
Lecture 15: THE STANDARD MODEL OF FUNDAMENTAL

INTERACTIONS



Having discussed in chapter 14 the structure and the formal properties of

non-Abelian gauge theories, we now apply the formalism to the description

of some general properties of the Standard Model (SM) of Weak, Electro-

magnetic and Strong Interactions.

The weak–electromagnetic theory with SU(2)×U(1) spontaneously bro-

ken gauge symmetry and three quark and lepton generations, thanks to the

smallness of the coupling constant at low energy, has been tested quite sys-

tematically and when radiative corrections are taken into account, provides

up to now a precise description of all collider experiments.

With the discovery in 2012 of the Higgs particle at the new Large Hadron

Collider at CERN with a mass of 125 Gev, all particles of the initial Stan-

dard Model have now been identified and all parameters determined.



Important remains a precise experimental verification of the couplings of the

Higgs particle to other particles since, in the SM, these couplings determine

the masses of all fundamental particles.

A disagreement would be a sign of new physics. Moreover, the mass

spectrum of the fundamental particles remains one of the mysterious SM

features.

In recent years a series of experiments have demonstrated the existence

of oscillations between the three neutrino species νe, νµ, ντ . This implies

neutrino masses and thus a modification of the SM.

We assume here a minimal modification in the form of Dirac neutrinos.

With such an assumption, consistent up to now with experimental data,

we exclude Majorana-type mass terms and thus lepton-number violating

neutrinoless β decay.



The lepton and quark sectors then have a similar structure. In particular,

the lepton sector now involves a mixing matrix in analogy the quark sector

(three angles have been determined, the fourth CP violating angle is still

unknown)

The situation for the Strong Interaction sector, is somewhat different.

It is described by Quantum Chromodynamics (QCD), a theory of quarks

interacting through gluons associated to gauge fields corresponding to a

SU(3) colour gauge group.

The QCD RG β-function, calculated at leading order in perturbation

theory, exhibits the property of large momentum asymptotic freedom (see

section 15.4.2). Thus, a number of high-energy properties, like the so-called

inclusive cross-sections, can be predicted.



However, low energy properties like SU(3) colour confinement, cannot be

derived from perturbation theory, the effective interaction becoming too

large. Evidence for the validity of the quark confinement scheme thus relies

on increasingly precise, non-perturbative, numerical investigations of lattice

gauge theories (see chapter 16).

In some cases, when gauge fields are coupled to axial currents, the WT

identities that are necessary to prove the consistency of gauge theories are

not satisfied beyond the tree approximation. They are spoiled by anomalies.

Therefore, the second part of the chapter is devoted to the discussion of this

important problem. Results are illustrated by some physics consequences

like, the cancellation of anomalies in the Standard Model that requires three-

colour quarks, the π0 decay and the solution to the U(1) problem.

A general remark is that, though the Standard Model depends on many

parameters, its structure is tightly constrained and satisfies a number of

non-trivial conditions.



15.1 Weak–electromagnetic interactions: gauge and Higgs fields

We first describe the Standard Model of weak and electromagnetic interac-

tions (suitably modified to accommodate Dirac neutrinos), which provides

a physics application of the non-Abelian Higgs mechanism.

We mainly restrict the presentation to one generation and two flavours,

eventually indicating how it generalizes to three generations (with essential

new features like the CKM and PMNS mixing matrices and CP violating

angles).

The gauge group of this sector of the Standard Model is SU(2) × U(1).

The action for the Higgs field sector is related to the action (14.44) consid-

ered in section 14.5.3 by gauging a U(1) subgroup of the remaining SU(2)

non-gauge symmetry. The pattern of symmetry breaking is similar.

A U(1) gauge symmetry remains unbroken, whose generator is a linear

combination of the original U(1) generator and one of the SU(2) generators.
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It is associated with electromagnetic interactions.

Since the gauge group is a product of two groups, the model depends on

two independent gauge couplings and, therefore, weak and electromagnetic

interactions are combined rather than completely unified.

Note that since in the SM, the left-handed and right-handed components

of the fermion fields are treated differently, the breaking of parity symmetry

is explicit.

Detailed phenomenological applications can be found in the literature.

Notation. We use the conventions of section 14.5.3, in particular, for the

SU(2) transformations and the τ Pauli matrices.
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15.1.1 Scalar and gauge fields

The scalar action. The scalar field is a two-component complex field, a

SU(2) doublet ϕ. In the absence of gauge fields, the scalar action has the

form

Sscal. =

∫

d4x

[

∑

µ

|∂µϕ(x)|2 + U
(

|ϕ(x)|2
)

]

(15.1)

with

U(ρ) = uρ+ 1
6λρ

2.

In this form the action has an obvious U(2) ∼ SU(2)× U(1) symmetry:

ϕ(x) 7→ Uϕ(x) , U ∈ U(2).

Actually, rewriting the action (15.1) in terms of the four real components

of ϕ, one verifies that action has a larger O(4) symmetry, but only the

SU(2)× U(1) group is gauged.
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The ϕ-gauge invariant action. One introduces a three-component real

gauge vector Aµ for the SU(2) component and a real gauge field Bµ for the

Abelian U(1) component.

The gauge invariant scalar field action can be written as

Sscal. =

∫

d4x

[

∑

µ

|Dµϕ(x)|2 + U
(

|ϕ(x)|2
)

]

(15.2)

with

Dµ = 1
(

∂µ + 1
2 iYϕg

′Bµ

)

+ 1
2 igAµ · τ .

We normalize g′ in such a way that ϕ has a charge Yϕ = 1 with respect to

the U(1) group.
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We normalize the curvature tensors by

[Dµ,Dν ] =
1
2 igFµν + 1

2 ig
′Bµν

with (in SO(3) notation)

Fµν = ∂µAν − ∂νAµ − gAµ ×Aν , Bµν = ∂µBν − ∂νBµ .

The SU(2)× U(1) gauge field action, in this normalization, is the sum

S(A,B) = 1
4

∫

d4x
∑

µ,ν

[

F2
µν(x) +B2

µν(x)
]

.

15.1.2 The Higgs mechanism: classical approximation.

We assume that the ϕ potential is such that in the classical approximation

the field ϕ has a non-zero expectation value (i.e., u < 0), which we choose

of the form,

〈ϕ(x)〉 = v√
2

(

0
1

)

, v > 0 .
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With this form, the expectation value of ϕ is invariant under the transfor-

mations,

ϕ(x) 7−→ eiθ(1+τ3)/2 ϕ(x) .

They correspond to a U(1) subgroup whose generator is the sum of the gen-

erator of the initial U(1) group and the τ3 generator of SU(2). Therefore,

as anticipated, SU(2)× U(1) is broken down to U(1).

Replacing ϕ by its expectation value in action (15.2), we read off the

mass terms for the gauge fields in the classical approximation:

1
8v

2

∫

d4x
∑

µ

[

(

g′Bµ − gA(3)
µ

)2

+ g2
∣

∣

∣
A(1)

µ + iA(2)
µ

∣

∣

∣

2
]

.

First, it follows that the linear combination g′Bµ−gA(3)
µ is massive while the

orthogonal combination remains massless and thus represents the photon

field. One defines the weak angle θW by

g′/g = tan θW . (15.3)
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The photon field Aµ and the massive neutral field Zµ then correspond to

Aµ = cos θWBµ + sin θWA
(3)
µ , Zµ = − sin θWBµ + cos θWA

(3)
µ . (15.4)

Conversely,

Bµ = cos θWAµ − sin θWZµ , A(3)
µ = sin θWAµ + cos θWZµ . (15.5)

The components A
(1,2)
µ are coupled to Aµ and correspond to charged vector

fields, which are usually written in complex notation as

W±
µ = (A(1)

µ ± iA(2)
µ )/

√
2 . (15.6)

From the coupling of the charged vector bosons with the photon, one derives

the relation between electric charge e and coupling constants g and g′:

e = gg′/
√

g2 + g′2 = g sin θW = g′ cos θW . (15.7)
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The Z mass is then

mZ = 1
2v
√

g2 + g′2 =
gv

2 cos θW
=

ev

sin 2θW
.

The two charged boson vectors W±
µ have the common mass,

mW = 1
2gv =

ev

2 sin θW
= mZ cos θW .

Finally, the mass of the remaining massive scalar particle, the Higgs boson,

is (equation (14.46))

mH = v
√

λ/3 .

In 2014 the experimental values are

mW = 80.385± 0.015GeV , mZ = 91.1876± 0.0021GeV ,

mH = 125.7± 0.4GeV .

1217



They lead to a weak angle such that sin2 θW = 0.223, instead of the ex-

perimental value sin2 θW = 0.231. The agreement improves when radiative

corrections are taken into account and between different experimental de-

terminations, like the one coming from neutral currents.

From the value of the fine structure constant α−1 = 137.036 one also

infers v = 250.7 GeV (see also equation (15.15)).

Finally, from the experimental mass of the Higgs particle, one infers λ ≈
0.75, which is rather small.

1218



15.2 Leptons: minimal SM extension with Dirac neutrinos

We consider here only the electron and the corresponding neutrino νe, which

we assume to be a Dirac fermion, since the gauge couplings of the leptons of

the two other generations (µ, νµ), (τ , ντ ) have exactly the same structure.

The left-handed parts of the neutrino and electron are combined into a

left-handed doublet L of SU(2):

L =

(

(νe)L
eL

)

≡ 1
2 (1− γ5)

(

νe
e−

)

.

The right-handed parts of the neutrino R1 = 1
2 (1 + γ5)νe (an addition to

the SM) and electron R2 = 1
2 (1 + γ5)e

− form SU(2) singlets.

Note that, in contradistinction to our usual euclidean notation, we use

the Minkowskian conventions,

L̄ = (ν̄e , e
+)(1 + γ5)/2 , R̄1 = ν̄e(1− γ5)/2 , R̄2 = e+(1− γ5)/2 .
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15.2.1 Lepton–gauge action

The action for the two leptons coupled to gauge fields can then be written

as

Sν,e = −
∫

d4x

[

∑

i

R̄i

(

6∂ + 1
2 iYi,Rg

′6B
)

Ri+L̄
(

6∂ + 1
2 iYLg

′6B + 1
2 ig 6A · τ

)

L

]

.

(15.8)

Using relations (15.5, 15.7) to replace Bµ and A
(3)
µ by their components on

Aµ , one obtains the coupling terms to the photon field,

1
2 ie
∑

i

Yi,RR̄i 6ARi +
1
2 ieL̄(YL + τ3) 6AL .

Denoting by T3 the eigenvalue of τ3 the generator of SU(2), Y the U(1)

charge and Q the electric charge, one obtains for each fermion the relation

Q = 1
2 (T3 + Y ). (15.9)
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Explicitly,

Q1 = 1
2Y1R, Q2 = 1

2Y2R, Q1 = 1
2 (YL + 1), Q2 = 1

2 (YL − 1). (15.10)

First, one notes the consistency condition

Q1 −Q2 = 1 , (15.11)

consequence of the SU(2) doublet assignment.

Then, all U(1) charges are related to Q1 by

Y1R = 2Q1 , Y2R = 2(Q1 − 1) , YL = 2Q1 − 1 . (15.12)

Identifying Q1 with the neutrino charge, Q1 = 0, one finds Q2 = −1 and

the U(1) charges,

Y1R = 0 , Y2R = −2 , YL = −1 .

The value Y1R = 0 is consistent with the observation that νR does not

participate in the weak and electromagnetic interactions.
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15.2.2 Lepton masses

The SU(2) symmetry forbids fermion mass terms. On the other hand, the

coupling terms between the scalar field and the leptons,

S1 = iGν

∫

d4x
[

R̄1(x)
(

ϕ(x)τ2L(x)
)

+
(

L̄(x)τ2ϕ
∗(x)

)

R1(x)
]

, (15.13a)

S2 = Ge

∫

d4x
[

R̄2(x)
(

ϕ
∗(x) · L(x)

)

+
(

L̄(x) ·ϕ(x)
)

R2(x)
]

, (15.13b)

are allowed by the SU(2)× U(1) symmetry (If U belongs to SU(2), U∗ =

τ2Uτ2), independently of the value of Q1 provided Yϕ = 1.

Replacing the ϕ-field by its expectation value, we see that the sponta-

neous breaking of the SU(2)× U(1) symmetry generates the masses

mν = v|Gν | me = v|Ge| .
Therefore, the fermion masses are calculable, but, in the absence of a new

dynamic principle, in terms of arbitrary parameters, the Yukawa coupling

constants Ge, Gν .
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In the SM, the Yukawa couplings of leptons are proportional to their mass.

In particular, the perturbative approximation becomes worse for heavier

leptons.

15.2.3 The Fermi constant

The coupling constantGF (the Fermi constant), characteristic of the strength

of weak interactions, is defined in terms of an effective low energy current–

current and thus four-fermion interaction:

GF√
2

∫

d4x
∑

µ

Jµ(x)J
†
µ(x). (15.14)

The contribution to the charged current Jµ coming from the electron and

the neutrino has the form:

Jµ(x) = ē(x)(1− γ5)γµνL(x) = 2ēL(x)γµνL(x).
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The relation between GF and the coupling constants g and g′ is obtained by

taking the largeW -mass limit of the electron–neutrino scattering amplitude

in the classical approximation.

The result can be obtained by integrating over the vector fields A
(1,2)
µ ,

taking only into account the mass term and neglecting the kinetic part.

The corresponding part of the action is

1
8g

2v2
∑

µ

[

(

A(1)
µ

)2

+
(

A(2)
µ

)2
]

+ 1
2 ig
∑

µ

L̄γµ

(

A(1)
µ τ1 +A(2)

µ τ2

)

L .

Completing squares one immediately obtains the result of the integration,

1

2v2

∑

µ

[

(

L̄γµτ1L
)2

+
(

L̄γµτ2L
)2
]

=
2

v2

∑

µ

ν̄LγµeLēLγµνL .

Comparing with the definition (15.14), one concludes,

GF/
√
2 = 1/2v2 . (15.15)
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Inserting the experimental value GF = 1.166 . . .×10−5 GeV−2 one finds the

value v = 246.22 GeV.

The effective low energy Fermi model of low energy charged weak inter-

actions determines all parameters of the Standard Model (with massless

neutrinos) but two, for example, the weak angle θW and the Higgs field self-

coupling λ, which have to be inferred from additional experimental results.

The direct measurements of the W and Z masses, for example, determine

the parameter θW. At leading order the W masses can be rewritten as

M2
W =

e2

4
√
2GF sin2 θW

,

that is,

MW =

(

πα√
2GF

)1/2
1

sin θW
=

37.28

sin θW
GeV ⇒ sin2 θW = 0.215 .

The various estimates give an idea of the precision of leading order estimates.
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The coupling of the charged vector bosons W± to (e−, νe) is obtained by

introducing the definition (15.6) into equation (15.8):

1
2gL̄γµ

(

τ1A(1)
µ + τ2A(2)

µ

)

L =
g

2
√
2

[

(ν̄LγµeL + ēLγµνL)
(

W+
µ +W−

µ

)

+(ν̄LγµeL − ēLγµνL)
(

W+
µ −W−

µ

)]

=
g√
2

(

ν̄LγµeLW
+
µ + ēLγµνLW

−
µ

)

.

Using the definitions (15.3, 15.5), one also obtains the couplings of fermions

to the neutral vector fields Aµ and Zµ,

eZµ

sin 2θW

(

2 sin2 θWēRγµeR − cos 2θWēLγµeL + ν̄LγµνL
)

− eAµ (ēRγµeR + ēLγµeL) .

Note that from the study of the Z decays, one infers that the number of

generations with ‘light’ (i.e., with a mass below mZ/2 ≈ 45 GeV) active

neutrinos is exactly three.
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Beyond the Standard Model: neutrino oscillations. The experimental dis-

covery of neutrino oscillations implies that neutrinos have masses. One

infers

m2(νµ)−m2(νe) ≈ 7.5× 10−5eV2 , |m2(ντ )−m2(νµ)| ≈ 2.5× 10−3eV2,

and the mass eigenstates differ from the linear combinations of neutrinos

appearing in the weak interactions. Including cosmological observations,

one finds a bound on the sum of masses of about 0.2 eV. As we have shown,

this necessitates a slight modification of the Standard Model. If neutrinos

are Dirac fermions, this implies a mixing (PMNS) matrix like in the quark

sector, as described in section 15.3, with three measured CP-conserving

angles

sin2(2θ12) = 0.846± 0.021 , sin2(2θ23) = 1 + 0− 0.017 ,

sin2(2θ13) = 9.3± 0.8× 10−2,

and one unknown CP violating angle.
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A major issue is the very small neutrino masses. This problem could have

a solution in the framework of Grand Unified Theories, in a scheme with

Majorana mass terms for neutrinos. This would imply some form of lepton

number violation (see section 11.8.3).
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15.3 Quarks and weak–electromagnetic interactions

With the addition of the right-handed neutrino, the structure of the lepton

and quark sectors become quite similar. We first consider again only one

generation with two flavours, corresponding to the quarks u and d, the

coupling of other generations being analogous. Each quark has a colour

quantum number and forms a SU(3) triplet (see next section). The left

components of the quarks belong to a SU(2) doublet QL.

QL = {uL , dL} .

All right-handed components Q1,2R form SU(2) singlets. The gauge invari-

ant quark action can be written as

SQ = −
∫

d4x

[

∑

i

Q̄iR

(

6∂ + 1
2 ig

′YiR 6B
)

QiR

+ Q̄L

(

6∂ + 1
2 ig

′YL 6B + 1
2 ig 6A · τ

)

QL

]

. (15.16)
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We now use the relations (15.11, 15.12),

Q1 −Q2 = 1 , Y1R = 2Q1 , Y2R = 2(Q1 − 1) , YL = 2Q1 − 1 .

The proton is a uud state and has charge +1. Thus, 2Q1+Q2 = 3Q1−1 = 1

and the quark u has charge 2/3. Then, the quark d has charge Q2 =

Q1 − 1 = −1/3. The neutron is a udd state and one verifies that it has

indeed charge 0, a result consistent with the SU(2) doublet assignment.

Finally,

YL = 1/3 , Y1R = 4/3 , Y2R = −2/3 .

We verify in section 15.7 that the SU(3) triplet structure of quarks leads to

the cancellation of the possible anomaly due to the chiral coupling of gauge

fields to fermions in each generation and, therefore, ensures the consistency

of the gauge theory of weak and electromagnetic interactions.
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15.3.1 Couplings to the Higgs field and quark masses

As for leptons direct quark mass terms are forbidden by the SU(2) sym-

metry. The quark masses are produced by the coupling to the Higgs scalar

field and the spontaneous symmetry breaking. The SU(2) × U(1) invari-

ant Higgs–quark coupling terms can be easily inferred from the expressions

(15.13),

Sqmass =

∫

d4x
{

iGq1

[

Q̄1R(x)
(

ϕ(x)τ2QL(x)
)

+
(

Q̄L(x)τ2ϕ
∗(x)

)

Q1R(x)
]

+Gq2

[

Q̄2R(x)
(

ϕ
∗(x) ·QL(x)

)

+
(

Q̄L(x) ·ϕ(x)
)

Q2R(x)
]}

,(15.17)

which can provide masses for the two quarks. This is at least the situation

for one generation. However, six quarks belonging to three generations have

been discovered (see table 15.1).

Therefore, in the interactions (15.17) the spinors which appear on the

right and the left then need not be, and are not the same.
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When one replaces the scalar field ϕ by its expectation value, one obtains

in general a non-diagonal mass matrix of the form

∑

α,β

[

Q̄α
1RMαβQ

β
1L + Q̄α

1LM
†
αβQ

β
1R

]

,

for the quarks of charge 2/3, and a similar one for the charge −1/3 quarks.

Performing independent unitary transformations UR,L on the right and left

quark components, it is possible to replace the matrix M by a real diagonal

matrix M:

U
†
RMUL = M ,

In this representation the quarks are mass eigenstates. However, the weak

interactions no longer have the simple form (15.16) because the unitary

transformations on the quark components Q1L and Q2L are in general dif-

ferent. It is customary to put the blame onto the charge −1/3 quarks.
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The mismatch is expressed in terms of a 3 × 3 unitary matrix (because

three generations are observed), the Cabibbo–Kobayashi–Maskawa matrix

(CKM) which relates the quark mass eigenstates d, s and b to the quarks

appearing in the weak interactions:

[

Qα
2

]

weak int.
=
∑

β

Uαβ

[

Q
β
2

]

mass eigenst.
.

With only two generations (d and s), it is possible to cast the matrix into

the form

UC =

(

cos θC sin θC
− sin θC cos θC

)

,

in which θC is the Cabibbo angle, after unobservable changes of the relative

phases between the quarks.
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Table 15.1

Quarks and leptons. The three generations (2014).

Charge 2/3 quarks Charge −1/3 quarks Charge −1 leptons Neutrinos

u, 1.7 to 3.0 MeV d, 4.5 to 5.3 MeV e, 0.511 MeV cf. 15.2

c, 1.275 ± 0.025 GeV s, 95 ±5 MeV µ, 105.6 MeV cf. 15.2

t, 173.2 ± 1.2 GeV b, 4.18 ±0.03 GeV τ , 1.777 GeV cf. 15.2

In the presence of the third b quark, the 3×3 CKM matrix can be paramet-

rized in terms of three rotation angles and one CP violating phase respon-

sible for the observed direct CP violation in neutral kaon and B0 meson

decay. However, the resulting CP violation seems too small to explain the

disappearance of antimatter.
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Beyond the Standard Model: grand unification. Theoretical speculations

based on the search for a unifying simple group including U(1) × SU(2)×
SU(3) as a subgroup, have mainly focused on SU(5) (the larger SO(10)

has also been discussed). This group deals nicely with fermions, has 12

additional super-heavy gauge bosons but necessitates a large collection of

Higgs fields.

Running the three independent couplings to higher energies an appar-

ent unification is then observed at energies of order 1015 GeV. The non-

observation of the predicted proton decay has shifted the focus to the min-

imal supersymmetric extension of SU(5) where the problem with proton

decay is less severe and the apparent unification of the running coupling

constants more precise. However, no supersymmetric particles have been

found yet at LHC (2015).
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15.3.2 Elementary scalar fields: a few problems

The Standard Model has (Higgs) scalar fields as an essential ingredient.

This is the source of several difficulties. The Higgs field is responsible for

the masses of all fundamental particles, but in the Standard Model these

masses are all given in terms of arbitrary parameters, like for example the

Yukawa couplings that determine the fermions masses. This could perhaps

be expected from an effective low energy theory. Yet puzzling is the diversity

of these couplings. If the couplings were ‘natural’, that is, of order unity,

all fermion masses would be in the few 100 GeV range, like the W and Z

masses or the Higgs expectation value. In this sense only the top quark (t)

mass, which is about 173 GeV, is natural. By contrast, only in the quark

sector the masses span about five order of magnitudes, something that even

a possible RG running of the fermion–Higgs couplings cannot easily explain.

Taking into account the lepton sector makes the problem even worse.
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Another, perhaps even more fundamental, problem is related to the scalar

field mass renormalization. Generically the scalar bare and physical masses

are expected to be of the order of the momentum ‘cut-off’ which gives the

scale of some new physics. It is only by fine tuning the scalar bare mass

that one can render the renormalized mass much smaller than the cut-off.

In the statistical physics interpretation of the φ4 theory the divergence of

the correlation length (the inverse physical mass in the particle language)

is obtained by adjusting the temperature, and thus the bare mass, close to

a critical value where a second-order phase transition occurs. However, in

particle physics all parameters are given and it is somewhat unnatural for

the scalar bare mass to lie accidentally close to such a critical value. To

get a rough idea about the severity of the problem we can use perturbation

theory, since the φ4 coupling λ is of order 1.
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Neglecting other interactions, the one-loop mass counter-term with a mo-

mentum cut-off Λ is

δm2
0 =

λ

16π4

∫

d4p

p2(1 + p2/Λ2)2
=

λ

16π2
Λ2.

The Higgs mass mH at leading order is given by

m2
H = 1

3λv
2.

Therefore,

f ≡ δm2
0/m

2
H =

3

16π2
(Λ/v)2.

Another important contribution comes a top quark loop, which is of or-

der (Λ/v)2/π2. Considering the unexplained range of fermion masses, it is

difficult to decide how much fine tuning is acceptable.

If one demands that the correction should be smaller than the leading

term, then one obtains Λ < 700GeV, which is almost excluded by the LHC.
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If no new physics beyond the Standard Model is found at the LHC, the

fine tuning factor will about 10. On the other hand, an absence of any new

physics below Planck’s scale (1019 GeV) is difficult to believe.

Fine tuning solutions. At the scale of new physics the scalar field problem

must be cured. Three types of schemes have been proposed so far:

(i) The Higgs boson is a bound state of a new type of fermions. This

requires a specific model, hopefully not involving new scalars again. Models

in which the forces are again due to gauge interactions have been proposed

and fall under the name of technicolour (see next section). Such models

have problems generating fermion masses and no widely accepted model

has been proposed.
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(ii) The Higgs boson remains associated with a fundamental field, but the

mass renormalization problem is solved with the help of supersymmetry.

Since fermions, due to chiral symmetry, can be naturally massless, the idea

is to use supersymmetry to relate them to scalars. In such models the scalar

mass renormalization grows only logarithmically with the cut-off (it would

be absent in the absence of supersymmetry breaking) and thus the problem

is much less severe even if the cut-off is of the order of the Planck mass.

The main difficulty with this approach is that none of the superpartners

of existing particles have yet been found. Moreover, the mechanism of

spontaneous supersymmetry breaking is not fully understood.

(iii) The Higgs particle is related to additional dimensions of space, for

instance, is a component of a vector field. Then, it must transform under

the corresponding adjoint representation.
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15.4 Quantum ChromoDynamics: renormalization group

We now concentrate on Quantum Chromodynamics (QCD) a gauge theory

of quarks and vector particles called gluons, which produces the observed

hadrons and their Strong Interactions, neglecting completely the weak and

electromagnetic interactions that we have described in the preceding sec-

tions. Quantum Chromodynamics, as it stands today, consists in a set of

quarks characterized by a flavour quantum number, relevant for Weak In-

teractions, which are also triplets of a gauged symmetry, the SU(3) colour,

realized in the symmetric phase. Their interactions are mediated by the

corresponding gauge fields, associated to gluons,

S(Aµ, Q̄,Q) = −
∫

d4x

[

1

4g2

∑

µ,ν

trF2
µν +

∑

flavours

Q̄f (6D +mf )Qf

]

.
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The most important physical arguments in favour of such a model are

(i) Quarks behave almost like free particles at short distances, as indi-

cated by deep inelastic scattering experiments or the spectrum of bound

states of heavy quarks. We calculate below the RG β-function and show

that a pure non-Abelian gauge theory is asymptotically free (AF) at large

momentum in four dimensions (like the non-linear σ-model in two dimen-

sions). This property survives the inclusion of a limited number of fermions

and, furthermore, the property is specific to non-Abelian gauge theories.

(ii) No free quarks and gluons have ever been observed at large distance

(but they manifest themselves indirectly in the jet physics). This is consis-

tent with the simplest picture in which the β-function (which, due to AF,

is negative at small coupling) remains negative for all couplings in such a

way that the effective coupling constant grows without bounds at large dis-

tances. Numerical simulations strongly support this conjecture, called the

colour confinement hypothesis (see section 16).
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15.4.1 RG equations in the covariant gauge

We first discuss the gauge dependence of RG equations and functions of

pure gauge theories in the covariant gauge (14.34), that is, the dependence

on the parameter ξ. A short discussion of the Abelian case can be found in

section 13.10. We call ZA the gauge field renormalization constant and Zg

the renormalization constant of the coupling constant

α = g2/4π .

α in Strong Interactions is in general denoted αs to distinguish it from its

QED analogue. In this section no confusion is possible. It can be shown

that for such gauges, as in the Abelian case, the gauge fixing term is not

renormalized. Therefore,

ξ0 = ξZA/Zg .
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In terms of the renormalization scale µ the RG equation for the gauge field

n-point function reads:

[

µ
∂

∂µ
+ β(α, ξ)

∂

∂α
+ δ(α, ξ)ξ

∂

∂ξ
− n

2
ηA(α, ξ)

]

Γ̃(n)(µ, α, ξ) = 0 ,

where,

δ(α, ξ) ≡ ξ−1 µ
∂

∂µ

∣

∣

∣

∣

α0 , ξ0 fixed

ξ = β(α, ξ)− ηA(α, ξ).

One proves that the bare correlation functions of gauge invariant operators

are gauge independent. This in particular implies that they are independent

of ξ0. The same property applies to the renormalization constants needed

to render these correlation functions finite. It is thus possible to construct

renormalized correlation functions which are also ξ0 independent.
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We denote by Γ such a correlation function. It satisfies

∂

∂ξ

∣

∣

∣

∣

α0 , cut-off fixed

Γ =

(

∂

∂ξ
+ ρ(α, ξ)

∂

∂α

)

Γ(µ, α, ξ) = 0 (15.18)

with

ρ(α, ξ) =
∂α

∂ξ

∣

∣

∣

∣

α0 , cut-off fixed

. (15.19)

Γ also satisfies a RG equation which we assume to be homogeneous:
[

µ
∂

∂µ
+ β(α, ξ)

∂

∂α
+ δ(α, ξ)ξ

∂

∂ξ
− ηΓ(α, ξ)

]

Γ(µ, α, ξ) = 0 .

Using equation (15.18) to eliminate ∂/∂ξ, we obtain the new RG equation

for Γ,
[

µ
∂

∂µ
+ β̃(α, ξ)

∂

∂α
− ηΓ(α, ξ)

]

Γ(µ, α, ξ) = 0 with β̃ = β − ξδρ . (15.20)
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Expressing then the compatibility condition between the two linear equa-

tions (15.18) and (15.20), one obtain two equations,

(

∂

∂ξ
+ ρ(α, ξ)

∂

∂α

)

ηΓ(α, ξ) = 0 ,

(

∂

∂ξ
+ ρ(α, ξ)

∂

∂α

)

β̃ =
∂ρ

∂α
β̃ .

The first equation expresses that, as expected, the multiplicative renormal-

ization of Γ is independent of ξ0. The second equation shows that the zeros

of β̃ are gauge independent. Differentiating the equation with respect to α

one also finds that the slope of β at its zeros is gauge independent. Finally,

one verifies that in a minimal subtraction scheme the function ρ vanishes.

In dimensional regularization the relation between α0 and α takes the form

α0 = µεαZg = µεα

(

1 +
Z1
g (α, ξ)

ε
+
Z2
g (α, ξ)

ε2
+ · · ·

)

.
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The important point is that the term without pole in ε in the expansion of

Zg is ξ independent. Using the definition (15.19) of ρ, we then find

0 = ρ

(

1 +
∂Z1

g

∂α

1

ε
+ · · ·

)

+ α

(

∂Z1
g

∂ξ

1

ε
+O

(

1

ε2

)

)

. (15.21)

Therefore, the expansion of ρ for ε small has only singular contributions.

Since ρ is finite, all singular contributions must cancel and thus ρ vanishes

identically. It follows that in the minimal subtraction scheme the β-function

and ηΓ are independent of ξ.

15.4.2 The RG β-function at one-loop order

We now calculate the RG β-function at leading order in a gauge theory cor-

responding to a simple group G in particular to verify asymptotic freedom,

because no simple explanation has yet been proposed which allows one to

understand the sign without explicit calculation.

1247



The calculation can be done by various methods, for example, we could use

the background field method. Here, instead, we calculate directly the β-

function from the renormalization of the gauge coupling constant as defined

by the fermion-gauge field vertex. We thus need the divergent parts of the

gauge field and fermion two-point functions, and the fermion gauge field

three-point function. We work in the Feynman gauge and use dimensional

regularization. The normalizations of vertices and propagators are those

given in section 14.4.
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The gauge field two-point function. Four diagrams contribute to the two-

point function, corresponding to the gauge field loops, the Faddeev–Popov

ghost loop and the fermion loops (see figure 15.1).

ψ̄ψ

(a) (b) (c) (d)

Fig. 15.1 – The gauge field two-point function at one-loop (dotted lines represent

ghosts).

The diagram (b) corresponding to the self-contraction of the gauge four-

point vertex vanishes in dimensional regularization. The fermion loop con-

tribution (d) has already been calculated in section 13.11 up to a simple

geometric factor.
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Diagram (a) is given by

(a) = 1
2facdfbcd

∫

ddq

(2π)d
Nµν(k, q)

q2(k + q)2

with

Nµν(k, q) = δµν(5k
2 + 2k · q + 2q2) + kµkν(d− 6) + (qµkν + qνkµ)(2d− 3)

+ 2qµqν(2d− 3).

To calculate the diagrams, we project the integrand over δµν and kµkν and

use repeatedly the identity

2k · q = (k + q)2 − k2 − q2.

We set
∑

c,d

facdfbcd = C(G)δab .
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A short calculation yields the divergent part:

(a)div = δab
C(G)

12

(

19k2δµν − 22kµkν
) g2

8π2ε
.

Diagram (c) is given by

(c) = −
∑

c,d

facdfbcd

∫

ddq

(2π)d
qµ(k + q)ν
q2(k + q)2

.

The divergent part is

(c)div = δab
(

k2δµν + 2kµkν
) 1

12
C(G)

g2

8π2ε
.

Note that both divergent contributions are not separately transverse. By

adding them we get the divergent part of the two-point function in the

absence of fermions, which now is transverse as expected:

[

Γ̃(2)ab
µν (k)

]

div
= δab

(

k2δµν − kµkν
) 5

3
C(G)

g2

8π2ε
.
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Denoting by ZA and Zg the renormalization constants of the gauge field

and the coupling constant g2, we obtain the relation at one-loop order:

ZA

Zg
= 1 +

5

3
C(G)

g2

8π2ε
.

Adapting the result (13.64), we infer the additional fermion contribution.

We finally obtain

ZA

Zg
= 1 +

(

5

3
C(G)− 4

3
T (R)

)

g2

8π2ε
, (15.22)

where the fermions belong to the representation R and T (R) is the trace of

the square of the generators in this representation:

tr tatb = −δabT (R).
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ψ̄

Aµ

ψ

Fig. 15.2 – One-loop contribution to the fermion two-point function.

The fermion two-point function. One diagram contributes to the fermion

two-point function Γ(2) (see figure 15.2), which differs from its QED coun-

terpart only by a geometric factor:

Γ̃
(2)
1 loop(k) = g2

∫

ddq

(2π)d
taγµ

1

i6q +m
taγµ

1

(k − q)2

(for simplicity we have given the same mass m to all fermions since this

does not affect the result). Since we need only the field renormalization we

can project the integrand over 6k. The following identity is useful:
∑

ν

γνγµγν = (2− d)γµ .
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Calculating the divergent part of the integral, we obtain the fermion field

renormalization ZF at one-loop order:

ZF = 1− C(R)
g2

8π2ε
with

∑

a

tata = −C(R)1 . (15.23)

The gauge field fermion vertex. Two diagrams contribute at one-loop

order (see figure 15.3), the first has a QED counterpart, the second being

specific to a non-Abelian theory.

(a) (b)

Fig. 15.3 – The gauge field fermion vertex at one-loop.
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(a) = g2
∫

ddq

(2π)d

∑

ν,b

tbγν
1

i6q +m
taγµ

1

i6q + i6k +m
tbγν

1

(p1 − q)2
.

To calculate the divergent part of the integral we multiply by γµ and take

the trace. We also use the identity

∑

b

tbtatb =
(

1
2C(G)− C(R)

)

ta.

We then find

(a)div. =
(

C(R)− 1
2C(G)

)

taγµ
g2

8π2ε
,

(b) = i
∑

b,c

fabcg
2

∫

ddq

(2π)d
tb
∑

ν,ρ

γν
1

i6p1 − i6q +m
tcγρ

Vµνρ(k, q,−k − q)

q2(k + q)2
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with (equation (14.40)):

Vµνρ(k, q, r) = (r − q)µδνρ + (k − r)νδρµ + (q − k)ρδµν .

The divergent part is

(a)div. =
3

2
C(G)taγµ

g2

8π2ε
.

It follows that

ZFZ
1/2
A = 1− (C(R) + C(G))

g2

8π2ε
,

and, therefore, (equation (15.23)):

ZA = 1− 2C(G)
g2

8π2ε
.

Finally, using the result (15.22) we obtain

Zg = 1−
(

11
3 C(G)− 4

3T (R)
) g2

8π2ε
.
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The β-function at one-loop order follows:

β(g2) = −ε
[

d ln
(

g2Zg

)

dg2

]−1

= −
[

11
3 C(G)− 4

3T (R)
] g4

8π2
+O

(

g6
)

.

(15.24)

In the case of the SU(N) group with NF fermions in the fundamental rep-

resentation the values of C(G) and T (R) are C(G) = N , T (R) = 1
2NF and,

therefore,

β(g2) = −
(

11N

3
− 2NF

3

)

g4

8π2
+O

(

g6
)

. (15.25)

The theory is asymptotically free, that is, the β-function is negative for

small coupling for

NF < 11N/2 ,

which, in the case of SU(3), means at most 16 flavours. If this condition is

met, g = 0 is a UV fixed point.
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15.5 The Abelian anomaly

We have pointed out in sections 13.6 and 14.4 that none of the standard

regularization methods can deal in a straightforward way with one-loop di-

agrams in the case of chiral gauge fields. We now show that indeed gauge

theories with massless fermions and chiral symmetry can be found where

the axial current is not conserved. The divergence of the axial current,

when it does not vanish, is called an anomaly. This leads in particular to

obstructions to the construction of gauge theories where the gauge field cou-

ples differently to the two fermion chiral components. Several examples are

physically important like the theory of weak electromagnetic interactions,

the electromagnetic decay of the π0 meson, or the U(1) problem.

We first discuss the Abelian axial current, in four dimensions (the gen-

eralization to all even dimensions is straightforward), and then the general

non-Abelian case.
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The only possible source of anomalies are one-loop fermion diagrams in

gauge theories when chiral properties are involved. This reduces the prob-

lem to the discussion of fermions in the background of gauge fields, or equiv-

alently to the properties of the determinant of the gauge covariant Dirac

operator.

15.5.1 Abelian axial current and Abelian vector gauge field

We first consider the QED-like fermion action S(ψ̄, ψ) for massless Dirac

fermions ψ, ψ̄ in the background of an Abelian gauge field Aµ:

S(ψ̄, ψ) = −
∫

d4x ψ̄(x)6Dψ(x), 6D ≡ 6∂ + ie 6A , (15.26)

and the corresponding field integral

Z(Aµ) =

∫

[

dψdψ̄
]

exp
[

−S(ψ, ψ̄)
]

= det 6D .
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In what follows we denote by 〈•〉 expectation values with respect to the

measure.

We can find regularizations which preserve gauge invariance, and since the

fermions are massless, chiral symmetry. Therefore, we would naively expect

the corresponding axial current to be conserved. However, the proof of

current conservation involves space-dependent chiral transformations and,

therefore, steps that cannot be regularized without breaking one of the

symmetries.

The coefficient of ∂µθ(x) in the variation of the action under a space-

dependent chiral transformation,

ψθ(x) = eiθ(x)γ5 ψ(x), ψ̄θ(x) = ψ̄(x) eiθ(x)γ5 , (15.27)

yields the axial current J5
µ(x). For the action (15.26) one finds,

δS =

∫

d4x
∑

µ

∂µθ(x)J
5
µ(x) with J5

µ(x) = iψ̄(x)γ5γµψ(x).
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After the transformation (15.27), Z(Aµ) becomes

Z(Aµ, θ) = det
[

eiγ5θ(x) 6Deiγ5θ(x)
]

.

Since eiγ5θ has a determinant which is unity, one might naively conclude that

Z(Aµ, θ) = Z(Aµ) and, therefore, that the current J
5
µ(x) is conserved. This

is a conclusion we now check by an explicit calculation of the expectation

value of
∑

µ ∂µJ
5
µ(x) in the case of the action (15.26).

Regularizations.

(i) For any regularization which is consistent with the hermiticity of γ5

|Z(Aµ, θ)|2 = det (6D6D†).

Therefore, an anomaly can appear only in the imaginary part of lnZ.
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(ii) If the regularization is gauge invariant, Z(Aµ, θ) is also gauge invariant.

Therefore, a possible anomaly will also be gauge invariant. One regular-

ization scheme that has the required property is based on regulator fields.

But as the discussion of section 13.6.1 has shown, at least one regulator

field must be an unpaired massive boson with spin, dividing the fermion

determinant by a factor det(6D+Λ). If this boson has a chiral charge global

chiral symmetry is broken by the mass Λ; if it has no chiral charge global

chiral symmetry is preserved, and the determinant is independent of θ for

θ(x) constant, but then the ratio of determinants is not invariant under

local chiral transformations.
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General form of the possible anomaly. The operator
∑

µ ∂µJ
5
µ(x) has dimen-

sion 4 and since a possible anomaly is a large momentum or short distance

effect, 〈∑µ ∂µJ
5
µ(x)〉 can only be a local function of Aµ of dimension 4. In

addition parity implies that it is proportional to the completely antisym-

metric tensor ǫµνρσ. This determines 〈∑µ ∂µJ
5
µ(x)〉 up to a multiplicative

constant,
∑

λ

〈

∂λJ
5
λ(x)

〉

∝ e2
∑

µ,ν,ρ,σ

ǫµνρσ∂µAν(x)∂ρAσ(x) ∝ e2
∑

µ,ν,ρ,σ

ǫµνρσFµνFρσ ,

Fµν being the electromagnetic tensor. The possible anomaly is automati-

cally gauge invariant. It is also a total derivative since
∑

µ,ν,ρ,σ

ǫµνρσFµνFρσ = 4
∑

µ,ν,ρ,σ

∂µ (ǫµνρσAν∂ρAσ) . (15.28)

To find the multiplicative factor, which is the only regularization dependent

feature, it is sufficient to calculate the coefficient of term quadratic in A in

the expansion of 〈
∑

λ ∂λJ
5
λ(x)〉 in powers of A.
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We define the three-point function

Γ
(3)
λµν(k; p1, p2) =

δ

δAµ(p1)

δ

δAν(p2)

〈

J5
λ(k)

〉

∣

∣

∣

∣

A=0

, (15.29)

=
δ

δAµ(p1)

δ

δAν(p2)
i tr
[

γ5γλ6D−1(k)
]

∣

∣

∣

∣

A=0

.

Γ(3) is the sum of the two Feynman diagrams of figure 15.4.

k, λ

q

p1, µ

p2, ν

k, λ

q

p1, µ

p2, ν

(a) (b)

Fig. 15.4 – Anomalous diagrams.
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The contribution of diagram (a) is

(a) 7→ e2

(2π)4
tr

[
∫

d4q γ5γλ(6q + 6k)−1γµ(6q − 6p2)−1γν 6q−1

]

,

and the contribution of diagram (b) is obtained by exchanging p1, γµ ↔
p2, γν .

Power counting tells us that the function Γ(3) may have a linear divergence

which, due to the presence of the γ5 factor, must be proportional to ǫλµνρ,

symmetric in the exchange p1, γµ ↔ p2, γν , and thus proportional to

∑

ρ

ǫλµνρ(p1 − p2)ρ . (15.30)

On the other hand, by commuting γ5 we notice that Γ(3) is formally a

symmetric function of the three sets of external arguments. A divergence

breaks the symmetry between external arguments.
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Therefore, a symmetric regularization of the kind we shall adopt leads to

a finite result. The result is not ambiguous because a possible ambiguity

again is proportional to (15.30).

In the same way if the regularization is consistent with vector gauge

invariance the WT identity

∑

µ

p1µΓ
(3)
λµν(k; p1, p2) = 0 ,

is satisfied. Applied to the divergent part it yields

∑

µ,ρ

−p1µp2ρǫλµνρ = 0 ,

a condition that is not satisfied. Therefore, the sum of the two diagrams

is finite. Different regularizations may still differ by finite quantities of

the form (15.30) but again all regularizations consistent with vector gauge

invariance must give the same answer.
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Therefore, there are two possibilities:

(i) The divergence
∑

λ kλΓ
(3)
λµν(k; p1, p2) in a regularization respecting the

symmetry between the three arguments vanishes. Then Γ(3) is gauge invari-

ant and the axial current is conserved.

(ii) The divergence of the symmetric regularization does not vanish. Then

it is possible to add to Γ(3) a term proportional to (15.30) to restore gauge

invariance but this term breaks the symmetry between external momenta:

the axial current is not conserved, an anomaly is present.

15.5.2 Divergence in the regularized theory

The calculation can be done using one of the various gauge invariant reg-

ularizations, for example Pauli–Villars’s regularization or dimensional reg-

ularization with γ5 being defined as in dimension 4 and thus no longer

anticommuting with other γ matrices.
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Instead we choose a regularization which preserves the symmetry between

the three external arguments and global chiral symmetry, but breaks gauge

invariance, replacing in the fermion propagator:

(6q)−1 7−→ (6q)−1ρ(εq2),

where ε is the regularization parameter (ε → 0), ρ(z) is a positive differ-

entiable function such that ρ(0) = 1, and decreasing at least like 1/z for

z → +∞.

Then the compatibility between current conservation and gauge invari-

ance implies that kλΓ
(3)
λµν(k; p1, p2) vanishes.

It is convenient to consider directly the contribution C(2)(k) of order A2

to 〈
∑

λ kλJ
5
λ(k)〉 which sums the two diagrams:

C(2)(k) = e2
∫

d4p1 d
4p2
∑

µ,ν

Aµ(p1)Aν(p2)

∫

d4q

(2π)4
ρ
(

ε(q + k)2
)

× ρ
(

ε(q − p2)
2
)

ρ
(

εq2
)

tr
[

γ56k(6q + 6k)−1γµ(6q − 6p2)−1γν 6q−1
]

.
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The calculation relies on the cyclic property of the trace and the anticom-

mutation of γ5.

We transform the expression, using the identity

(6q)−16k(6q + 6k)−1 = (6q)−1 − (6q + 6k)−1, (15.31)

and obtain

C(2)(k) = e2
∫

d4p1 d
4p2
∑

µ,ν

Aµ(p1)Aν(p2)

∫

d4q

(2π)4
ρ
(

ε(q + k)2
)

ρ
(

ε(q − p2)
2
)

× ρ
(

εq2
)

tr
{

γ5γµ(6q − 6p2)−1γν
[

6q−1 − (6q + 6k)−1
]}

. (15.32)

We separate the two contributions in the right hand side. In the second

contribution, proportional to (6q + 6k)−1 we interchange (p1, µ) and (p2, ν)

and shift q 7→ q + p1. Combining again the two contributions, we find,

C(2)(k) = e2
∫

d4p1 d
4p2
∑

µ,ν

Aµ(p1)Aν(p2)

∫

d4q

(2π)4
ρ
(

ε(q − p2)
2
)

ρ
(

εq2
)

× tr
[

γ5γµ(6q − 6p2)−1γν 6q−1
] [

ρ
(

ε(q + k)2
)

− ρ
(

ε(q + p1)
2
)]

.
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We see that the two terms would cancel in the absence of regulators. This

corresponds to the formal proof of current conservation. However, with-

out regularization the integrals diverge and previous manipulations are not

legitimate.

By contrast, here we find a non-vanishing sum because the regulating

factors which are different. After evaluation of the trace, the sum becomes

C(2)(k) = 4e2
∫

d4p1 d
4p2

∑

µ,ν,ρ,σ

Aµ(p1)Aν(p2)

∫

d4q

(2π)4
ρ
(

ε(q − p2)
2
)

ρ
(

εq2
)

× ǫµνρσ
p2ρqσ

q2(q − p2)2
[

ρ
(

ε(q + p1)
2
)

− ρ
(

ε(q + k)2
)]

.

Contributions coming from finite values of q cancel in the ε→ 0 limit. Due

to the cut-off, the relevant values of q are of order ε−1/2. Therefore, we can

simplify the q integrand:
∫

d4q

(2π)4q4
p2ρqσρ

2(εq2)ρ′(εq2)
∑

λ

[2εqλ(p1 − k)λ] .

1270



The identity
∫

d4q qαqβf(q
2) = 1

4δαβ

∫

d4q q2f(q2),

transforms the integral into

1
2p2ρ(2p1 + p2)σ

∫

εd4q

(2π)4q2
ρ2(εq2)ρ′(εq2).

The remaining integral can be calculated explicitly (we recall ρ(0) = 1)

∫

εd4q

(2π)4q2
ρ2
(

εq2
)

ρ′
(

εq2
)

=
1

8π2

∫ ∞

0

εqdq ρ2
(

εq2
)

ρ′
(

εq2
)

= − 1

48π2
,

and yields a result independent of the function ρ. We finally obtain

∑

λ

〈

kλJ
5
λ(k)

〉

= − e2

12π2

∑

µ,ν,ρ,σ

ǫµνρσ

∫

d4p1 d
4p2 p1µAν(p1)p2ρAσ(p2).

(15.33)
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From the definition (15.29) we conclude

∑

λ

kλΓ
(3)
λµν(k; p1, p2) =

e2

6π2

∑

ρ,σ

ǫµνρσp1ρp2σ .

This non-vanishing result implies that any definition of the determinant

det 6D breaks at least either current conservation or gauge invariance. Since

gauge invariance is essential to the construction of QED we choose to

break current conservation. Exchanging arguments, we obtain the value

of
∑

µ p1µΓ
(3)
λµν(k; p1, p2):

∑

µ

p1µΓ
(3)
λµν(k; p1, p2) =

e2

6π2

∑

ρ,σ

ǫλνρσkρp2σ .

By contrast, if we had used a gauge invariant regularization, the result for

Γ(3) would have differed by a term δΓ(3) proportional to (15.30):

δΓ
(3)
λµν(k; p1, p2) = K

∑

ρ

ǫλµνρ(p1 − p2)ρ .

1272



The constant K then is determined by the condition of gauge invariance

∑

µ

p1µ

[

Γ
(3)
λµν(k; p1, p2) + δΓ

(3)
λµν(k; p1, p2)

]

= 0 ,

which yields

∑

µ

p1µδΓ
(3)
λµν(k; p1, p2) = − e2

6π2

∑

ρ,σ

ǫλνρσkρp2σ ⇒ K = e2/(6π2).

This gives an additional contribution to the divergence of the current

∑

λ

kλδΓ
(3)
λµν(k; p1, p2) =

e2

3π2

∑

ρ,σ

ǫµλρσp1ρp2σ .

Therefore, in a QED-like gauge invariant field theory with massless fermions

the axial current is not conserved: this is called the chiral anomaly.
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For any gauge invariant regularization, one finds

∑

λ

kλΓ
(3)
λµν(k; p1, p2) =

(

e2

2π2
≡ 2α

π

)

∑

ρ,σ

ǫµνρσp1ρp2σ . (15.34)

Equation (15.34) can be rewritten, after Fourier transformation, as a non-

conservation equation for the axial current:

∑

λ

∂λJ
5
λ(x) = −i α

4π

∑

µ,ν,ρ,σ

ǫµνρσFµνFρσ . (15.35)

Since global chiral symmetry is not broken, the integral over the whole space

of the anomalous term must vanish. This condition is indeed verified since

the anomaly can immediately be written as a total derivative (equation

(15.28). The space integral of the anomalous term depends only on the

behaviour of the gauge field at boundaries, and this property indicates a

relation between topology and anomalies.
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Equation (15.35) also implies

ln det
[

eiγ5θ(x) 6Deiγ5θ(x)
]

= ln det 6D

− i
α

4π

∫

d4x θ(x)
∑

µ,ν,ρ,σ

ǫµνρσFµν(x)Fρσ(x) +O(θ2).

Chiral gauge theory. A gauge theory is consistent only if the gauge field

is coupled to a conserved current. The anomaly thus prevents the construc-

tion of a theory which would have both an Abelian gauge vector and axial

symmetry, where the action in the fermion sector would read

S(ψ̄, ψ) = −
∫

d4x ψ̄(x) (6∂ + ie 6A + iγ5 6B)ψ(x).

Current conservation is a WT identity in the gauge theory for the AAB

correlation function.
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In such a theory the one-loop diagrams contributing to the BBB correla-

tion function are formally identical to those contributing to AAB, because

two γ5 cancel. Therefore, they also yield an anomaly that cannot be re-

moved since the correlation function by definition is symmetric in its three

arguments. This prevents the construction even of a theory with a purely

axial gauge symmetry (e = 0).

A way to solve both problems is to cancel the anomaly by introducing

another fermion of opposite chiral coupling. With more fermions other

coupling combinations are possible. However, note that in the purely axial

case it is simple to show that a theory with two fermions of opposite chiral

charges can be rewritten as a vector theory by combining differently the

chiral components of both fermions.
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15.5.3 Non-Abelian vector gauge theories and Abelian axial current

We still consider an Abelian axial current but now in the framework of a

non-Abelian gauge theory. The fermion fields transform non-trivially under

a gauge group G and Aµ is the corresponding gauge field. The action is

S(ψ̄, ψ) = −
∫

d4x ψ̄(x) 6Dψ(x)

with

6D = 6∂ + 6A . (15.36)

The axial current

J5
µ(x) = iψ̄(x)γ5γµψ(x),

is still gauge invariant. Therefore, no new calculation is needed.
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Indeed, the result is completely determined by dimensional analysis, gauge

invariance and the previous calculation which yields the term of order A2:

∑

λ

∂λJ
5
λ(x) = − i

16π2

∑

µ,ν,ρ,σ

ǫµνρσ trFµνFρσ , (15.37)

in which Fµν is now the corresponding curvature tensor. Again this expres-

sion must be a total derivative. One verifies that

∑

µ,ν,ρ,σ

ǫµνρσ trFµνFρσ = 4
∑

µ,ν,ρ,σ

ǫµνρσ∂µ tr
(

Aν∂ρAσ + 2
3AνAρAσ

)

.

(15.38)
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15.5.4 Anomaly and eigenvalues of the Dirac operator

We assume that the spectrum of 6D, the Dirac operator in a non-Abelian

gauge field (equation (15.36)), is discrete (confining temporarily the fermions

in a box if necessary) and call dn and ϕn(x) the corresponding eigenvalues

and eigenvectors:

6Dϕn = dnϕn .

The eigenvalues are gauge invariant, because in a gauge transformation of

unitary matrix g(x) the Dirac operator becomes

6D 7→ g−1(x)6Dg(x) ⇒ ϕn(x) 7→ g(x)ϕn(x).

For a unitary or orthogonal group, the massless Dirac operator is anti-

hermitian; therefore, the eigenvalues are imaginary and the eigenvectors

orthogonal. In addition we choose them with unit norm.

The anticommutation 6Dγ5 + γ5 6D = 0 implies

6Dγ5ϕn = −dnγ5ϕn .
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Therefore, either dn is different from zero, and γ5ϕn is an eigenvector of

6D with eigenvalue −dn, or dn vanishes. The eigenspace corresponding to

the eigenvalue 0 then is invariant under γ5, which can be diagonalized: the

eigenvectors of 6D can be chosen eigenvectors of definite chirality, that is,

eigenvectors of γ5 with eigenvalue ±1,

6Dϕn = 0 , γ5ϕn = ±ϕn .

We denote by n+ and n− the dimensions of the eigenspaces of positive and

negative chirality, respectively.

We now consider the determinant of the operator 6D +m regularized by

mode truncation (mode regularization):

detN (6D+m) =
∏

n≤N

(dn +m),

keeping the N lowest eigenvalues of 6D (in modulus), with N − n+ − n−

even, in such a way that the corresponding subspace is γ5 invariant.
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The regularization is gauge invariant because the eigenvalues of 6D are

gauge invariant.

Note that in the truncated space the trace of γ5 is the index of the Dirac

operator:

tr γ5 = n+ − n− . (15.39)

It does not vanish if n+ 6= n−, a situation which endangers axial current

conservation.

In a chiral transformation (15.27) with θ constant, the determinant of

(6D+m) becomes

detN (6D+m) 7→ detN
(

eiθγ5(6D+m) eiθγ5
)

.
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We now consider the various eigenspaces.

If dn 6= 0 the matrix γ5 is represented by the Pauli matrix σ1 in the sum

of eigenspaces corresponding to the two eigenvalues ±dn and 6D + m by

dnσ3 +m. The determinant in the subspace is then

det
(

eiθσ1(dnσ3 +m) eiθσ1
)

= det e2iθσ1 det(dnσ3 +m) = m2 − d2n,

because σ1 is traceless.

In the eigenspace of vanishing eigenvalue dn = 0 with positive chirality,

of dimension n+, γ5 is diagonal with eigenvalue 1 and thus

mn+ 7→ mn+ e2iθn+ .

Similarly, in the eigenspace dn = 0 of chirality −1

mn
− 7→ mn

− e−2iθn
− .
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We conclude

detN
(

eiθγ5(6D+m) eiθγ5
)

= e2iθ(n+−n
−
) detN (6D+m).

The ratio of both determinants is independent of N . Taking the limit N →
∞, we find

det
[

(

eiγ5θ(6D+m) eiγ5θ
)

(6D+m)−1
]

= e2iθ(n+−n
−
) . (15.40)

The left hand side of equation (15.40) is 1 when θ = nπ, which implies that

the coefficient of 2θ in the right hand side must indeed be an integer.

The variation of ln det(6D+m),

ln det
[

(

eiγ5θ(6D+m) eiγ5θ
)

(6D+m)−1
]

= 2iθ(n+ − n−),

at first order in θ is related to the variation of the action (15.26) and thus to

the expectation value of the integral of the divergence of the axial current
〈

∫

d4x
∑

µ ∂µJ
5
µ(x)

〉

.
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In the limit m = 0 it is thus related to the space integral of the chiral

anomaly (15.37):

− 1

32π2

∑

µ,ν,ρ,σ

ǫµνρσ

∫

d4x trFµνFρσ = n+ − n− . (15.41)

Concerning this result several comments can be made:

(i) At first order in θ in the absence of regularization we have calculated

(ln det = tr ln)

ln det
[

1 + iθ
(

γ5 + (6D+m)γ5(6D+m)−1
)]

∼ 2iθ tr γ5 ,

where we have used the cyclic property of the trace. Since the trace of the

matrix γ5 vanishes we could expect naively a vanishing result. But trace

here means trace in γ space and in coordinate space, and γ5 really stands

here for γ5δ(x − y). The mode regularization yields a well-defined finite

result for the undefined product 0× δd(0).
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(ii) The property that the integral (15.41) is quantized shows that the

form of the anomaly is related to topological properties of the gauge field

since the integral does not change when the gauge field is deformed con-

tinuously. The integral of the anomaly over the whole space thus depends

only on the behaviour at large distances of the curvature tensor Fµν and

the anomaly must be a total derivative as equation (15.38) confirms.

(iii) Gauge field configurations exist for which the right hand side of

equation (15.41) does not vanish, for example, instantons, which are finite

action solutions of imaginary time classical field equations, related to barrier

penetration effects. We have shown above that if massless fermions are

coupled to such gauge fields the determinant resulting from the fermion

integration necessarily vanishes. This has some physical implications which

are examined in section 15.7.
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(iv) One might be surprised that det 6D is not invariant under global chiral

transformations. However, we have just established that when the integral

of the anomaly does not vanish, det 6D vanishes. This explains that to give

a meaning to the right hand side of equation (15.40) we have been forced

to introduce a mass to find a non-trivial result. The determinant of 6D in

the subspace orthogonal to eigenvectors with vanishing eigenvalue, even in

presence of a mass, is chiral invariant by parity doubling, but for n+ 6= n−

not the determinant in the eigenspace of eigenvalue zero because the trace of

γ5 does not vanish in the eigenspace (equation (15.39)). In the limit m→ 0

the complete determinant vanishes but not the ratio of determinants for

different values of θ because the powers of m cancel.
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15.6 Non-Abelian anomaly

We first consider the problem of conservation of a general axial current in a

non-Abelian vector gauge theory, and then the issue of obstruction to gauge

invariance in chiral gauge theories.

15.6.1 General axial current

We now discuss the problem of the conservation of a general axial current

in the example of a fermion action which has a G × G chiral symmetry

(subgroup of U(N)×U(N)), in the background of non-Abelian vector gauge

fields. The generators of the gauge group may or may not be related to the

diagonal subgroup G of G×G which correspond to vector currents.

We denote by tα the generators of G. The current then has the form

J5α
µ (x) = −ψ̄γ5γµtαψ .
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When the gauge group is connected with the chiral group, the current

conservation equation involves the gauge covariant derivative (Dµ = ∂µ +

[Aµ, •]):
∑

µ

DµJ
5
µ = 0 .

In the calculation of the contribution to the anomaly coming from terms

quadratic in the gauge fields the only modification in the previous results is

the appearance of a different geometrical factor. Then the complete form

of the anomaly is dictated by gauge covariance. One finds

∑

λ

DλJ
5α
λ (x) = − i

16π2

∑

µ,ν,ρ,σ

ǫµνρσ tr t
αFµνFρσ .

In particular, if the gauge group is disconnected from the chiral group the

anomaly is proportional to tr tα and, therefore, only different from zero for

the Abelian factors of G.
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15.6.2 Obstruction to gauge invariance

We now want to consider a non-Abelian gauge field coupled to left or right-

handed fermions:

S(ψ̄, ψ) = −
∫

d4x ψ̄(x) 12 (1 + γ5)6Dψ(x),

( 12 (1−γ5) is treated in the same way). We can construct a consistent gauge

theory only if the partition function

Z(Aµ) =

∫

[

dψdψ̄
]

exp
[

−S(ψ, ψ̄)
]

is gauge invariant.

If we introduce the generators tα of the gauge group in the fermion rep-

resentation, we can write the corresponding current Jµ as

Jα
µ (x) = −ψ̄ 1

2 (1 + γ5)γµt
αψ .
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The invariance of Z(Aµ) under an infinitesimal gauge transformation again

leads to a covariant conservation equation for the current:

∑

µ

〈DµJµ〉 = 0 .

The calculation of the term of degree two in the gauge field of the anomaly

is straightforward: the regularization adopted for the calculation in section

15.5.2 is also suited to the present case since the current-gauge field three-

point function is symmetric in the external arguments. The group structure

yields a simple geometrical factor. The global factor can be taken from the

Abelian calculation. It differs from the result (15.33) by a factor 1/2 which

comes from the projector 1
2 (1 + γ5). The general form of the term of third

degree in the gauge field can also easily be found, but the calculation of the

global factor is somewhat tedious. In fact, it can be derived from Wess–

Zumino consistency conditions.
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The complete expression reads:

∑

µ

(DµJµ(x))
α
= − i

24π2

∑

µ,ν,ρ,σ

∂µǫµνρσ tr
[

tα
(

Aν∂ρAσ + 1
2AνAρAσ

)]

.

(15.42)

If the projector 1
2 (1 + γ5) is replaced by 1

2 (1− γ5) the sign of the anomaly

changes.

Unless this term vanishes identically there is an obstruction to the con-

struction of the gauge theory. It is easy to verify, taking into account the

antisymmetry of the ǫ tensor, that the group factor is

dαβγ = 1
2 tr

[

tα
(

tβtγ + tγtβ
)]

.

For a unitary representation the generators tα are, with our conventions,

antihermitian. Therefore, the coefficients dαβγ are purely imaginary:

d∗αβγ = 1
2 tr

[

tα
(

tβtγ + tγtβ
)]∗

= −dαβγ .
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For all real (the tα antisymmetric) or ‘pseudo-real’ (tα = −S (tα)TS−1) rep-

resentations these coefficients vanish. It follows that the only non-Abelian

groups which can lead to anomalies in four dimensions are SU(N) forN ≥ 3,

SO(6) and E6.
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15.7 Physics implications

Weak–electromagnetic (w.e.m.) interactions and anomaly cancellation. The

condition of anomaly cancellation discussed in section 15.6.2 constrains the

model of w.e.m. interactions. In the Standard Model, for example, the

anomalous contributions of leptons cancels the quark contributions. This

cancellation occurs within each generation, as we now show, provided that

for each flavour quarks exist in three states. In the w.e.m. group SU(2) ×
U(1), SU(2) alone is a safe group. Therefore, the problems come from the

U(1) factor. We expect a priori two conditions coming from the vertices

with one U(1) and two SU(2) gauge fields and with three U(1) gauge fields.

Actually one discovers that both conditions are equivalent.
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If we consider two SU(2) and one U(1) gauge fields, only SU(2) doublets

contribute and equation (15.42) leads to the condition:

∑

all doublets

YL tr τατβ = 0 ,

in which YL is the U(1) charge (see section 15.1). This condition reduces to

∑

all doublets

YL = 0 . (15.43)

The vertex with three U(1) gauge fields yields the condition:

∑

left-handed parts

Y 3
L −

∑

right-handed parts

Y 3
R = 0 ,

because the contributions to the anomaly of right-handed and left-handed

couplings have opposite signs.
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In the Standard Model the left and right charges are related (equation

(15.12)). Summing the charges of one doublet and the corresponding sin-

glets, we obtain

∑

all doublets

(YL + 1)3 + (YL − 1)3 − 2Y 3
L = 0 ,

a condition which reduces to equation (15.43).

In one generation the lepton doublet has YL = −1 and the quark YL =

1/3. Therefore, a cancellation requires that the quarks exist in three states.

These states are provided by the colour quantum number.
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Electromagnetic π0 decay. In an effective low energy field theory for Strong

Interactions (see section 12.5) based on a linearly broken SU(2) × SU(2)

symmetry, where hadrons are considered as elementary fields, the non-

conservation of the axial current J5
µ is at leading order expressed by the

equation
∑

µ

∂µJ
5
µ = m2

πfππ . (15.44)

We concentrate here on the third component [J5
µ]3 of the current which

corresponds in the right hand side to the neutral pion π0 field. After intro-

duction of electromagnetic interactions in the model, the relation between

the divergence of the axial current and the π0 field allows to calculate the

electromagnetic decay rate of the neutral pion when the four-momentum k

of the pion goes to zero.
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In the absence of anomalies, the expectation value of relation (15.44) mul-

tiplied by two photon fields implies that the decay rate vanishes for k = 0

in contradiction with reasonable smoothness assumptions and experimental

results.

By contrast, taking into account the anomaly equation (15.35) one finds

∑

µ

∂µ[J
5
µ]3 = m2

πfππ0 − i
α

8π

∑

µ,ν,ρ,σ,

ǫµνρσFµνFρσ .

Multiplying the equation by two photon fields, taking the expectation value

and going to the limit k = 0 to eliminate the left hand side, one now

obtains a non-vanishing decay amplitude for an unphysical π0 at zero four

momentum.
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In the σ-model at leading order one can extrapolate to k2 = −m2
π. The

theoretical rate Γ is given by

Γ =
α2m3

π

64π3f2π
= 7.6 eV ,

while Γexp = (7.37±1.5) eV. The theoretical result is in excellent agreement

with experiment. A similar estimate was first derived by Steinberger from

direct Feynman graph calculation, before the relation to anomalies had been

discovered.

Note that an analogous theoretical estimate is obtained in the quark

model with massless quarks, for three colours.
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The solution of the U(1) problem. In a theory of Strong Interactions with

massless quarks interacting through a colour gauge group, the action has a

chiral U(NF)×U(NF) symmetry, in whichNF is the number of flavours. The

spontaneous breaking of the chiral group to its diagonal subgroup U(NF)

leads to expect N2
F Goldstone bosons associated with the axial currents.

From the preceding analysis we know that the axial current corresponding

to the U(1) Abelian subgroup has an anomaly. Of course the WT identities

that imply the existence of Goldstone bosons correspond to constant group

transformations and, therefore, involve only the space integral of the diver-

gence of the current. Since the anomaly is a total derivative one might have

expected the integral to vanish.

However, non-Abelian gauge theories admit instanton solutions which

give a periodic structure to the vacuum (like in the case of the one-dimen-

sional cosine potential).
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These instanton solutions correspond to gauge configurations which ap-

proach non-trivial pure gauges at infinity and give the set of discrete non-

vanishing values one expects from equation (15.41) to the space integral

of the anomaly (15.37). This indicates (but no satisfactory calculation of

the instanton contribution has been performed) that for small, but non-

vanishing, quark masses the U(1) axial current is far from being conserved

and, therefore, no light would-be Goldstone boson is generated. This obser-

vation resolves a long standing puzzle since experimentally no corresponding

light pseudoscalar boson is found for NF = 2, 3.
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