
Lecture 14: NON-ABELIAN GAUGE THEORIES:

THE BASIS OF THE STANDARD MODEL



In chapter 13 we have described the structure and the formal properties of

Abelian gauge theories, which provide a framework for the construction of

Quantum Electrodynamics. However, to be able to describe other funda-

mental interactions, Weak and Strong Interactions, it is necessary to gener-

alize the concept of gauge symmetry to non-Abelian groups. Therefore, in

this chapter we construct a field theory invariant under local, that is, space-

dependent, transformations of a general compact Lie group G. Inspired by

the Abelian example of chapter 13, we immediately introduce the geometric

concept of parallel transport. All the required mathematical quantities then

follow quite naturally.

We quantize gauge theories and study some of the formal properties of the

quantum theory like the BRS(T) symmetry, which is essential for renormal-

ization. We show how perturbation theory can be regularized, a somewhat

non-trivial problem. Finally, we discuss general aspects of the non-Abelian

Higgs mechanism.
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14.1 Parallel transport and gauge invariance

We consider a scalar field φ(x) transforming under a linear unitary or or-

thogonal representation R(G) of a compact Lie group G. We want to con-

struct a field theory that has a local G-symmetry, that is, a theory where

the action is invariant under space-dependent group transformations, also

called gauge transformations. Denoting by g a matrix belonging to the

representation R(G), we write the φ-field transformation:

φ′(x) = g(x)φ(x). (14.1)

In the case of products of fields taken at the same point, global invariance (g

constant) implies local invariance. However, in the case of global invariant

functions involving field derivatives or, more generally, products of fields

taken at different points this is no longer true. To solve the problem one

introduces parallel transporters, which are curve-dependent elements of the

representation R(G).
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14.1.1 Parallel transport

Let Cyx be a continuous, piecewise differentiable oriented curve with origin

a point x and end-point a point y. We define curve-dependent elements

U(C) of the group R(G) that satisfy

U(Czy ∪ Cyx) = U(Czy)U(Cyx) ⇒ U(Cxx ≡ point x) = 1 . (14.2)

Moreover, denoting by C−1 the curve C with opposite orientation, one

imposes

U(C−1) = U−1(C). (14.3)

Gauge transformations. If g(x) is a space-dependent group element, we

define the gauge transformation of U(Cxy) by

Ug(Cxy) = g(x)U(Cxy)g
−1(y). (14.4)

The gauge transformation is consistent with the rules (14.2, 14.3). More-

over, trU(C), where C is a closed curve, is gauge invariant.
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Matter and gauge fields. The definition of parallel transport is such that

the vector

φ(U, x) = U(Cxy)φ(y), (14.5)

transforms by g(x) instead of g(y). Thus, the quantity φ†(x)U(Cxy)φ(y)

is gauge invariant.

We now assume that in the limit of an infinitesimal differentiable curve,

yµ = xµ + dxµ , (14.6)

U(C) is differentiable in xµ. We can then parametrize it in terms of the

connection Aµ(x), which is a vector from the point of view of space trans-

formations, and a matrix (antisymmetric or anti-hermitian) belonging to

the representation of the Lie algebra of R(G):

U(C) = 1+
∑

µ

Aµ(x)dxµ + o (‖dxµ‖) .
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The transformation properties ofAµ(x) are obtained by expanding equation

(14.4) to first order in dxµ,

A′
µ(x) = g(x)Aµ(x)g

−1(x) + g(x)∂µg
−1(x). (14.7)

From the point of view of global transformations (g(x) constant), the field

Aµ(x) transforms by the adjoint representation of the group G.

However, Aµ(x), which is usually called the gauge field or Yang–Mills

field, is not a tensor for gauge transformations, the transformation being

affine.
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14.1.2 Covariant derivative and curvature tensor

To the connection Aµ(x) is associated a covariant derivative Dµ, whose

explicit form depends on the tensor on which it is acting. To obtain its

expression when acting on φ(x) we consider in equation (14.5) the limit

(14.6) of an infinitesimal curve. The equation (14.5) becomes

φ(U, x) =

(

1+
∑

µ

Aµ(x)dxµ

)(

φ(x) +
∑

µ

∂µφ(x)dxµ

)

+ o (‖dxµ‖)

=

(

1+
∑

µ

dxµDµ

)

φ(x) + o (‖dxµ‖)

with

Dµ = 1 ∂µ +Aµ . (14.8)

Dµ is both a differential operator acting on space variables and a matrix.
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The identity

g(x) (1 ∂µ +Aµ)g
−1(x) = 1 ∂µ + g(x)Aµ(x)g

−1(x) + g(x)∂µg
−1(x),

(14.9)

shows that Dµ is a tensor, since D′
µ, the transform of Dµ under the gauge

transformation (14.7), is

D′
µ = g(x)Dµ g

−1(x). (14.10)

In the equations (14.9, 14.10) the products have to be understood as prod-

ucts of differential and multiplicative operators.
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Infinitesimal gauge transformations. Setting,

g(x) = 1+ ω(x) + o (‖ω‖) ,

in which ω(x) is an element of the Lie algebra of R(G), we derive from

equation (14.7) the form of the infinitesimal gauge transformation of the

field Aµ,

−δAµ(x) = ∂µω + [Aµ,ω] ≡ Dµω . (14.11)

In equation (14.8) we have given the form of the covariant derivative corre-

sponding to the representation R(G). The equation (14.11) yields the form

of the covariant derivative in the adjoint representation. One verifies that

∂µω
′ +

[

A′
µ,ω

′
]

= g(x)
{

∂µω + [Aµ,ω]
}

g−1(x),

in which A′
µ is given by equation (14.7) and ω′ by

ω′(x) = g(x)ω(x)g−1(x).

1143



Curvature tensor. The commutator of two covariant derivatives,

Fµν(x) = [Dµ,Dν ] = ∂µAν − ∂νAµ + [Aµ,Aν ] ,

is no longer a differential operator. It is again an element of the Lie algebra

of R(G) and transforms, as a consequence of equation (14.10), as

F′
µν(x) = g(x)Fµν(x)g

−1(x).

Thus, Fµν is a tensor, the curvature tensor, generalization of the electro-

magnetic field of QED. The curvature tensor is associated with parallel

transport along an infinitesimal closed curve.
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14.1.3 Expressions in component form

In many situations it is useful to write previous expressions in component

form. We expand Aµ(x) on a basis {ta} of generators of the Lie algebra in

the representation R. The generators satisfy the commutation relations,

[tb, tc] =
∑

a

fbcat
a,

where fbca are the structure constants. The gauge field can be expanded on

the basis and we define,

Aµ(x) =
∑

a

Aa
µ(x)t

a.

The covariant derivative (14.8) then reads,

(Dµ)ij = ∂µδij +
∑

a

Aa
µ(x)t

a
ij . (14.12)
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The equation (14.11) involves the structure constants fabc of the Lie algebra,

−δAa
µ(x) = ∂µωa(x) +

∑

b,c

fbcaA
b
µ(x)ωc(x).

This equation yields also the form of the covariant derivative in the adjoint

representation.

Finally, the curvature tensor can also be expanded on the basis:

Fµν(x) =
∑

a

F a
µν(x)t

a

and, therefore,

F a
µν(x) = ∂µA

a
ν(x)− ∂νA

a
µ(x) +

∑

b,c

fbcaA
b
µ(x)A

c
ν(x). (14.13)

This last expression is independent of the group representation.
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14.2 Gauge invariant action

Gauge field. The simplest gauge invariant action S(A) function of the gauge

field Aµ, and generalization of the Abelian action in (13.28), has the form

S(A) = −
1

4e2

∫

d4x
∑

µ,ν

trF2
µν(x). (14.14)

It is associated with the parallel transport along an infinitesimal closed

curve.

We have not added a mass term for the gauge field as in section 13.1.

Indeed, one can show that in the non-Abelian case the zero mass limit is

singular.

We have also chosen the normalization of the gauge field, in such a way

that all geometric quantities become independent of the gauge coupling

constant. The sign in front of the action takes into account that, with our

definition, the matrix Fµν is anti-hermitian or antisymmetric.
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Two remarks are immediately in order:

(i) In contrast with the Abelian case, because the gauge field transforms

non-trivially under the group, as equation (14.7) shows (the gauge field is

‘charged’), the curvature tensor Fµν is not gauge invariant, and thus not

directly associated with a physical observable.

The action (14.14) is no longer a free field action; the gauge field has

self-interactions and even the spectrum of the pure gauge action is non-

perturbative (some analytic results can be obtained in dimension two).

We indicate in chapter 16 how lattice gauge theory provides a framework

for non-perturbative investigations.

(ii) As in the Abelian case, the action, because it is gauge invariant, does

not provide a dynamics to the degrees of freedom of the gauge field which

correspond to gauge transformations and, therefore, some gauge fixing is

required.
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Matter fields. For boson fields transforming by (14.1), and taking into

account the transformation (14.10) of the covariant derivatives, one verifies

that the action

SB(φ) =

∫

d4x

[

∑

µ

(

Dµφ(x)
)†
Dµφ(x) + V

(

φ(x)
)

]

,

is gauge invariant if V (φ) is a group invariant function of the scalar field φ.

Similarly, for fermions transforming by R(G), the action

SF(ψ̄, ψ) = −

∫

d4x ψ̄(x) (6D +M)ψ(x),

is gauge invariant.
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14.3 Hamiltonian formalism. Quantization

In this section we discuss only the quantization of a gauge theory without

matter corresponding to the action (14.14), because the extension of all

arguments to a general gauge invariant theory is straightforward.

We first show that non-Abelian gauge theories can be quantized, using

a simple Hamiltonian formalism, by the method explained in the Abelian

case in section 13.4. This leads to a field theory that, at least at the formal

level, is unitary because it corresponds to a hermitian Hamiltonian.

Classical field equations. We first consider real time field theory, we

denote by t ≡ x0 = ix4 time and the corresponding field component by

A0 = −iA4. We use the notation Q̇ for the time derivative of Q. Space

components will carry Roman indices (Ai, xi) and four-dimensional compo-

nents Greek indices.
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To the continuation to real time of the action (14.14) corresponds the clas-

sical field equation
∑

µ

DµF
µν(x) = 0 , (14.15)

in which the explicit form of Dµ is given by equation (14.11). The action

(14.14) does not lead to a standard quantization because, as in the Abelian

case, it does not depend on Ȧ0, the time derivative of A0. Thus, here

also A0 is not a dynamical variable, the A0 field equation is a constraint

equation that can be used to eliminate A0 from the action.

However, in the absence of a mass term, the reduced action does not

depend on all space components of the gauge field. Only the combination
[

δij −Di(D
2
⊥)

−1Dj

]

Ȧj appears (D2
⊥ is the covariant space Laplacian).

But in contrast with the Abelian case the projector acting on Ai depends

on the field itself, and, therefore, the procedure which led to Coulomb’s

gauge does not work here, at least in its simplest form.
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14.3.1 Temporal (Weyl) gauge: classical field equations

Therefore, we discuss the quantization in the simpler temporal gauge with

a straightforward generalization of the method used in the Abelian case.

We first note that if Aµ(t, x) is a solution of equation (14.15), any gauge

transform of Aµ(t, x) is also a solution. All solutions can thus be obtained

from a solution belonging to a gauge section, a section in the space of all

gauge fields which intersects once all gauge orbits, and a gauge transforma-

tion. One gauge section is well-suited to the construction of a Hamiltonian

formalism, the temporal gauge which is defined by the equation

A0(t, x) = 0 . (14.16)

The gauge condition (14.16) is left invariant by time-independent gauge

transformations, which thus form a symmetry group of the gauge fixed

Lagrangian.
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In the field equation (14.15), we separate the space and time components.

The space components yield

3
∑

l=1

DlFl0 = 0 , D0F0k −
3

∑

l=1

DlFlk = 0 , k ≤ 3 . (14.17)

The indices k, l correspond to space components. For A0 = 0, the equations

simplify and become

Ėk =
∑

l

DlFlk, (14.18)

∑

l

DlEl = 0 (14.19)

with

Ek = −Ȧk/e
2. (14.20)
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The equation (14.18) is a dynamical equation that can be directly derived

from the initial Lagrangian in which the condition (14.16) has been used:

L(A) = − tr

∫

d3x

[

1

2e2

∑

k

Ȧ2
k(t, x)−

1

4e2

∑

k,l

F2
kl(t, x)

]

. (14.21)

The expression (14.21) defines a standard Lagrangian for the space compo-

nents of the gauge field: Ek is the conjugated momentum of Ak (equation

(14.20)) and the corresponding Hamiltonian takes the form

H(E,A) = − tr

∫

d3x

(

e2

2

∑

k

E2
k(x) +

1

4e2

∑

k,l

F2
kl(x)

)

. (14.22)

The equation (14.19) is a constraint, non-Abelian generalization of Gauss’s

law. The only relevant solutions of the field equations are those that sat-

isfy the constraint. The constraint is compatible with the classical motion

because the Poisson brackets of the constraint and the Hamiltonian vanish.
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This is a direct consequence of the symmetry under time-independent gauge

transformations of the Lagrangian (14.21) and thus of the Hamiltonian

(14.22).

The quantities
∑

l DlEl are the generators, in the sense of Poisson brack-

ets, of the symmetry group.

14.3.2 Temporal gauge: quantum theory

Quantization in the temporal gauge, as in the Abelian case, then is standard.

In the euclidean formalism, the partition function can be written as

Z =

∫

[dAµ] δ(A4) exp

[

1

4e2

∫

d4x tr
∑

µ,ν

F2
µν(x)

]

. (14.23)

The constraint. In the quantum theory, the quantum operators
∑

l DlEl

generators of a symmetry group, commute with the Hamiltonian.
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The space of admissible physical states Ψ(A) is restricted by the quantum

generalization of Gauss’s law:

∑

l

DlElΨ(A) ≡
∑

l

Dl
1

i

δ

δAl(x)
Ψ(A) = 0 .

The equation implies that physical states are gauge invariant, that is, belong

to the invariant sector of the symmetry group, a subspace which is left

invariant by quantum evolution.

Note that at zero temperature the perturbative vacuum is automatically

gauge invariant and Gauss’s law plays no role. This is no longer the case at

finite temperature.

Remarks. The theory we have constructed is not explicitly space time

covariant and this is the source of serious difficulties as we have already

pointed out in the Abelian case (see section 13.4).
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In particular, in the temporal gauge the theory is not renormalizable in the

sense of power counting. Indeed the propagator in this gauge

W
(2)
ij (k⊥, k4) =

1

k2

(

δij −
kikj
k2
⊥

)

+
1

k24

kikj
k2
⊥

,

in which k⊥ is the ‘space’ part of k, does not decrease at k4 fixed for large

spatial momenta |k⊥|.

These problems are solved by showing that gauge invariant observables

can alternatively be calculated from another quantum action which leads to

a theory which is explicitly covariant and renormalizable by power counting.
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14.3.3 Covariant gauges

It is generally more convenient to work with a covariant gauge rather than

with the temporal gauge (14.23). We want to implement the covariant gauge

condition,
∑

µ

∂µAµ(x)− ν(x) = 0 , (14.24)

where ν(x) is a given external field which belongs to the Lie algebra of

R(G). This can be achieved by starting from the equation

E(g, x) ≡
∑

µ

∂µA
g
µ(x)− ν(x) = 0 (14.25)

for the space-dependent group element g(x), Ag
µ being the gauge transform

of Aµ (equation (14.7)) by g. If ν(x) is a stochastic field, the equation

(14.25) gives to g(x) a stochastic distribution.
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We assume that the equation (14.25) has a unique solution, which is

equivalent to assert that in the space of gauge fields the surface defined by

equation (14.24) intersects once and only once all gauge orbits.

This condition is satisfied for small fields and, thus, in perturbation theory

but not necessarily beyond (see the remark at the end of the section).

We then use the identity

1 =

∫

[dg]δ
(

E(g, x)
)

detM(g), (14.26)

where dg is the group invariant measure and detM the Jacobian of the

transformation E 7→ g.

The operator M is of the form δE/δg. We thus need the variation of E

induced by an infinitesimal variation of g, which can be parametrized as

δg(x) = ω(x)g(x), ω(x) belonging to the Lie algebra.
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The variation of the δE is

δE(g, x) = −
∑

µ

∂µDµ(A
g)ω(x) ⇒ M =

∑

µ

∂µDµ(A
g).

We now introduce a boson field λ and spinless fermions C̄ and C, the

Faddeev–Popov ‘ghosts’, and all transforming under the adjoint representa-

tion. We replace the functional δ-function by its the Fourier representation,

δ
(

E(g, x)
)

=

∫

[dλ] exp

[

− tr

∫

ddxE(g, x)λ(x)

]

.

We express detM as an integral over the fermions C̄ and C as

detM =

∫

[dC̄ dC] exp

[

− tr

∫

ddx
∑

µ

C(x)∂µDµ(A)C̄(x)

]

.
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These two identities allow rewriting the identity (14.26) as

1 =

∫

[dg dC̄ dC dλ] exp
[

−Sgauge(A
g, C̄,C,λ,ν)

]

, (14.27)

with

Sgauge(A, C̄,C,λ,ν) =

∫

d4x tr

{

λ(x)

[

∑

µ

∂µAµ(x)− ν(x)

]

+
∑

µ

C(x)∂µDµ(A)C̄(x)

}

. (14.28)

We introduce the identity (14.27) in the representation (14.23) of the par-

tition function in the temporal gauge and obtain

Z =

∫

[dg dC̄ dC dλ dAµ]δ(A4)

× exp

[

1

4e2

∫

d4x trF2
µν(x)− Sgauge(A

g, C̄,C,λ,ν)

]

.
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We then change variables Ag
µ 7→ Aµ. The classical gauge action (14.14) is

gauge invariant. Only the gauge condition δ(A4) is affected. Changing g

into g−1, one finds

Z =

∫

[dg dC̄ dC dλ dAµ]δ(A
g
4) exp

[

−S(A, C̄,C,λ,ν)
]

with

S(A, C̄,C,λ,ν) = −
1

4e2

∫

d4x tr
∑

µ,ν

F2
µν(x) + Sgauge(A, C̄,C,λ,ν).

(14.29)

We integrate over the group field g(x). The result of the integral
∫

[dg] δ(Ag
4)

is gauge invariant. We can thus calculate it only for fields satisfying the

gauge condition A4 = 0. Then,

A
g
4(x) = g(x)∂4g

−1(x),

and the integral yields a constant independent of A.
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This leads to the field integral representation

Z =

∫

[

dAµ dC̄ dC dλ
]

exp
[

−S(A, C̄,C,λ,ν)
]

,

where the quantum action is given by

S(A, C̄,C,λ,ν) = −
1

4e2

∫

d4x tr
∑

µ,ν

F2
µν(x) + Sgauge(A, C̄,C,λ,ν).

Since the partition function is independent of ν, one can average over the

‘noise’ field ν(x) with the Gaussian distribution

[dρ(ν)] = [dν] exp

[

1

2ξe2

∫

d4x trν2(x)

]

. (14.30)
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The averaged partition function Z then reads

Z =

∫

[

dAµ dC̄ dC dλ
]

exp
[

−S(A, C̄,C,λ)
]

, (14.31)

where

S(A, C̄,C,λ) = −
1

4e2

∫

d4x tr
∑

µ,ν

F2
µν(x) + Sgauge(A, C̄,C,λ), (14.32)

Sgauge =

∫

d4x tr

[

ξe2λ2(x)

2
+

∑

µ

(

λ(x)∂µAµ(x) +C(x)∂µDµC̄(x)
)

]

.

(14.33)

Except in the ξ = 0 limit, it is also possible to integrate over λ(x). This

amounts to setting

λ(x) = −
1

ξe2
∂µAµ(x).

1164



One obtains the new quantum action better suited for perturbative calcu-

lations,

S(A, C̄,C) =

∫

d4x tr

{

−
1

e2

[

1
4

∑

µ,ν

F2
µν +

1

2ξ

(

∑

µ

∂µAµ

)2]

+
∑

µ

C(x)∂µDµC̄(x)

}

. (14.34)

However, geometric properties of the action are more apparent in expression

(14.32), in particular the BRS symmetry.

The obvious drawback of the covariant gauge, which leads to a covari-

ant, local and renormalizable theory, is the lack of explicit unitarity. In

particular, Faddeev–Popov fermions being spinless do not obey to the spin–

statistics connection and are, thus, unphysical.

The method used here to establish the formal equivalence between the

two gauges (14.31) and (14.23) can be generalized to other gauges.
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Gribov’s ambiguity. Gribov has pointed out that, in contrast with the

Abelian case, depending on the value of the gauge field Aµ(x), the gauge

condition (14.25) has not always a unique solution in g(x), a problem called

Gribov’s ambiguity. When two solutions merge, the operator
∑

µ ∂µDµ(A)

has zero eigenvalues. This implies that the representation (14.31) is not

meaningful beyond perturbation theory. The same ambiguity has been

shown to arise for a large class of gauge conditions.

14.3.4 BRS(T) symmetry

After quantization, the action (14.34) is no longer gauge invariant. However,

it follows from a general analysis of constraint equations inserted in integrals

(see appendix A14.1) that the action now has a BRS symmetry due to the

gauge fixing contraint.
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To explain the form of the BRS transformations in the gauge theory context,

we parametrize the gauge field as

Aµ(x) = Bg
µ(x),

where Bµ(x) satisfies the gauge condition (14.25):
∑

µ ∂µBµ(x) = ν(x).

BRS transformations in the case of group manifolds take the form

{

δg(x) = εC̄(x)g(x), δC̄(x) = εC̄2(x),

δC(x) = ελ(x), δλ(x) = 0 ,
(14.35)

where ε is an additional Grassmann variable (see equation (A14.13)).

The field Bµ(x) has a dynamics provided by the gauge action and is

invariant under BRS transformations, δBµ(x) = 0, as well as any gauge

invariant quantity.

1167



The transformations (14.35) correspond for g(x) to an infinitesimal gauge

transformation.

The variation of the field Aµ comes from the variation of g(x) and thus

δAµ(x) = δBg
µ(x) = −εDµC̄(x) . (14.36)

The action of a BRS transformation on a function of A, C̄,C,λ can be

reproduced by the action of the BRS differential operator

D =

∫

d4x tr

[

−
∑

µ

DµC̄(x)
δ

δAµ(x)
+ C̄2(x)

δ

δC̄(x)
+ λ(x)

δ

δC(x)

]

.

(14.37)

In particular, we can express the BRS symmetry of the quantized action by

the equation

DS(A, C̄,C,λ) = 0 . (14.38)
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Moreover, one verifies quite generally that D has the form of a cohomology

operator:

D2 = 0 .

Thus, in the cohomology terminology, equation (14.38) implies that S is

BRS closed. Moreover, Sgauge is BRS exact. More explicitly, for expression

(14.28)

Sgauge = D

∫

d4x trC(x) [∂µAµ(x)− ν(x)] ,

or after integration over the ν field (equation (14.33)),

Sgauge = D

∫

d4x trC(x)
[

∂µAµ(x) +
1
2ξe

2λ(x)
]

. (14.39)

WT identities associated with the BRS symmetry (14.35, 14.36) imply the

structural stability of the quantum action (14.32) under renormalization.

The simplest and most general proof relies on the Zinn-Justin equation.
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14.4 Perturbation theory, regularization

Compared with the Abelian case, the new features of the action (14.34) are

the presence of gauge field self-interactions and ghost terms. Let us first

write the different terms of the gauge action in component form to establish

conventions and normalizations. The gauge action takes the form:

S(Aa
µ) =

1

4e2

∫

d4x
∑

a,µ,ν

[F a
µν(x)]

2,

where the curvature tensor is given by equation (14.13) and the trace of

the unit matrix has been swallowed into a redefinition of the coupling con-

stant. In the covariant gauge of section 14.3.3, the gauge field propagator

is (equation (13.17))

[∆ξ]
ab
µν(k) = e2δab

(

δµν
k2

+ (ξ − 1)
kµkν
(k2)2

)

.
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In four dimensions, as in the Abelian case, the gauge field has dimension 1.

The ghost field action becomes

Sghost =

∫

d4x
∑

a,c,µ

Ca(x)∂µ
[

∂µδac +
∑

bfbcaA
b
µ(x)

]

C̄c(x).

The ghost fields thus have a simple δab/k
2 propagator and canonical dimen-

sion 1 in four dimensions. The interaction terms have all dimension 4 and,

therefore, the theory is renormalizable by power counting in four dimen-

sions. The power counting for matter fields is the same as in the Abelian

case.
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Compared with the Abelian case, the non-Abelian theory has three new

vertices coming from the gauge field self-interactions and the interaction

with the ghost fields. The gauge field three-point function at leading order

is

[Γ̃(3)]abcµνρ(p, q, r) =
i

e2
fabc [(r − q)µδνρ + (p− r)νδρµ + (q − p)ρδµν ] .

(14.40)

The gauge field four-point function is given by

[Γ̃(4)]abcdµνρσ =
1

e2

∑

e

[feabfecd (δµρδνσ − δµσδνρ) + feacfebd (δµνδρσ − δµσδνρ)

+feadfecb (δµρδνσ − δµνδσρ)] .

All terms are obtained from the first by exchanging the indices to make the

correlation function totally symmetric. Finally, the ghost gauge field vertex

is
〈

Ca(p)C̄b(q)Ac
µ(r)

〉

= −ifabcpµ .
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Notice that in a generic gauge the two ghost fields play a different role. In

a graphic representation of Feynman diagrams ghost propagator lines are

oriented. However, in the special case ξ = 0 corresponding to Landau’s

gauge, because
∑

µ ∂µAµ vanishes, the vertex can be antisymmetrized and

a symmetry between ghost fields is established.

Matter fields. The coupling to matter fields differs from the Abelian

case only by some geometric factors corresponding to group indices. For

example, the coupling to fermions generated by the covariant derivative

(14.12) is simply γµt
a
ij .

Infrared divergences. In the covariant gauge, and in the absence of a

Higgs mechanism which provides a mass to gauge fields, only the gauge

ξ = 1, Feynman’s gauge , leads to a theory which is obviously IR finite.

In contrast to the Abelian case, it is impossible to give an explicit mass to

the gauge field and to then construct a theory which is both unitary and

renormalizable.
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On the other hand, we want eventually to prove the gauge independence

of the theory and therefore we must be able to define it for more than one

gauge. One way to introduce an IR regulator is to consider the theory in a

finite volume.

Regularization. The problem of regularization in non-Abelian gauge the-

ories has many features in common with the Abelian case, as well as with

the non-linear σ-model. We review the three regularization methods that

we have always considered in this work. Dimensional regularization is the

most convenient for practical calculations and works in the absence of chiral

fermions. Lattice regularization, which is also relevant for non-perturbative

calculations can be used generally (see lecture 16 for details) since a (non-

trivial) method for handling chiral fermions has been found (related to

Ginsparg–Wilson’s relation). Finally, momentum or Pauli–Villars’s type

regularizations work partially in geometric models, in the sense that they

regularize all diagrams except one-loop diagrams.
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We verify this property again here.

The regularized gauge action takes the form:

S(A) =

∫

d4x tr
∑

µ,ν

FµνP (D
2/Λ2)Fµν ,

in which P is a polynomial of arbitrary degree. In the same way the gauge

function
∑

µ ∂µAµ is changed into

∑

µ

∂µAµ 7−→ Q(∂2/Λ2)
∑

µ

∂µAµ ,

in which Q is a polynomial of same degree as P . As a consequence both

the gauge field propagator and the ghost propagator can be made arbitrar-

ily convergent. However, as in the Abelian case, the covariant derivatives

generate new interactions which are more singular.
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It is easy to verify that the power counting of one-loop diagrams is un-

changed while higher order diagrams can be made convergent by taking the

degrees of P and Q large enough.

For matter fields the situation is the same as in the Abelian case, for

example, massive fermions contributions can be regularized by adding a set

of regulator fields, massive fermions and bosons with spin.

Again in the case of chiral fermions, global chiral properties can be pre-

served, but problems arise with local chiral transformations. However, the

problem of the compatibility between the gauge symmetry and the quan-

tum corrections is reduced to an explicit verification of the WT identities

for the one-loop diagrams. Note that the preservation of gauge symmetry

is necessary for the cancellation of unphysical states in physical amplitudes,

and thus essential to the physical consistency of the quantum field theory.
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WT identities and renormalization. From the BRS symmetry corresponding

to the transformations (14.35–14.36) follow WT identities. Their form is

somewhat complicated and we postpone the discussion to lecture ?.? , where

we derive the form of the renormalized action for a general gauge theory.

We give here the result only in the example of the pure gauge action in the

covariant gauge. We can assume that the gauge group G is simple. Then

the renormalized form of the action (14.34) is given by the substitution:

{

e2 7−→ Zee
2 , Aµ 7−→ Z

1/2
A Aµ ,

ξ 7−→ ZAZ
−1
e ξ , CC̄ 7−→ ZCCC̄ .

This result has a simple interpretation: the gauge structure (14.34) is pre-

served and the coefficient of (
∑

µ ∂µAµ)
2 is unrenormalized exactly as in the

Abelian case. However, unlike the Abelian case, the gauge transformation

of the gauge field and, more generally the form of the covariant derivative,

are modified by the gauge field renormalization.
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14.5 The non-Abelian Higgs mechanism

We have already discussed the Higgs mechanism in the Abelian case. The

basic idea is the same in non-Abelian gauge theories: the spontaneous break-

ing of a global symmetry associated with a gauge invariance leads to masses

for gauge fields without generating massless Goldstone particles. Simply,

because the group structure is richer, a number of different situations may

arise.

We consider a classical gauge invariant action, here expressed in terms of

real fields, for a gauge field coupled to a scalar boson φ transforming under

an orthogonal representation of the symmetry group (the generators tα are

antisymmetric matrices):

S(A,φ) =

∫

d4x

[

−
1

4e2
tr
∑

µ,ν

F2
µν(x)+

1

2

∑

µ

Dµφ(x) ·Dµφ(x)+V
(

φ(x)
)

]

.

We assume that the symmetric potential V (φ) has non-symmetric minima.
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In the absence of gauge symmetry, this is the situation which we have al-

ready analysed in section 12.4. Since the spectrum in the classical limit

depends on the group structure and the representation content of the field

φ, we consider here only two families of examples.

14.5.1 Simple Lie groups

We first assume that G, the symmetry group of the action, is simple and

is thus also the gauge group. Moreover, we assume for simplicity that the

field φ belongs to an irreducible representation. We assume that φ has

an non-vanishing expectation value, 〈φ〉 = v, corresponding to a degnerate

minimum of the potential and call H the subgroup of G that leaves the

vector v invariant. We separate the generators tα of G in the matrix rep-

resentation into two subsets α ≤ p corresponding to the Lie algebra L(H)

of the subgroup H, and the complementary set L(G/H).
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We parametrize the scalar field φ(x) as

φ(x) = exp

[

∑

α>p

tαθα(x)

]

(

v + ρ(x)
)

, (14.41)

in which the vectors ρ and { tαijvj} span two orthogonal subspaces. The

transformation

φ(x) 7−→ {θα(x), ρ(x)},

is such that the new fields ρ(x) and θα(x) can be expanded in powers of

φ(x) − v. In the absence of gauge fields, we have used the representa-

tion (14.41) to show that the fields θα(x) correspond to massless Goldstone

modes induced by the spontaneous breaking of the G-symmetry.
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Here the equation (14.41) can also be viewed as a local group transformation

relating the two fields φ and ρ+ v. If we perform on the field Aµ a gauge

transformation of the form (14.7) with

g(x) = exp

[

∑

α>p

tαθα(x)

]

, (14.42)

we eliminate the fields θα from the action completely. In fact we have fixed

(at least partially) the gauge. If we now examine the scalar field contribution

to the action, we see that for ρ = 0 it reduces to a mass term for the gauge

field:
1
2

∑

µ

Dµφ ·Dµφ|ρ,θα=0 = 1
2

∑

α,β,µ

σαβA
α
µA

β
µ,

with the mass matrix

e2σαβ = e2
∑

i,j,k

tαijvjt
β
ikvk .
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The matrix σαβ is positive and has a rank equal to the number of generators

of L(G/H), which is also the number of fields θα, that is, the number of

would-be Goldstone bosons. We conclude that the spontaneous breaking of

the G-symmetry generates no Goldstone bosons but instead gives masses

to all gauge fields except those which are associated with the unbroken

subgroup H. In particular, when the symmetry is completely broken, all

components of the gauge field acquire a mass.

If one considers directly the classical action obtained after the gauge trans-

formation associated with group element (14.42), the set of massive vector

fields can be quantized in a completely standard way. However, as in the

Abelian case the quantized theory is not renormalizable.
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14.5.2 The G×G symmetry

Another possibility is that the symmetry group of the action is the direct

product of the gauge group G by another group G′. We here consider only

the simplest example where the symmetry group is G×G and G is simple.

We assume that the scalar boson field φ is a matrix transforming under

G×G by

φ′ = g1φg
−1
2 ,

in which g1 and g2 are two elements of G in a matrix representation and

only the group acting on the left is gauged:

Dµφ = (1∂µ +Aµ)φ .

We further assume that one minimum of the potential is proportional to

the unit matrix φ = v1 in such a way that the subgroup H is isomorphic

to G with elements of the form (g,g).
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As before the would-be Goldstone bosons correspond to gauge transfor-

mations and can thus be eliminated from the action. In this example all

components of the gauge field acquire the same mass mA because the sym-

metry corresponding to the gauge field is completely broken and a remaining

diagonal G symmetry survives:

tr
∑

µ

(

DT
µφ

)

(Dµφ) |φ=v1 = −v2 tr
∑

µ

A2
µ ⇒ mA = |ev|.

The action obtained after the gauge transformation specified by equation

(14.42) contains only physical degrees of freedom and the quantization of all

vector fields is straightforward, hence the name of unitary gauge. From the

point of view of the initial theory the gauge has been completely fixed. We

have constructed an action for massive vector fields transforming under the

adjoint representation of a symmetry group G. However, the corresponding

field theory is not renormalizable by power counting.
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The difference with the massive vector field theory is that the suitable addi-

tion of some scalar fields makes this theory equivalent, at least for physical

observables, with a renormalizable theory with additional unphysical de-

grees of freedom.

Remark. If we formally take the non-linear model limit, that is, send the

masses of all remaining scalar fields towards infinity at v fixed, we obtain

an action for a self-interacting massive vector field.

14.5.3 The SU(2)× SU(2) example

We discuss more specifically the important example of the SU(2) group

because it can be considered as a simplified version of the Standard Model

of weak-electromagnetic interactions that will be described in section 15.1.

We choose for scalar field φ a 2× 2 complex matrix transforming under the

(1/2,1/2) representation of SU(2)× SU(2).
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We know that the representation can be reduced and we restrict the matrix

to the form (see section 12.5):

φ = 1
2 (σ + iτ · π) , (14.43)

in which σ and π are real fields and the τ matrices are identical to the σ

Pauli matrices defined in section A11.2.

We represent the gauge field as a three-component real vector Aµ and

the covariant derivative acts like

Dµφ =
(

∂µ + 1
2 iAµ · τ

)

φ .

We define the curvature tensor Fµν by

[Dµ,Dν ] =
1
2 iFµν · τ ⇒ Fµν = ∂µAν − ∂νAµ −Aµ ×Aν .

The simplest action can then be written as

S(A,φ) =

∫

d4x

[

1

4e2

∑

µ,ν

F2
µν+tr

∑

µ

(Dµφ)
†
Dµφ+r trφφ

†+
λ

6

(

trφφ†
)2
]

.

(14.44)
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In the (σ,π) parametrization, infinitesimal gauge transformations take the

form










δAµ = ∂µω −Aµ × ω ,

δσ = 1
2ω · π ,

δπ = − 1
2σω + 1

2ω × π .

The scalar field action in these variables becomes

Sscalar =

∫

d4x

[

1
2

∑

µ

(

∂µσ − 1
2π ·Aµ

)2
+ 1

2

∑

µ

(

∂µπ + 1
2σAµ − 1

2Aµ × π
)2

+ Ṽ (σ2 + π2)

]

(14.45)

with

Ṽ (s) = 1
2rs+

1
24λs

2.

Note that for the potential Ṽ , SU(2)×SU(2) symmetry implies O(4) sym-

metry. The two groups are locally isomorphic.
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As we have already discussed in section 12.5, if the potential Ṽ has de-

generate classical minima, the field φ has a non-zero expectation value.

Without loss of generality we choose the expectation value of φ to be pro-

portional to the unit matrix and, thus, the component σ to have a non-zero

expectation value:

〈σ〉 = v > 0 .

Then the symmetry SU(2)× SU(2) is broken down to the diagonal SU(2)

group. In the absence of gauge fields, the π-field becomes a massless Gold-

stone boson. Here the π-field can be eliminated by a gauge transformation,

in such a way that the total action written in the unitary gauge becomes

S(A, σ) =

∫

d4x

[

1

4e2

∑

µ,ν

F2
µν +

1

2

∑

µ

(∂µσ)
2 +

1

8

∑

µ

σ2A2
µ +

r

2
σ2 +

λ

24
σ4

]

.

This action has an O(3) symmetry. From the point of view of the O(3)

group the gauge field A is a three-vector and the field σ a scalar. In the
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classical approximation, the gauge field mass mA is given in terms of the

σ-field expectation value v by

mA = |ev|/2 , mσ =
√

λ/3 v and thus mσ/mA =
√

4λ/3/|e| . (14.46)

14.5.4 Gauge fixing of the Higgs model in a covariant gauge

If we consider the contribution (14.45) to the action, we see that when the

σ-field has an expectation value, a term of the form
∑

µ ∂µπ·Aµ is generated

which introduces a mixing between the would-be Goldstone boson π and the

longitudinal part of the vector field. This is a feature already encountered

in the Abelian case (section 13.12). As suggested by ’t Hooft, it is possible

to use the gauge function to eliminate such a term. In the SU(2) example

we can take as gauge function

F (A,π) =
∑

µ

∂µAµ + 1
2λξπ .
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After a Gaussian integration, the corresponding contribution to the action

is

SF = Sgauge + Sghost

with

Sgauge =
1

2ξe2

∫

d4x

(

∑

µ

∂µAµ + 1
2λξπ

)2

and

Sghost =

∫

d4x

[

∑

µ

∂µC ·
(

∂µC̄−Aµ × C̄
)

+
λξ

4
C
(

σC̄+ π × C̄
)

]

.

At leading order the term
∑

µ ∂µπ ·Aµ is eliminated by the choice

λ = e2v .
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This gauge has two advantages: it decouples the gauge field from the would-

be Goldstone field and, therefore, simplifies the propagators; by explicitly

breaking the global SU(2) × SU(2)-symmetry, it generates a mass for the

π-field which is no longer a Goldstone boson. In this gauge the propagators

(equations (13.75)) have no poles at zero momentum and no IR problems

are encountered:

W (2)
µν =

e2δµν
k2 +m2

A

+
e2(ξ − 1)kµkν

(k2 +m2
A)(k

2 + ξm2
A)
,

W 2)
ππ =

1

k2 + ξm2
A

, W
(2)

CC̄
=

1

k2 + ξm2
A

,

in which mA is the mass of Aµ in the classical approximation (equation

(14.46)). Furthermore, all unphysical states have a mass which explicitly

depends on the gauge parameter ξ.
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Unitarity. This property can be used to prove unitarity of the physical

S-matrix: the S-matrix satisfies a generalized unitarity relation in which

in the intermediate states one must include all particles both physical and

unphysical. By showing that the S-matrix does not depend on the gauge,

one proves simultaneously that the contributions of unphysical states cancels

in the intermediate states and thus the S-matrix is unitary in the physical

subspace.
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APPENDIX A14

BRST SYMMETRY

A14.1 BRST symmetry: the origin

We first explain the origin of BRST symmetry in a rather general context.

In particular, we show that BRST symmetry in gauge theories owe less to

gauge symmetry than to gauge fixing.

For notational simplicity, we write the variables and the equations with

a discrete index α, but the generalization to differential or functional equa-

tions is straightforward, summation over α being replaced by integration

and summation, and differentiation by functional differentiation.
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Equations and integral representations. Let ϕα be a set of dynamical vari-

ables satisfying a system of equations,

Eα(ϕ) = 0 . (A14.1)

We assume that the functions Eα(ϕ) are smooth and that Eα = Eα(ϕ)

is a one-to-one mapping in some neighbourhood of Eα = 0, which can be

inverted in ϕα = ϕα(E). In particular, this implies that the equation has a

unique solution ϕα
s ≡ ϕα(0).

Moreover, in the neighbourhood of ϕs, the determinant detE of the ma-

trix E with elements

Eαβ ≡ ∂βEα

does not vanish and thus one can choose Eα(ϕ) such that it is positive.
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For any function F (ϕ), one can derive a simple formal expression for F (ϕs)

that does not involve solving the equation explicitly. One starts from the

obvious identity

F (ϕs) =

∫
{

∏

α

dEα δ(Eα)

}

F
(

ϕ(E)
)

,

where δ(E) is Dirac’s δ-function. One then changes variables E 7→ ϕ. This

generates the Jacobian detE > 0. Thus,

F (ϕs) =

∫
{

∏

α

dϕα δ [Eα(ϕ)]

}

detE(ϕ)F (ϕ). (A14.2)

In the context of non-Abelian gauge theories, detE is the Faddeev–Popov

determinant.

1195



A14.1.1 An invariant measure: ST identities

A precursor of BRST symmetry is a simple property of the integration

measure in equation (A14.2).

The integration measure
∏

α dEα is an invariant measure for the group

of translations Eα 7→ Eα + να, να constant. It follows that the measure

dρ(ϕ) = detE(ϕ)
∏

α

dϕα (A14.3)

is an invariant measure for the translation group realized non-linearly on

the new coordinates ϕα (provided να is small enough):

ϕα 7→ ϕ′α with Eα(ϕ
′)− να = Eα(ϕ). (A14.4)

The infinitesimal form of the transformation can be written more explicitly

as

δϕα =
∑

β

[E−1(ϕ)]αβνβ . (A14.5)
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This rather straightforward property of the measure and the corresponding

infinitesimal transformations (A14.5) have been used in the context of non-

Abelian gauge theories by Slavnov and, independently, Taylor to derive a set

of important identities satisfied by Green’s functions, thus called Slavnov–

Taylor identities.

These identities form the basis of the first proof by Lee and Zinn-Justin

of the renormalizability of non-Abelian gauge theories in the broken phase

and, therefore, that the weak-electromagnetic theory had a consistent per-

turbative expansion.

Reciprocal property. Conversely, one can characterize the general form of

non-linear representations of the translation group. One recovers the form

of the previous measure.
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A14.1.2 BRST symmetry

In quantum field theory, the non-linear and non-local character of the trans-

formations (A14.5) is the source of technical complications. Remarkably

enough, the invariance under the infinitesimal transformations (A14.5) can

be replaced by an invariance under linear anticommuting-type transforma-

tions at the expense of introducing additional variables.

One again starts from the identity (A14.2) and first replaces the δ-function

by its Fourier representation,

∏

α

δ [Eα(ϕ)] =

∫

∏

α

dλ̄α

2iπ
exp

[

∑

α

−λ̄αEα(ϕ)

]

,

where the λ̄ integration runs along the imaginary axis.
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The determinant can be written as an integral over Grassmann variables c̄α

and cα:

detE =

∫

∏

α

(dc̄αdcα) exp

(

∑

α,β

cαEαβ c̄
β
)

.

In the context of non-Abelian gauge theories, c and c̄ are the Faddeev–

Popov ghosts.

The expression (A14.2) then becomes

F (ϕs) = N

∫

∏

α

(

dϕαdλ̄αdc̄αdcα
)

F (ϕ) exp
[

−S(ϕ, λ̄, c, c̄)
]

, (A14.6)

in which N is a constant normalization factor such that for F (ϕ) ≡ 1,

F (ϕs) = 1, and S(ϕ, λ̄, c, c̄) the function (and element of the Grassmann

algebra)

S(ϕ, λ̄, c, c̄) =
∑

α

λ̄αEα(ϕ)−
∑

α,β

cαEαβ(ϕ)c̄
β . (A14.7)
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A14.1.3 BRST symmetry

Somewhat surprisingly, the function S has a new type of symmetry, the

BRST symmetry, extension to Grassmann variables of the invariance of the

measure detE(ϕ)dϕ under the infinitesimal transformations (A14.5).

The BRST symmetry, first discovered in the context of quantized gauge

theories by Becchi, Rouet, Stora, and Tyutin, is a Grassmann symmetry in

the sense that the parameter ε of the transformation is an anticommuting

constant, an additional generator of the Grassmann algebra. The variations

of the various integration variables are

δϕα = εc̄α , δc̄α = 0 ,

δcα = ελ̄α , δλ̄α = 0

with

ε2 = 0 , εc̄α + c̄αε = 0 , εcα + εcα = 0 .
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A14.1.4 BRST transformations: Differential operator representation

The BRST transformation, when acting on functions of {ϕ, λ̄, c, c̄}, can be

represented by the Grassmann differential operator

D ≡
∑

α

(

c̄α
∂

∂ϕα
+ λ̄α

∂

∂cα

)

. (A14.8)

The BRST operator satisfies the identity

D2 = 0 . (A14.9)

The differential operator D has the form of a cohomology operator, general-

ization of the exterior differentiation of differential forms. In particular, the

first term
∑

α c̄
α∂/∂ϕα in the BRST operator is identical to the differentia-

tion of forms in a formalism in which the Grassmann variables c̄α generate

the corresponding exterior algebra.
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A BRST invariant function, which thus satisfies

DS = 0 , (A14.10)

is called BRST closed.

The equation D2 = 0 implies that all quantities of the form DQ(ϕ, λ̄, c, c̄),

quantities called BRST exact, are BRST invariant (BRST closed).

One immediately verifies that the function S defined by equation (A14.7)

is BRST exact since

S = D
∑

α

cαEα(ϕ). (A14.11)

The reciprocal property, the meaning and implications of the BRST sym-

metry rely on considerations of BRST cohomology.

These properties play an important role, in particular, in the discussion of

the renormalization of non-Abelian gauge theories, including gauge invariant

operators.
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A14.1.5 BRST symmetry and group manifolds

When the variables ϕα parametrize an element g(ϕ) of a Lie group in some

matrix representation, it is convenient to express BRST transformations on

g(ϕ) directly and to parametrize the variation of g in terms of a Grassmann

matrix C̄ belonging to the Lie algebra of the group:

δg = εC̄g . (A14.12)

Thus,

C̄ =
∑

α

c̄α
∂g

∂ϕα
g−1.

A short calculation show that the variation of C̄ then is

δC̄ = −
∑

α,β

c̄α
∂g

∂ϕα
g−1εc̄β

∂g

∂ϕβ
g−1 = εC̄2.
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The set of BRST transformations then becomes

δg = εC̄g , δC̄ = εC̄2, δC = ελ̄ , δλ̄ = 0 . (A14.13)

One recognizes expressions that appears in non-Abelian gauge theories, the

group element being there associated with gauge transformations and the

transformation (A14.13) being an infinitesimal gauge transformation.
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