;

(ii) for d > 2, the model is not renormalizable.

Therefore, we first discuss the model in dimension d = 2. A peculiarity

of dimension d = 2 is that although the theory is renormalizable by power

counting, any local monomial in the field containing at most two derivatives

and an arbitrary power of π can a priori appear as a counter-term.
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The symmetryO(N−1), which is linearly realized, only restricts the counter-

terms to be of the general form

(∂µπ · π)2
(

π2
)n
, (∂µπ)

2 (
π2
)n
,

(

π2
)n
.

However, it can be proved, using the non-linear part of the O(N) symmetry,

that, up to a renormalization of the field and a global normalization of the

action, the renormalized action is unique. The proof is based on a set of

WT identities that we derive now.
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12.9.3 WT identities

To generate both π and σ =
√
1− π2 correlation functions, we consider the

generating functional Z(J,K) corresponding to the action with external

sources

S(π,J, H) = S(π)− Λd−2

g

∫

ddx [J(x) · π(x) +K(x)σ(x)] .

In a change of variables of the form of the infinitesimal non-linear transfor-

mations

δπ = εσ(x), (12.69)

the variation of the source terms is

δ [J(x) · π(x) +K(x)σ(x)] = ε · [J(x)σ(x)−K(x)π(x)] .

The invariance of the integral leads to the identity
∫

ddx

(

J(x)
δ

δK(x)
−K(x)

δ

δJ(x)

)

Z(J,K) = 0 .
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Thus, W = lnZ, the generating functional of connected correlation func-

tions, also satisfies
∫

ddx

(

J(x)
δ

δK(x)
−K(x)

δ

δJ(x)

)

W(J,K) = 0 .

In a Legendre transformation,

δ

δK(x)
W(J,K) = − δ

δK(x)
Γ(π,K).

The WT identities for the generating functional of vertex functions follow:
∫

ddx

(

δΓ

δπ(x)

δΓ

δK(x)
+K(x)π(x)

)

= 0 .

This equation is the basis of the proof that in two dimensions the renormal-

ized action remains O(N) invariant. It also allows to discuss the effect of

symmetry breaking cσ(x) since this amounts to expanding the WT identities

around K(x) = constant 6= 0.
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12.10 RG analysis at and above two dimensions

We now discuss the non-linear σ-model from the point of renormalization

group. We first consider the dimension two where the model is renormaliz-

able.

12.10.1 Two dimensions: RG equations

Perturbative expansions in two dimensions does not exist due to IR diver-

gences. This divergences have a physical meaning: spontaneous symmetry

breaking of a continuous symmetry with short range interactions is impos-

sible in two dimensions. It is necessary to introduce an explicit symmetry

breaking. The shift K(x) 7→ m2 + K(x) breaks the O(N) symmetry and

leads to the propagator

∆̃ij(p) = δij
g

p2 +m2
.
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With this propagator, the perturbative expansion is defined and one can

renormalize the non-linear σ-model. RG equations follow. For the connected

correlation functions, they can be written as
[

Λ
∂

∂Λ
+ β(g)

∂

∂g
+
n

2
ζ(g) +

(

ζ(g)

4
+
β(g)

2g

)

m
∂

∂m

]

W̃ (n)(pi; g,m,Λ) = 0 .

(12.70)

The two RG functions at leading order are

β(g) = − (N − 2)

2π
g2 +O(g3), (12.71a)

ζ(g) =
(N − 1)

2π
g +O(g2). (12.71b)

The sign for N > 2 of the first coefficient of the β-function shows that the

model is asymptotically free. Moreover, in the limit m→ 0, the spectrum is

non-perturbative as expected since spontaneous symmetry breaking is im-

possible. In fact, from other considerations, it is known that O(N) symmetry

is restored and the spectrum contains a massive boson.
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Its physical mass M is an RG invariant and thus has the general form

M ∝ Λexp

[

−
∫ g dg′

β(g′)

]

∝ Λe−(2π)/(N−2)g .

The case N = 2 is peculiar because SO(2) is an Abelian group. The con-

tent of the model depends on the regularization. In the simplest form it is

equivalent to a free field theory. In the lattice regularization, it leads to the

famous Kosterlitz–Thouless phase transition.

12.10.2 Dimension 2 + ε

Above dimension two, the model can be studied in the form of a double

series expansion in g and ε = (d− 2)-expansion. The β-function becomes

β(g) = εg − (N − 2)

2π
g2 +O

(

g3, g2ε
)

. (12.72)

The slope at the Gaussian fixed point g = 0 is now positive and, for g small,

the large distance behaviour is governed by the Gaussian fixed point.
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The physics of the model is thus perturbative and dominated by the massless

Goldstone modes.

However, one finds in addition a fixed point with a negative slope,

g∗ =
2πε

N − 2
+O(ε2), β′(g∗) = −ε+O(ε2) ,

an UV fixed point since it governs the universal large momentum behaviour

for momenta |p| ≪ Λ.

Solving the RG equations, one finds that at g = g∗, the field expectation

value vanishes like

〈σ〉 ∝ (g∗ − g)−ζ(g∗)/2β′(g∗) , − ζ(g∗)

2β′(g∗)
=

N − 1

2(N − 2)
+O(ε).

This result suggests that g∗ corresponds to a phase transition between the

spontaneously broken phase and a g > g∗ non-perturbative phase with

symmetry restoration.
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The perturbative expansion and the interpretation of the non-linear σ-model

as an effective perturbative theory is thus valid only for g < g∗.

These conclusions are comforted by the large N -expansion, which in-

dicates that beyond perturbation theory the non-linear σ-model and the

corresponding (φ2)2 field theory have the same large distance physics.
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APPENDIX A12

CURRENTS AND NOETHER’S THEOREM

For completeness, in the appendix, we describe some properties of field

equations and currents. We first discuss classical currents adopting the

covariant notation of real time relativistic field theory with a metric tensor

gµν with signature (+−−−).

After a formal transition between real time and euclidean field theory,

setting xd = ix0 ≡ it, we examine the properties of quantum currents.

Finally, we define the energy-momentum tensor, discuss its properties

both in classical and quantum field theory and its relation to conformal

invariance in massless theories.

In the appendix, summation over repeated indices is implied, except when

stated otherwise.



A12.1 Currents in classical field theory

If the Lagrangian density L(φ, ∂µφ) depends only on the field φ(x) and its

derivatives ∂µφ(x), the classical equation of motion obtained by varying the

action

S(φ) =
∫

d4xL
(

φ(x), ∂µφ(x)
)

, (A12.1)

is

∂µ
∂L

∂[∂µφ(x)]
− ∂L
∂φ(x)

= 0

(in this notation φ(x) and ∂µφ(x) are considered as independent variables).

We perform on φ(x) a space-dependent group transformation parametrized

by a field Λ(x),

φ(x) 7→ φΛ(x) .
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As a consequence of the equation of motion, the action is also stationary

with respect to variations of Λ(x) at φ fixed:

∂µ
∂L

∂[∂µΛ(x)]
− ∂L
∂Λ(x)

= 0 . (A12.2)

We define a current Jµ(x), functional of φ(x), by

Jµ(x) =
∂L

∂[∂µΛ(x)]

∣

∣

∣

∣

Λ(x)=0

, (A12.3)

where we have assumed that Λ(x) = 0 corresponds in the group to the

identity.

By construction, currents are directly associated with the generators of

the Lie algebra of the symmetry group.

We can then rewrite equation (A12.2) as (Noether’s theorem)

∂µJ
µ(x) =

∂L
∂Λ(x)

.
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In addition, if the Lagrangian is invariant under space-independent group

transformations, ∂L/∂Λ vanishes and thus the current Jµ is conserved:

∂µJ
µ(x) = 0 . (A12.4)

In classical field theory, the space integral of the time-component of the

current is a charge:

Qα(t ≡ x0) =

∫

d3x Jα
0 (x).

By differentiating with respect to t and using the current conservation equa-

tion (A12.4), one finds

d

dt
Qα(t) =

∫

d3x

3
∑

µ=1

∂µJµ(x) = 0 .

The charges Qα(t) are constants of the classical motion.
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Example. If the Lagrangian density has the form

L = 1
2∂µφi∂

µφi − V [φ(x)] (A12.5)

(in real time covariant notation) and if the infinitesimal group transforma-

tions are

δφi(x) = tαijΛ
α(x)φj(x), (A12.6)

the current Jα
µ (x) is given by

Jα
µ (x) = tαij∂µφi(x)φj(x). (A12.7)
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A12.2 Euclidean quantum field theory

We have already examined the consequences of symmetries for field theories

and derived WT identities. These identities can also be derived in the

operator formalism of quantum mechanics and in this case currents and

charges, considered as quantum operators, play an important role. In our

formulation, currents will appear either in the coupling at leading order

of matter to gauge fields (see lectures 13, 14) or as polynomials in the

fields satisfying some specific identities that lead to special renormalization

properties.

In what follows dimensional regularization is assumed.

We consider the generating functional

Z(J) =

∫

[dφ] exp

[

−S(φ) +
∫

Ji(x)φi(x)dx

]

, (A12.8)

in which the action is invariant under group transformations whose infinites-

imal form is given by equation (A12.6) when Λ(x) is a constant.
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We perform a change of variables of the form of a transformation (12.11)

in the integral (A12.8). We define the euclidean current Jα
µ (x) by equation

(A12.3) in terms of the euclidean action density. If S(φ) is symmetric, the

variation of the action reads

δS(φ) =
∫

∂µΛ
α(x)Jα

µ (x)dx .

Identifying the coefficient of Λα(x), we obtain
∫

[dφ]
[

∂µJ
α
µ (x)− Ji(x)t

α
ijφj(x)

]

exp

[

−S(φ) +
∫

Ji(x)φi(x)dx

]

= 0 .

The identity can be written as

∂xµZJα
µ
(x) = Ji(x)t

α
ij

δZ
δJj(x)

, (A12.9)

where ZJα
µ
(x) is the generating functional of correlation functions with a

Jα
µ (x) operator insertion.
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The same equation is valid for connected correlation functions. After Leg-

endre transformation, one finds

∂xµΓJα
µ
(x) = − δΓ

δϕi(x)
tαijϕj(x). (A12.10)

Equations (A12.9,A12.10) are the analogues for correlation functions of the

current conservation equation (A12.4). Integrated over all space, they yield,

not surprisingly, equations (12.17–12.19), that is, the WT identities conse-

quences of the symmetry.

From the point of view of renormalization, equation (A12.10) implies that

the insertion of ∂µJ
α
µ (x) in a renormalized correlation function is finite.

In a simple renormalizable (φ2)24-like field theory, covariance then implies

that the same must be true for the current Jα
µ (x). This result is non-trivial

since from expression (A12.7) we see that Jα
µ (x) is an operator of dimension

3. A further consequence is that the insertion of a conserved current in a

correlation function does not modify the form of the RG equations.
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A12.3 The energy–momentum tensor

If the action is translation invariant, the substitution φ(x) 7→ φ(x + ε),

in which ε is a constant, leaves the action invariant. In the spirit of sec-

tion A12.1, we perform a space-dependent translation, which in fact coin-

cides with a general change of variables. We thus substitute in the action

φ(x) 7→ φ(x + ε(x)). If φ(x) satisfies the equation of motion, the variation

of the action (A12.1) at first order in ε vanishes. In the substitution, the

derivatives transform like

∂µφ(x) 7→ ∂µφ(x+ ε) + ∂µε
ν∂νφ(x+ ε).

To calculate the variation we then change variables x+ ε = y. Translation

invariance implies that the action density depends on x only through the

field φ. Therefore, the only new effect is to change the measure of integra-

tion:

dyµ = dxµ + ∂νε
µdxν .
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If we now compare the new action with the initial one (A12.1) we see that the

modifications come only from the derivatives and the integration measure

(y is a dummy integration variable). Collecting the terms of order ε and

integrating by parts, we obtain the identity

∂µT
µ
ν (x) = 0 ,

in which the energy–momentum tensor Tµ
ν (x) is defined by

Tµ
ν (x) =

∂L
∂[∂µφ(x)]

∂νφ(x)− δµνL [φ(x)] .

It is convenient to also introduce the tensor

Tµν(x) = gµλT
λ
ν (x),

in which gµν is the Minkowski metric tensor. In the example of the La-

grangian (A12.5), Tµν is symmetric since

Tµν(x) = ∂µφ∂νφ− gµν
[

1
2 (∂ρφ)(∂

ρφ)− V (φ)
]

.
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To the tensor Tµν(x) correspond constants of the classical motion Pµ, energy

and momentum, obtained by integrating the time components (with respect

to one index) of Tµν over space:

Pµ(t ≡ x0) =

∫

d3xT0µ(x).

Then,
d

dt
Pµ = 0 .

We noted that a space–time-dependent change of variables on xµ is an

arbitrary change of coordinates. This explains that the tensor Tµν appears

in the coupling of matter field to the metric tensor in General Relativity.

Also any current associated with an additional space-time symmetry of

the action can be related to Tµν .
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For instance, the O(1, 3) pseudo-orthogonal transformations whose infinites-

imal form is

δxµ = Λµ
ν (x)x

ν ,

correspond to the choice

εµ = Λµ
νx

ν .

The corresponding currents Mµνρ are then

Mµνρ(x) = Tµνxρ − Tµρxν .

Dilatation invariance. We again consider, as an example, the φ4 field

theory in four dimensions:

L = 1
2∂µφ(x)∂

µφ(x)− 1
2m

2φ2(x)− 1
4!gφ

4(x).

In the absence of the mass term, the action is scale-invariant, that is, in-

variant in the substitution

φ(x) 7→ φλ(x) = λφ(λx).
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For what concerns the variation of the argument, dilatation corresponds to

taking εµ of the form

εµ = xµλ(x).

We thus expect the dilatation current Sµ to involve xνTµ
ν . A short calcula-

tion leads to

Sµ(x) = xν
[

Tµ
ν (x) +

1

6

(

∂2δµν − ∂µ∂
ν
)

φ2(x)

]

. (A12.11)

In the presence of a mass term, the current Sµ(x) is no longer conserved.

Instead,

∂µS
µ(x) = m2φ2(x).

We now introduce the tensor

T̃µν(x) = Tµν(x) +
1

6

(

∂2gµν − ∂µ∂ν
)

φ2(x).
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The tensor T̃µν can be used as energy–momentum tensor instead of Tµν :

it is a polynomial in the field, symmetric as a tensor, and satisfies the

conservation equation

∂µT̃
µ
ν = 0 .

In terms of T̃µ
ν (x), equation (A12.11) then reads

Sµ(x) = xν T̃µ
ν (x),

and the divergence of the dilatation current is

∂µS
µ = T̃µ

µ .

In dilatation-invariant theories, the trace of the ‘improved’ energy–momentum

tensor T̃µ
ν vanishes.
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A12.4 Energy–momentum tensor and euclidean field theory

Performing the infinitesimal change of variables

φ(x) = φ′
(

x+ ε(x)
)

,

in the functional integral, one can derive WT identities for the insertion of

the energy–momentum tensor (also called the stress tensor). The variation

of the action with a source is

δ

[
∫

Jφ dx− S(φ)
]

= εν(x) [J(x)∂νφ(x) + ∂µTµν(x)] .

It follows that

∂xµZTµν(x) + J(x)∂xν
δZ
δJ(x)

= 0 .

Integrating this identity over space yields
∫

dx J(x)∂ν
δZ
δJ(x)

= 0 ,

which expresses the translation invariance of correlation functions.
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After Legendre transformation, one finds

∂xµΓTµν(x) +
δΓ

δϕ(x)
∂νϕ(x) = 0 .

Again, we conclude that the insertion of the operator ∂µTµν(x) in a renor-

malized correlation function is finite. However, this does not imply that the

insertion of Tµν itself is finite. In the φ44 field theory for example, Tµν has

dimension 4. The quantity (δµν∇2 − ∂µ∂ν)φ
2 is also a symmetric tensor

of dimension 4 whose divergence vanishes. Therefore, it can appear as an

additive counter-term in the renormalization of Tµν :

(Tµν)r = Tµν +A(δµν∇2 − ∂µ∂ν)(φ
2)r .

Note that the renormalized energy–momentum tensor automatically has a

non-vanishing trace, and it can no longer be improved since the coefficient

A is divergent.
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The dilatation current is not conserved but this should have been expected

since it is impossible to regularize the theory without breaking the classical

dilatation invariance, either by introducing a cut-off, or by changing the

dimension. Nevertheless, it is possible to derive WT identities involving the

divergence of the dilatation current. By integrating them over space, one

obtains CS equations.

A12.5 Dilatation and conformal invariance

We now consider a general euclidean action, S, invariant under translation,
rotation and dilatation. We perform the infinitesimal change of variables

xµ 7−→ xµ + εµ(x).

Translation invariance implies that the variation of the action involves only

the partial derivatives of εµ(x):

δS =

∫

d4xTµν(x)∂µεν(x).
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Rotation invariance implies that δS vanishes for

εµ = Λµνxν ,

in which Λµν is an arbitrary antisymmetric matrix. Therefore, the integral

of the stress tensor must be symmetric:

∫

d4x (Tµν − Tνµ) = 0 .

Dilatation invariance corresponds to

εµ = λxµ ,

and implies the vanishing of the integral of the trace of the stress tensor:

∫

d4xTµµ = 0 .
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For the simplest class of theories, like scalar field theories with an action

S(φ) depending only on the field φ(x) and its first partial derivatives, the

two integral conditions imply the existence of a symmetric, traceless stress–

energy tensor:

Tµν = Tνµ , Tµµ = 0 .

It then follows that the variation of the action also vanishes for any function

εµ which satisfies

∂µεν + ∂νεµ − 2δµν∂ · ε = 0 . (A12.12)

The group of transformations which satisfy equation (A12.12) is larger than

the product of transformations which we have considered so far: it is the

whole conformal group. Indeed, let us calculate the variation of a line

element of the form

(ds)2 = g(x)dxµdxµ , (A12.13)

which corresponds to a conformally flat metric.
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We find

δ
[

(ds)2
]

= dxµdxµ∂ρg(x)ερ + dxµdxν (∂µεν + ∂νεµ) g(x). (A12.14)

We now see that equation (A12.12) is the necessary and sufficient condition

for the line element to retain the form (A12.13). By definition, the trans-

formations which preserve the form of the metric (A12.13) are conformal

transformations.

From equation (A12.12) it follows that

[

δµν∇2 + 2∂µ∂ν
]

∂ · ε = 0 .

The equation implies that all second derivatives of ∂ · ε vanish. Returning

then to equation (A12.12) one shows easily that all third derivatives of εµ

also vanish. Solutions of degree 0 correspond to translations. Solutions of

degree 1 correspond to rotations and dilatations.
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The additional solutions of equation (A12.12) are second degree polynomials

of the form

εµ = aµx
2 − 2xµa · x .

They correspond to special conformal transformations. The integrated form

of these transformations is

x′µ =
xµ + aµx

2

1 + 2a · x+ a2x2
.

The conformal group is isomorphic to SO(5, 1). Imposing conformal invari-

ance on correlation functions determines, in particular, two- and three-point

functions.

Of course, scale invariance of the classical theory is broken at the quantum

level. However, there exist situations in which the RG β-function vanishes,

at least for some values of the coupling constants. Then both the dilatation

invariance and, therefore, the conformal invariance are restored.
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Remark. The condition that the action should depend only on the field

and its first derivatives can be illustrated by a simple counter-example.

Consider the free action S(φ)

S(φ) =
∫

d4x
(

∇2φ(x)
)2
.

The propagator in Fourier space is 1/p4. The theory is obviously translation,

rotation and scale invariant. However, one verifies that it is not conformal

invariant.
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