
Lecture 4: BOSONS IN THE HOLOMORPHIC

REPRESENTATION



In this lecture, we introduce a description of quantum mechanics in terms

of a Hilbert space of square integrable analytic functions, called the holo-

morphic representation. We then construct the corresponding path integral

representation of the statistical operator and partition function.

The holomorphic formalism is specially well adapted to a study of the

harmonic oscillator and, more generally, of perturbed harmonic oscillators.

Nevertheless, one may wonder whether it is really useful to construct an-

other representation of the harmonic oscillator, which many other methods,

including the usual path integral formalism, already allows discussing quite

thoroughly.

Actually, the main motivation comes from quantum N -particle problems

(one speaks also of N -body problems). It is based on a characteristic prop-

erty of the harmonic oscillator, the additivity of its spectrum: the energy of

the level N of the harmonic oscillator is the sum of the ground state energy

and N times the splitting between two neighbouring levels.



This energy thus can also be considered as the sum of a vacuum energy and

the total energy of N identical and independent particles of boson type. The

perturbations to the harmonic oscillator then correspond to interactions

between particles.

This gives an intuitive understanding of the role of generalized holomor-

phic path integrals (field integrals) in representations of the partition func-

tion of the quantum Bose gas and, in quantum field theory, of boson scat-

tering or S-matrices, which we will discuss in next lecture.

The holomorphic formalism is based on the properties of a certain type

of integrals over complex variables, which we first recall.



4.1 Formal complex integration and Wick’s theorem

Let us consider an integral over the plane,

I =

∫

R2

dp dq f(p, q),

in which the integrand f is an entire function of p and q. Then, one can

embed the R
2 plane into the complex C

2 space, and consider the variables

p, q as complex variables, the initial domain of integration being defined by

Im p = Im q = 0. In C2, it may sometimes be convenient to introduce an-

other pair of variables (z, z̄) related to (p, q) by the unitary transformation,

z = (p+ iq) /
√
2 , z̄ = (p− iq) /

√
2 ⇒ dz̄ dz = idp dq . (4.1)

In the new variables, the domain of integration is then defined by z̄ = z∗,

where z∗ denotes the complex conjugate of z, and the integral becomes

I = −i
∫

z̄=z∗

dz dz̄ f
(

p(z, z̄), q(z, z̄)
)

.
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In particular, these new variables are useful when rotations are involved

since a rotation of angle θ acting on the vector (p, q) is represented by the

U(1) transformations z 7→ z eiθ, z̄ 7→ e−iθ z̄. A rotation invariant function

is then a function only of the product zz̄.

4.1.1 Formal complex conjugation

Above we have denoted by ∗ the usual conjugation of complex numbers. We

introduce now a slightly different conjugation: we define a formal complex

conjugation where numbers are still replaced by complex conjugate but the

two integration variables are exchanged, z ↔ z̄.

We stress that z and z̄ are independent integration variables and are

complex conjugate only in a formal sense: the integration contours over the

variables p and q can be deformed in complex space where p and q also

take complex values. The symbol dzdz̄ corresponds to an integration over

a surface of real dimension 2, embedded in C2.
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Applying the definition of formal complex conjugation to power series, f 7→
f̄ , one obtains

f(z, z̄) =
∑

m,n

fmnz
mz̄n, fmn ∈ C ⇒ f(z, z̄) ≡

∑

m,n

f∗mnz̄
mzn,

where f∗mn denotes the usual complex conjugate of fmn.

A function such that f = f̄ is called formally real.

4.1.2 Gaussian integrals

The simplest Gaussian integral that has an integrand invariant under rota-

tions in the plane is

1

2π

∫

R2

dp dq e−a(p2+q2)/2 =

∫

dzdz̄

2iπ
e−az̄z =

1

a
,

where, in the initial variables (p, q), one integrates over the real plane and

Re a > 0.
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More generally, we consider Gaussian 2n-dimensional integrals of the form

Z0(A) =

∫

(

n
∏

i=1

dzidz̄i
2iπ

)

e−A0(z̄,z),

where A0(z̄, z) is the quadratic form

A0(z̄, z) =
n
∑

i,j=1

z̄iAijzj , detA 6= 0

and the matrix A with elements Aij is complex. Because terms of the form

zz and z̄z̄ are absent, the integral is left invariant by the U(1) transformation

zi 7→ zi e
iθ, z̄i 7→ z̄i e

−iθ . (4.2)
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If A is a hermitian positive matrix, it can be diagonalized by a unitary

transformation:

A = UDU†,

where U is a unitary matrix and D is the diagonal matrix with eigenvalues

ai > 0. The change of variables (z, z̄) 7→ (z′, z̄′) with

zi =
∑

j

Uijz
′
j , z̄i =

∑

j

U∗
ij z̄

′
j ,

has a Jacobian | detU|2 = 1 and, thus, the integral becomes

Z0(A) =
∏

i

∫

dz′idz̄
′
i

2iπ
e−aiz̄

′

iz
′

i =
∏

i

1

ai
=

1

detA
.
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Remarks

(i) If the matrix A is Hermitian, the quadratic form A0(z̄, z) is formally

real. Indeed,

A0(z̄, z) =
n
∑

i,j

ziA
∗
ij z̄j =

n
∑

i,j

z̄i[A
†]ijzj =

n
∑

i,j

z̄iAijzj .

We note that when the quadratic form A0(z̄, z) is formally real, the integral

is real.

(ii) In contrast with real Gaussian integrals, the result is a rational func-

tion of matrix elements and can thus be extended by analytic continuation

to arbitrary complex matrices.

Actually, from a purely algebraic viewpoint, the result can be obtained

directly by performing the change of variables zi 7→ z′i =
∑

j Aijzj , z̄i 7→ z̄i.
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The Jacobian is 1/ detA and A0(z̄, z) becomes
∑

i z̄izi. One then obtains

Z0(A) =
1

detA

n
∏

i=1

∫

dzidz̄i
2iπ

e−z̄izi =
1

detA
. (4.3)

4.1.3 Gaussian expectation values: generating function

We define expectation values with the Gaussian weight e−A0 /Z0(A) as

〈

z̄i1 . . . z̄ipzj1 . . . zjq
〉

0
= detA

∫

(

n
∏

i=1

dzidz̄i
2iπ

)

z̄i1 . . . z̄ipzj1 . . . zjq e
−A0(z̄,z) .

The invariance under the transformation (4.2), zi 7→ zi e
iθ, z̄i 7→ z̄i e

−iθ, of

A0 implies that only the monomials with an equal number of z and z̄ factors

have a non-vanishing Gaussian expectation value. Indeed, after the change

of variables zi 7→ eiθ zi, z̄i 7→ e−iθ z̄i with Jacobian 1, one obtains,

〈

z̄i1 . . . z̄ipzj1 . . . zjq
〉

0
= ei(q−p)θ

〈

z̄i1 . . . z̄ipzj1 . . . zjq
〉

0
= 0 if p 6= q .
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We consider now the more general Gaussian integral

Z0(A;b, b̄) =

∫

(

n
∏

i=1

dzidz̄i
2iπ

)

exp
[

−A0(z̄, z) + b̄ · z+ z̄ · b
]

, (4.4)

where the b and b̄ are two independent sets of arguments.

The integral is a generating function of Gaussian expectation values, as

one verifies by differentiating with respect to b and b̄ and, after differenti-

ation, setting b̄ = b = 0:

〈

z̄i1 . . . z̄ipzj1 . . . zjp
〉

0
= detA

∂

∂bi1
· · · ∂

∂bip

∂

∂b̄j1
· · · ∂

∂b̄jp
Z0(A;b, b̄)

∣

∣

∣

∣

b=b̄=0

.

(4.5)
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Explicit calculation. To eliminate the terms linear in z and z̄ in the integral

(4.4), one first solves the equations

∂

∂zi

[

A0(z̄, z)− b̄ · z− z̄ · b
]

=
∑

j

z̄jAji − b̄i = 0 ⇒ z̄i =
∑

j

b̄j∆ji ,

∂

∂z̄i

[

A0(z̄, z)− b̄ · z− z̄ · b
]

=
∑

j

Aijzj = bi = 0 ⇒ zi =
∑

j

∆ijbj

with the notation ∆ = A−1. One then change variables {zi, z̄i} 7→ {vi, v̄i},
shifting z, z̄ by the solutions:

zi =
∑

j

∆ijbj + vi , z̄i =
∑

j

b̄j∆ji + v̄i .

The resulting Gaussian integral over the variables v, v̄ is simply the integral

(4.3) and, thus,

Z0(A;b, b̄) = (detA)
−1

exp





n
∑

i,j=1

b̄i∆ijbj



 . (4.6)
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4.1.4 Gaussian expectation values and Wick’s theorem

This result allows calculating expectation values with the Gaussian weight

e−A0 /Z0(A) by substituting the result (4.6) into the expression (4.5):

〈

z̄i1zj1 . . . z̄ipzjp
〉

0
=

∂

∂bi1

∂

∂b̄j1
· · · ∂

∂bip

∂

∂b̄jp
exp





n
∑

i,j=1

b̄i∆ijbj





∣

∣

∣

∣

∣

∣

b=b̄=0

.

(4.7)

Second cumulant. A basic quantity for Gaussian expectation values is the

second cumulant (here equal to the second moment), which is given by

〈z̄kzℓ〉0 =
∂

∂bk

∂

∂b̄ℓ
exp





n
∑

i,j=1

b̄i∆ijbj





∣

∣

∣

∣

∣

∣

b=b̄=0

= ∆ℓk .
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Wick’s theorem. More generally, one can perform explicitly the differentia-

tions with respect to b and b̄ in expression (4.7).

The only contributions that do not vanish in the limit b = b̄ = 0, are

obtained by pairing in all possible ways a differentiation with respect to b

with a differentiation with respect to b̄. From this observation, one infers

Wick’s theorem for this type of complex integrals:

〈z̄i1zj1 . . . z̄ipzjp〉0 =
∑

all permutations
P of {j1,...,jp}

∆jP1
i1∆jP2

i2 . . .∆jPp ip (4.8a)

=
∑

all permutations
P of {j1,...,jp}

〈z̄i1zjP1
〉0〈z̄i2zjP2

〉0 · · · 〈z̄ipzjPp
〉0 . (4.8b)

For example, 〈z̄izj z̄kzl〉0 = 〈z̄izj〉0 〈z̄kzl〉0 + 〈z̄izl〉0 〈z̄kzj〉0.
For a Gaussian distribution, all expectation values can be derived from

the second moment using the appropriate Wick’s theorem.
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4.2 Perturbative expansion

Wick’s theorem simplifies the calculation of perturbed Gaussian integrals by

expanding around the Gaussian approximation. We consider here integrals

that enumerate the number of Feynman diagrams of a field theory with a

complex scalar field and a 1
4λ(φφ

∗)2 interaction.

4.2.1 The normalization integral

The integral

Z(λ) =

∫ ( n
∏

i=1

dzidz̄i
2iπ

)

exp [−A(z̄, z)] (4.9)

with

A(z̄, z) = A0(z̄, z) +
1
4λ

n
∑

i=1

z̄2i z
2
i ,

calculated in the form of an expansion in powers of the parameter λ, counts

the number of vacuum diagrams. It can be , .
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With the notation 〈•〉0 for Gaussian expectation values, using Wick’s theo-

rem, one finds at order λ2,

Z(λ)/Z(0) = 1− λ

4

∑

i

〈

z̄2i z
2
i

〉

0
+

λ2

2! 42

∑

i,j

〈

z̄2i z
2
i z̄

2
j z

2
j

〉

0
+O(λ3)

= 1− λ

2

∑

i

∆2
ii + λ2

∑

i,j

(

1
8∆

2
ij∆

2
ji +

1
2∆ii∆ij∆jj∆ji

)

+
λ2

2! 42

∑

i,j

〈

z̄2i z
2
i

〉

0

〈

z̄2j z
2
j

〉

0
+O(λ3).

As implied by a general result, the last and non-connected (factorizable)

contribution cancels in lnZ since, if we expand the term of order λ we

generate

ln
(

Z(λ)/Z(0)
)

= −λ
4

∑

i

〈

z̄2i z
2
i

〉

0
− λ2

2× 42

∑

i,j

〈

z̄2i z
2
i

〉

0

〈

z̄2j z
2
j

〉

0
+ · · · .
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i

Fig. 4.1 – Feynman diagrams: vertex (z̄izi)
2 (left) and the contribution

〈

z̄
2

i z
2

i

〉

0

of order λ (right) to the normalization Z(λ).

Note that, since 〈z̄izj〉 is not symmetric in ij, a faithful representation in

terms of Feynman diagrams involves oriented lines, which go, for instance,

from z to z̄ (see Fig. 4.1).

4.2.2 The second moment

Another example, which counts the diagrams of the two-point function, is

provided by the expansion of the expectation value 〈z̄kzℓ〉λ corresponding

to the normalized measure induced by the integrand (4.9).
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k ℓ

Fig. 4.2 – Feynman diagrams: contributions of order 1 and λ to 〈z̄kzℓ〉λ to the

second moment.

To order λ2, the expansion is (see diagrams of Figs. 4.2 with oriented lines,

up to one-loop)

〈z̄kzℓ〉λ =
Z(0)

Z(λ)

[

∆ℓk − λ

4

∑

i

〈

z̄kzℓz̄
2
i z

2
i

〉

0
+
λ2

32

∑

i,j

〈

z̄kzℓz̄
2
i z

2
i z̄

2
j z

2
j

〉

0

]

+O(λ3)
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Using Wick’s theorem, one obtains

〈z̄kzℓ〉λ = ∆ℓk − λ
∑

i

∆ℓi∆ii∆ik + λ2
∑

i,j

(∆ℓj∆jj∆ji∆ii∆ik

+∆ℓi∆ij∆jj∆ji∆ik + 1
2∆ℓj∆ji∆ij∆ji∆ik

)

+ O
(

λ3
)

.

Note that all non connected contributions cancel after division by Z(λ).
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4.3 Quantum mechanics in the holomorphic representation

The holomorphic formalism originates from the idea of associating (com-

plex) classical variables z, z̄ to the creation and annihilation operators a†, a

that, for example, are introduced in the simplest algebraic solution of the

harmonic oscillator.

4.3.1 Hilbert space of analytic functions

One considers the complex vector space of analytic entire functions endowed

with a scalar product: the scalar product of two entire functions f(z) and

g(z) is defined by

(g, f) =

∫

dz dz̄

2iπ
e−zz̄ g(z) f(z), (4.10)

where z̄ is the variable formally complex conjugate to z and the integration

is defined as in section 4.1.
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As we show below, the scalar product (f, f) defines a positive norm ‖f‖ =

(f, f)1/2. Entire functions with a finite norm form a Hilbert space, which

we denote below by H.

One can then define operators acting on this Hilbert space, and, thus,

construct a representation of quantum mechanics, called the holomorphic

representation.

Orthonormal basis. The monomials zn/
√
n! form an orthonormal basis of

the Hilbert space H since
∫

dzdz̄

2iπ
e−zz̄ z̄nzm = n! δmn . (4.11)

This result is an immediate consequence of Wick’s theorem (4.8).

We can expand functions on this basis:

f(z) =
∑

n≥0

fn
zn√
n!
, g(z) =

∑

n≥0

gn
zn√
n!
,
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Then, the scalar product of these two functions is simply the generalization

of the scalar product of complex vectors:

(g, f) =
∑

n

g∗nfn .

In particular, the norm of a function is finite if

(f, f) =
∑

n

|fn|2 <∞ , (4.12)

confirming that these functions belong to a subclass of entire functions.

δ-function. In the holomorphic formalism, the role of Dirac’s δ-function

is played by

δ(z) ≡ 1

2iπ

∫

dz̄ e−z̄z . (4.13)

Indeed, as a consequence of the orthogonality relations,
∫

dzdz̄

2iπ
e−zz̄ f(z) =

∫

dzdz̄

2iπ
e−zz̄

∑

n=0

zn

n!
f (n)(0) = f(0) .
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4.3.2 Operators in the holomorphic representation

We now construct a representation of the operators of quantum mechanics

acting on the Hilbert space H. The construction is based on two operators

z and d/dz, acting by multiplication and differentiation on holomorphic

functions: (in this lecture ~ = 1 except when stated otherwise)

f(z) 7→ zf(z), f(z) 7→ f ′(z).

We immediately note the commutation relation

[d/dz, z] = 1 . (4.14)

Then, we consider the scalar product of a function g(z) by a function f(z)

on which acts the operator d/dz:

(g, df/dz) =

∫

dzdz̄

2iπ
e−zz̄ g(z)

d

dz
f(z).
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After integration by parts, one finds

(g, df/dz) = −
∫

dzdz̄

2iπ
f(z)g(z)

d

dz
e−zz̄

=

∫

dzdz̄

2iπ
e−zz̄ zg(z)f(z).

This identity proves that z and d/dz are hermitian conjugate operators with

respect to the scalar product (4.10) in the Hilbert space.

Note that by using the commutation relation (4.14), one can expand any

operator on a basis of monomials written in a canonical form with all oper-

ators z on the left of all operators d/dz,

zm
(

d

dz

)n

,

a form called normal order.
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4.4 Bosons in the second quantization formalism

As we show below, the holomorphic representation is a convenient frame-

work to discuss the quantum harmonic oscillator. However, our main pur-

pose here is to describe bosons in the so-called second quantization formal-

ism.

We consider a system with only one quantum state that can be occupied

by an arbitrary number of bosons. The function zn corresponding to n

bosons occupying the state and n is the occupation number. The constant

1 corresponds to the empty state or vacuum.

The hermitian operator

N = z
d

dz

preserves the occupation number. Its eigenvalues are the occupation num-

bers since

Nzn ≡ z
d

dz
zn = nzn , n ≥ 0 .
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Thus, N is the operator number of particles or occupation number operator.

We have already shown that the eigenvectors zn are orthogonal (equation

(4.11)), a property consistent with the hermiticity of the operator N .

In the holomorphic framework, one defines a Hilbert space that contains

linear combinations of vectors with different number of particles and this

explains the denomination second quantization.

4.4.1 Harmonic oscillator and holomorphic representation

One easily verifies that linear combinations of z and d/dz are unbounded

from below. The first possible hermitian Hamiltonian (up to a constant

shift) is

H0 = 1
2ω

(

z
d

dz
+

d

dz
z

)

= ω
(

N + 1
2

)

, ω > 0 . (4.15)

The eigenvectors of H0 are again the monomials zn and

H0z
n =

(

n+ 1
2

)

ωzn , n ≥ 0 .
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We recognize that H0 is the Hamiltonian of the harmonic oscillator and that

the holomorphic formalism is equivalent to the formalism of creation and

annihilation operators a†, a, which can be used to determine algebraically

the spectrum of H0:

a† 7→ z , a 7→ d/dz , H0 = 1
2ω
(

a†a+ aa†
)

. (4.16)

However, the energy spectrum of the harmonic oscillator has also another

interpretation in terms of bosons that can occupy only one state of energy

ω. In this interpretation, the Hamiltonian conserves the number of particles

since obviously [N,H0] = 0.

The energy corresponding to the vector zn is the sum of the vacuum

energy, 1
2ω, and the energy of n bosons occupying the state of energy ω.

Before working out this interpretation in more details, we construct a

path integral representation of the statistical operator.
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4.5 Operators: kernel representation

To operators O that, in the basis of the eigenvectors of the harmonic oscil-

lator, have matrix elements Omn, we associate the kernels

O(z, z̄) =
∑

m,n

Omn
zm√
m!

z̄n√
n!
, (4.17)

where we recall that the functions {zn/
√
n!} are the normalized eigenvec-

tors of the harmonic oscillator in the holomorphic representation (equation

(4.11)).

Notation. To give to kernels a more suggestive and convenient form, we

will also use a formal notation of matrix elements with bras and kets:

O(z, z̄) ≡ 〈z| O |z̄〉 ,

without trying to define very precisely the corresponding vectors.
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Examples. The kernel associated to the identity operator is

I(z, z̄) =
∑

n=0

zn√
n!

z̄n√
n!

= ezz̄ . (4.18)

The kernel associated to the number operator N is

N(z, z̄) =
∑

n

n(zz̄)n

n!
= zz̄ ezz̄ = z

d

dz
I(z, z̄),

and, thus, the Hamiltonian (4.15) of the harmonic oscillator is represented

by

H0(z, z̄) = ω
(

zz̄ + 1
2

)

ezz̄ . (4.19)

Finally, for the statistical operator U0(β) = e−βH0 , one finds

〈z|U0(β) |z̄〉 =
∑

n

e−βω(n+1/2)(zz̄)n

n!
= e−βω/2 ezz̄ e−βω

. (4.20)
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4.5.1 Action of a kernel on a function

The action of a kernel O(z, z̄), associated to an operator O, on a function

f(z) is given by

(Of)(z) =
∫

dz′dz̄′

2iπ
O(z, z̄′) e−z′z̄′

f(z′). (4.21)

Indeed, expanding O(z, z̄), and f(z) in the form

f(z) =
∑

n

fn
zn√
n!
,

one finds

(Of)(z) =
∑

m,n

Omnfn
zm√
m!
,

as expected.
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4.5.2 Differential operators and kernels

It follows from the representation (4.21) that by applying any operator O
written in normal form as

O =
∑

m,n

Omnz
m(d/dz)n ,

on both sides, O is represented by the kernel

O(z, z̄) =
∑

m,n

Omnz
m

(

d

dz

)n

I(z, z̄) = O(z, z̄) ezz̄

with

O(z, z̄) =
∑

m,n

Omnz
mz̄n. (4.22)
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4.5.3 Product of operators

The kernel associated with the product of two operators is given by
∫

dz′dz̄′

2iπ
〈z| O2 |z̄′〉 e−z′z̄′ 〈z′| O1 |z̄〉 = 〈z| O2O1 |z̄〉 . (4.23)

Indeed, inserting the explicit expressions (4.17),

Oi(z, z̄) =
∑

mn

[Oi]mn
zm√
m!

z̄n√
n!
,

one obtains

[O2O1](z, z̄) =

∫

dz′dz̄′

2iπ

∑

m,n,m′,n′

[O2]mn
zm√
m!

z̄′n√
n!

e−z′z̄′

[O1]m′n′

zm
′

√
m′!

z̄n
′

√
n′!
.

The integral follows from the orthogonality condition (4.11),

∫

dz′dz̄′

2iπ

z̄′n√
n!

e−z′z̄′ zm
′

√
m′!

= δnm′ .
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Thus,

〈z| O2O1 |z̄〉 =
∑

m,n,n′

zm√
m!

[O2]mn[O1]nn′

z̄n
′

√
n′!
.

The definition (4.23) of the product of operators is thus consistent with the

definition of the product in the harmonic oscillator basis.

Finally, one verifies that the trace of the operator O is given by

trO =

∫

dz dz̄

2iπ
e−zz̄ O(z, z̄) =

∑

n

Onn, (4.24)

by again expanding O(z, z̄). Using the relation (4.23), one verifies directly

that the definition satisfies the cyclic condition trO1O2 = trO2O1.
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Remarks.

(i ) From the property that z and d/dz are hermitian conjugate, fol-

lows that hermitian conjugation acting on kernels is represented by formal

complex conjugation:

O 7→ O† ⇒ O(z, z̄) 7→ O(z, z̄), (4.25)

as one verifies also directly by comparing the scalar products (f,Og) and

(O†f, g).

(ii ) Matrix elements of operators in the holomorphic representation are

analogous to matrix elements in the mixed position–momentum represen-

tation. The latter can be obtained from the matrix elements 〈q| O |q′〉 of

an operator in the position basis by a partial Fourier transformation on the

right:

〈q| O |p̃〉 =
∫

dq′ eipq
′/~ 〈q| O |q′〉 .

207



In the classical limit, the complex variables (z, z̄) provide a parametriza-

tion of phase space alternative to the parametrization in terms of the real

momentum and position variables (p, q).

4.5.4 Hamiltonian and statistical operator

The matrix elements of the Hamiltonian (4.15) of the harmonic oscillator

are (equation (4.19))

〈z|H0 |z̄〉 = ω
(

1
2 + zz̄

)

ezz̄ .

The matrix elements of the statistical operator U0(β) = e−βH0 , (propor-

tional to the matrix density at thermal equilibrium at temperature 1/β), is

given by equation (4.20),

〈z|U0(β) |z̄〉 = e−ωβ/2+zz̄ e−ωβ

. (4.26)
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One verifies that it satisfies the differential equation

∂

∂β
〈z|U0(β) |z̄〉 = −〈z|H0U0(β) |z̄〉 = −ω

(

1
2 + z

∂

∂z

)

〈z|U0(β) |z̄〉

with the boundary condition

〈z|U0(0) |z̄〉 = I(z, z̄) = ez̄z .

Note that the action of the quantum statistical operator on a function f(z)

is given by

[U0f ](z) = e−ωβ/2

∫

dz′dz̄′

2iπ
ezz̄

′ e−ωβ

e−z′z̄′

f(z′) = e−ωβ/2 f(e−ωβ z),

(4.27)

where the representation (4.13) of the δ-function has been used.
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Finally, using the property (4.25), one verifies directly that H0 and U0(β)

are hermitian.

The partition function Z0(β) = tr e−βH0 is the trace of U0(β). Using

equations (4.24, 4.26), one obtains

Z0(β) = trU0(β) = e−ωβ/2

∫

dz̄dz

2iπ
e−zz̄ ezz̄ e−ωβ

=
e−ωβ/2

1− e−ωβ
, (4.28)

which is the partition function of a standard harmonic oscillator with eigen-

values (n+ 1
2 )ω, n ≥ 0.
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4.6 Path integral: the harmonic oscillator

Once the product of operators in kernel form has been defined, it is possible

to construct a path integral representation of the quantum statistical oper-

ator (or the evolution operator), based on the holomorphic formalism. The

strategy is the same as in the real coordinate case. One reduces the problem

to the evaluation of the kernel for short time intervals. However, while the

algebra is similar, the question of convergence is more subtle.

Path integral. The matrix elements 〈z |U0(t)| z̄〉 of the statistical operator
U0(t) = e−tH0 , where H0 is the Hamiltonian of the harmonic oscillator, are

given in (4.26). At first order in t (omitting now the vacuum energy),

〈z |U0(t)| z̄〉 = exp
[

z̄z(1− ωt) +O
(

t2
)]

. (4.29)

The semi-group property U0(t) = [U0(t/n)]
n, expressed in terms of matrix

elements, then allows calculating U0(t ≡ t′′ − t′) for finite time.
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In the formal limit n→ ∞, one obtains the path integral representation

〈z′′ |U0(t
′′, t′)| z̄′〉 =

∫
[

dz̄(t)dz(t)

2iπ

]

ez̄(t
′)z(t′) exp [−S0(z, z̄)] , (4.30)

S0(z, z̄) =

∫ t′′

t′
dt z̄(t) [−ż(t) + ωz(t)]

with the asymmetric boundary conditions z(t′′) = z′′, z̄(t′) = z̄′. The sym-

metry of the action between initial and final times, is not explicit, but can

be verified by an integration by parts of the term z̄ż:

S0(z, z̄)− z̄(t′)z(t′) = −z̄(t′′)z(t′′) +
∫ t′′

t′
dt z(t) [ ˙̄z(t) + ωz̄(t)] .

Let us point out, however, that the validity of this integration within the

path integral assumes that differentiation and expectation value for equal

time products commute and thus relies on the convention sgn(0) = 0.
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Finally, in the case of the holomorphic path integral, the discussion of

the existence of a continuum limit, beyond the formal argument, is compli-

cated, the nature of the problem being analogous to what is encountered in

integrals over phase space.

4.6.1 General Gaussian integral

Expression (4.30) can be generalized to a system coupled linearly to exter-

nal sources b(t) and b̄(t), which are assumed to be independent conjugate

functions, like z(t), z̄(t). The corresponding action is

SG(z, z̄) = S0(z, z̄)−
∫ t′′

t′
dt
[

z̄(t)b(t) + b̄(t)z(t)
]

, (4.31)

and the matrix elements of UG are given by

〈z′′|UG(b, b̄ ; t
′′, t′) |z̄′〉 =

∫ [

dz̄(t)dz(t)

2iπ

]

ez̄(t
′)z(t′) exp [−SG(z, z̄)] . (4.32)
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The quantity 〈z′′|UG(b, b̄ ; t
′′, t′) |z̄′〉 is a generating functional of z(t), z̄(t)

correlation functions, which can be all derived from the two-point function.

Explicit calculation of the path integral. One first solves the classical equa-

tions obtained by varying z̄(t) and z(t):

−ż(t) + ωz(t)− b(t) = 0 , ˙̄z(t) + ωz̄(t)− b̄(t) = 0 .

The solutions that satisfy the boundary conditions are

zc(t) = z′′ e−ω(t′′−t) +

∫ t′′

t

e−ω(u−t) b(u)du ,

z̄c(t) = z̄′ e−ω(t−t′) +

∫ t

t′
e−ω(t−u) b̄(u)du .

Shifting integration variables by the solution of the classical equations,

z(t) 7→ zc(t) + v(t), z̄(t) 7→ z̄c(t) + v̄(t), one obtains a Gaussian integral

that does not depend on the external sources and boundary conditions any

more.
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After integration, the result takes the form

〈z′′|UG(b, b̄ ; t
′′, t′) |z̄′〉 = N

(

ω(t′′ − t′)
)

ez̄(t
′)z(t′)−SG(z,z̄), (4.33)

where

z̄c(t
′)zc(t

′) = z̄′z′′ e−ω(t′′−t′) +z̄′
∫ t′′

t′
dt e−ω(t−t′) b(t),

− SG(zc, z̄c) =

∫ t′′

t′
dt b̄(t)zc(t)

=

∫ t′′

t′
dt b̄(t) e−ω(t′′−t) z′′ +

∫

t′≤t,u≤t′′
du dt b̄(u)θ(t− u) e−ω(t−u) b(t),

θ(t) being the step function: θ(t) = 1 for t > 0, θ(t) = 0 for t < 0.

As in the case of the usual path integral, the normalization N can be

determined entirely only by a comparison with a reference path integral.
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4.6.2 Gaussian correlation functions

Taking the trace (equation (4.24)) of expression (4.33), after a straightfor-

ward calculation one finds

ZG(b, b̄;β) = Z0(β) exp

[∫

−β/2≤t,u≤β/2

du dt b̄(u)∆(t− u)b(t)

]

, (4.34)

where the normalization Z0(β) is determined by setting b = b̄ = 0 and,

thus,

Z0(β) = tr e−βH0 ,

and ∆(t) is the Gaussian two-point function or propagator:

∆(t) = 1
2
e−ωt [sgn(t) + 1/ tanh(ωβ/2)] = e−ωt

(

θ(t) +
1

eωβ −1

)

(4.35)

with sgn(t) = 1 for t > 0, sgn(t) = −1 for t < 0 and θ(t) = (1+ sgn(t))/2 is

the step function.

216



One notes that ∆(t) satisfies the periodic boundary condition ∆(−β/2) =
∆(β/2).

The trace of the path integral (4.32) properly normalized, thus yields

a generating functional of correlation functions of z, z̄ with the Gaussian

weight e−S0 /Z0 and periodic boundary conditions.

One verifies also that ∆(t) is the solution of the differential equation

∆̇(t) + ω∆(t) = δ(t), (4.36)

with periodic boundary conditions on the interval [−β/2, β/2] (we recall

that, in the sense of distributions, d sgn(t)/dt = 2δ(t)).

In the zero temperature limit β → ∞, ∆(t) reduces to

∆(t) = θ(t) e−ωt . (4.37)

This form implies a time-ordering or causal property in perturbative calcu-

lations.
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Periodic boundary conditions. As suggested by the property that ∆(t) sat-

isfies periodic boundary conditions, one verifies that the result (4.34) can

also recovered more directly from a path integral with periodic boundary

conditions:

ZG(b, b̄;β) =

∫ [

dz̄(t)dz(t)

2iπ

]

exp [−SG(z, z̄)] (4.38)

with z(−β/2) = z(β/2), z̄(−β/2) = z̄(β/2) and

SG(z, z̄) =

∫ β/2

−β/2

dt
{

z̄(t) [−ż(t) + ωz(t)]− z̄(t)b(t)− b̄(t)z(t)
}

.
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Generating functional of correlation functions. The generating functional of

correlation functions with periodic boundary conditions, fully determined

by the condition 〈1〉 = 1, is then

ZG(b, b̄;β)/Z0(β) = exp

[∫

du dt b̄(u)∆(t− u)b(t)

]

.

The initial expression (4.32) shows that the derivative with respect to b and

b̄, in the limit b = b̄ = 0, is the two-point function and, thus,

〈z̄(t)z(u)〉 = ∆(t− u). (4.39)
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Fourier representation. The periodic boundary conditions on the finite in-

terval [−β/2,+β/2] imply that one can expand z(t), z̄(t) in a Fourier series,

z(t) =

+∞
∑

n=−∞
e2iπnt/β z̃n , z̄(t) =

+∞
∑

n=−∞
e−2iπnt/β ˜̄zn .

Inverting the Fourier transformation, one finds

z̃n =
1

β

∫

dt e−2iπnt/β z(t), ˜̄zn =
1

β

∫

dt e2iπnt/β z̄(t).

Applying this representation to the two-point function (4.39) and using the

explicit expression (4.35), one obtains

〈˜̄zmz̃n〉 =
δmn

β

∫ β/2

−β/2

dt e2iπnt/β ∆(t) = δmn
1

ωβ − 2iπn
. (4.40)
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4.6.3 Partition function

The derivative of the path integral (4.38) with respect to ω, taken for b =

b̄ = 0, is the derivative of the partition function and, thus,

d

dω
lnZ0(β) = −

∫ β/2

−β/2

dt 〈z̄(t)z(t)〉 = −β∆(0).

Since

∆(t) = 1
2
e−ωt [sgn(t) + 1/ tanh(ωβ/2)]

formally,
d

dω
lnZ0(β) = −β

2

[

sgn(0) +
cosh(ωβ/2)

sinh(ωβ/2)

]

.

The result involves sgn(0) and, thus, is clearly not defined. This reflects a

weakness of the path integral: since it is expressed only in terms of classical

quantities, it looses the information about operator ordering in products.
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The ambiguity, which is signalled by the appearance of the quantity sgn(0),

is related to the choice of the order of operators in products. Different choices

correspond to different choices of quantization.

It can be resolved only by regularizing the path integral, either by re-

turning to discrete times or by adding higher order time derivatives to the

action, which leads to adding higher powers of n in the denominator of

(4.40).

Integrating formally and using the property that the ground state is not

degenerate, which determines the normalization, one formally obtains

Z0(β) =
e−βω(1+sgn(0))/2

1− e−ωβ
=
∑

k=0

e−βEk . (4.41)

Expanding the denominator for β → ∞, one finds the eigenvalues of H0:

Ek = E0 + ωk , E0 = ω(1 + sgn(0))/2 .
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Changing the value of sgn(0) leads to a global shift of the whole spectrum,

which indeed corresponds to different orderings of the product of the oper-

ators z and d/dz in the Hamiltonian.

The choice sgn(0) = 0 corresponds to E0 = ω/2 and thus to the standard

symmetric Hamiltonian

H0 = 1
2ω[zd/dz + (d/dz)z].

This choice allows exchanging path integration and time differentiation.

A different choice, for instance, ∆(0) = ∆(0−) and, thus, sgn(0) = −1

corresponds to normal order and leads to

Z0(β) =
1

1− e−ωβ
.
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We have already pointed out the merit of the time-symmetric choice sgn(0) =

0. We illustrate it again here. Using the explicit form (4.35) of the two-point

function, one infers the expectation value

〈[z̄(t+ δ)− z̄(t)][z(t+ δ)− z(t)]〉 = 2∆(0)−∆(δ)−∆(−δ).

Only the symmetric choice

∆(0) = lim
δ→0

1
2

(

∆(δ) + ∆(−δ)
)

=
coshω(β/2)

2 sinh(ωβ/2)
,

(equation (4.35)), and thus sgn(0) = 0, ensures continuity when δ goes to

zero. Then, the generic values of [z(t+ δ)−z(t)][z̄(t+ δ)− z̄(t)] are of order
|δ|, in analogy with the behaviour of Brownian motion.
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4.7 Path integral: general Hamiltonians

One can derive a path integral representation, based on the holomorphic

formalism, for the matrix element of the statistical operator for a general

class of Hamiltonians.

The matrix elements of the statistical operator that satisfy the equation

∂

∂t
〈z|U(t, t′) |z̄〉 = −H (z, ∂/∂z; t) 〈z|U(t, t′) |z̄〉 (4.42)

with 〈z|U(t′, t′) |z̄〉 = ez̄z, are given by the path integral,

〈z′′|U(t′′, t′) |z̄′〉 =
∫ [

dz̄(t)dz(t)

2iπ

]

ez̄(t
′)z(t′) exp [−S(z, z̄)] (4.43)

with the euclidean action

S(z, z̄) =
∫ t′′

t′
dt
[

−z̄(t)ż(t) +H
(

z(t), z̄(t); t
)]

(4.44)

and the boundary conditions z(t′′) = z′′, z̄(t′) = z̄′.
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Remarks

(i) Note that, in the boson interpretation, only Hamiltonians functions of

the product zd/dz conserve the boson number. This translates into Hamil-

tonians with kernels function only of zz̄. The boson number conservation is

thus associated with the U(1) symmetry

z 7→ eiθ z , z̄ 7→ z̄ e−iθ .

This property generalizes to several pairs of z and z̄ variables.

(ii) The problems already encountered in section 4.6.3, induced by the

ordering in products of the operators z, d/dz that do not commute, clearly

become more severe for more general quantum Hamiltonians.
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4.7.1 Holomorphic formalism and position-momentum phase space

The classical Hamiltonian function of z, z̄ and the usual Hamiltonian func-

tion of momentum p and position q, are related by a mapping of the form

(4.1) (up to normalizations of p and q):

z = (q − ip) /
√
2 , z̄ = (q + ip) /

√
2 , (4.45)

Holomorphic path integrals (4.43) and phase space integrals of the form

U =

∫

[dp(t)dq(t)] e−S(p,q), (4.46)

which involves an integration over phase space trajectories and the classical

euclidean action in the Hamiltonian formalism,

S(p, q) =
∫

dt
[

−ip(t)q̇(t) +H
(

p(t), q(t)
)]

,

are similarly related by a simple change of variables of the form (4.45), but

have different boundary conditions and boundary terms.
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4.7.2 Partition function

In the case of a time-independent Hamiltonian, from the statistical operator

one derives the partition function by taking its trace. In terms of matrix

elements, the relation reads:

Z(β) =

∫

dzdz̄

2iπ
e−zz̄ 〈z|U(β/2,−β/2) |z̄〉 .

One verifies that the trace operation leads to periodic boundary conditions

in the path integral. One then obtains

Z(β) =

∫ [

dz̄(t)dz(t)

2iπ

]

exp [−S(z, z̄)] (4.47)

with

S(z, z̄) =
∫ β/2

−β/2

dt
[

−z̄(t)ż(t) +H
(

z(t), z̄(t)
)]

and the boundary conditions z(−β/2) = z(β/2), z̄(−β/2) = z̄(β/2).
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4.8 Several complex variables

The generalization of the holomorphic formalism to entire functions of N

complex variables zi, z̄i is simple. The scalar product of two functions is

defined by

(g, f) =

∫

(

N
∏

i=1

dzi dz̄i
2iπ

e−ziz̄i

)

g(z)f(z). (4.48)

In terms of the Taylor series expansion

f(z) =
∑

k=0

1

k!

∑

i1,...,ik

fi1...ikzi1 . . . zik ,

where the coefficients fi1...ik are symmetric in the k indices, the norm of the

function is given by

‖f‖2 = (f, f) =
∑

k=0

1

k!

∑

i1,...,ik

|fi1...ik |2.
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The functions with finite norm span a Hilbert space. Such spaces will be

encountered again in the discussion of boson systems in lecture 4.9.

On these functions act hermitian conjugate creation and annihilation op-

erators zi, ∂/∂zi, with the commutation relations

[∂/∂zi, zj ] = δij .

Associated kernels and partition function. The kernel of the identity is

I(z, z̄) = exp
∑

i

ziz̄i . (4.49)

It is then simple to derive kernels associated to operators written in normal

form by acting on I.
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One infers a path integral representation for the partition function that

generalizes expression (4.47),

Z(β) =

∫ [

dNz(t)dN z̄(t)

(2iπ)N

]

exp [−S(z, z̄)] (4.50)

with an action of the form

S(z, z̄) =
∫ β/2

−β/2

dt

[

−
∑

i

z̄i(t)żi(t) +H
(

z(t), z̄(t)
)

]

and periodic boundary conditions

z(−β/2) = z(β/2), z̄(−β/2) = z̄(β/2).
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4.9 Boson states and Hamiltonian in second quantization

We have now set up a formalism that allows to discuss boson systems in

the grand canonical formulation, obtained by summing over subspaces cor-

responding to any number of particles. We assume first that bosons can

occupy only a finite number N of states that, for example, correspond to

positions on a finite lattice.

One-boson state. A one-boson state is defined by a vector, which we denote

by ψi, which belongs to a complex vector space H1 of finite dimension N .

n-particle state. A state of n identical bosons is described by a vector

ψi1i2...in where the indices ik take N values. The statistical properties of

bosons imply the invariance of the vector ψi1i2...in under all permutations

P of the indices {i1, . . . , in}, ψi1i2...in = ψiP1
iP2

...iPn
.

The vectors ψi1i2...in are symmetric tensors with n indices and belong to

a complex vector space Hn of dimension
(

N+n−1
n

)

.
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4.9.1 Hamiltonian

Independent particles. An one-body or one-particle Hamiltonian H(1) is de-

fined by its action on one-particle states: it is then represented by a hermi-

tian N ×N matrix H
(1)
ij , which thus can be diagonalized.

In terms of its eigenvalues ωi, its action on one-particle states is given by

[H(1) ψ]i = ωiψi .

Its action on an n-particle state is additive:

[H(1) ψ]i1i2...in =
∑

ℓ

ωiℓ ψi1i2...in .

If the total Hamiltonian reduces to this simple form, the bosons do not

interact: one then speaks of independent particles.
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Two-body or pair interaction. A pair or two-body interaction H(2) is de-

fined by its action on two-particle states:

[H(2) ψ]i1i2 =
∑

j1,j2

H
(2)
i1i2,j1j2

ψj1j2 ,

where H
(2)
i1i2,j1j2

is a hermitian matrix that satisfies

H
(2)
i1i2,j1j2

= H
(2)
i2i1,j2j1

= (H
(2)
j1j2,i1i2

)∗

and, therefore, is an internal mapping in the vector space H2 of symmetric

tensors. When H(2) acts only on symmetric tensors, the matrix can be

symmetrized and then satisfies

H
(2)
i1i2,j1j2

= H
(2)
i1i2,j2j1

= H
(2)
i2i1,j1j2

.

The action of H(2) on an n-particle state, then, has the form

[H(2) ψ]i1i2...in = 1
2

∑

ℓ 6=m

∑

j,k

H
(2)
iℓim,jkψi1i2...iℓ−1jiℓ+1...im−1k im+1...in .
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A simple generalization of this construction allows defining k-particle (k-

body) interactions but, in what follows, for simplicity, we restrict the dis-

cussion to at most two-particle interactions.

4.9.2 Second quantization formalism: state vectors

We now consider the set of all vectors corresponding to an arbitrary number

of bosons, that is, which belong to the union E ≡ ⊕nHn, i = 0, 1, . . . ,∞ of

all spaces. The space H0, which has not been defined yet, corresponds to

the zero-particle or empty state (also called the vacuum).

We then introduce a complex vector z ∈ C
N, of components zi, i =

1, . . . , N , and the function of N complex variables

Ψ(z) =
∞
∑

n=0

1

n!

∑

i1,i2,...,in

ψi1i2...inzi1zi2 . . . zin ,

which is a generating function of all vectors.
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Because we deal with bosons, the coefficients ψi1i2...in are symmetric in all

indices and, thus, can be recovered by differentiating the function Ψ(z),

which thus parametrizes the elements of E .
We choose the functions Ψ(z) to be normalizable with respect to the

scalar product (4.48),

‖Ψ‖2 =
∞
∑

n=0

1

n!

∑

i1,i2,...,in

|ψi1i2...in |2 <∞ .

When ‖Ψ‖ = 1, the nth term in the sum gives the probability for the

quantum system to be in an n-particle state, the factor 1/n! cancelling

the over-counting of states implied by the unrestricted summation over all

indices {ik}.
This gives to E the structure of a Hilbert space, the Hilbert space of

entire functions of N complex variables and this explains the name of second

quantization given to the formalism.
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4.9.3 Second quantization formalism: Operators acting on E
One then notices that

∑

j

ωjzj
∂Ψ(z)

∂zj
=

∞
∑

n=1

1

(n− 1)!

∑

j

zjωj

∑

i1,i2,...,in−1

zi1zi2 . . . zin−1
ψi1i2...in−1j

=

∞
∑

n=1

1

n!

∑

i1,i2,...,in

zi1zi2 . . . zin
∑

ℓ

ωiℓψi1i2...in .

The operator

H(1) ≡
∑

i

ziωi
∂

∂zi
, (4.51)

thus, represents the one-particle Hamiltonian acting on the vector Ψ(z).

An analogous calculation shows that a pair interaction is represented by

the operator

H(2) =
1

2

∑

i1,i2,j1,j2

zi1zi2H
(2)
i1i2,j1j2

∂2

∂zj1∂zj2
. (4.52)
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The total Hamiltonian

H = H(1) +H(2) (4.53)

has exactly the form of the Hamiltonians discussed in the framework of the

holomorphic representation, generalized to N complex variables. In partic-

ular, it is hermitian with respect to the scalar product (4.48).

Occupation number and particle number. In this framework, one can in-

troduce the occupation number operator of state i, whose action on Ψ(z) is

given by

ni = zi
∂

∂zi
⇒ [ni,nj ] = 0 . (4.54)

The sum

N =
∑

i

ni (4.55)

is then the operator total number of particles. This operator is a special

example of an one-body operator of type (4.51).
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The Hamiltonian (4.53) conserves the number of particles because there

is an equal number of factors z and ∂/∂z in each term. This property is

equivalent to the commutation relation

[N,H] = 0 .

4.9.4 Associated kernels

The kernel associated with the identity is (expression (4.49))

I(z, z̄) = exp
∑

i

ziz̄i . (4.56)

The Hamiltonian (4.51) and the particle number operator are then repre-

sented, respectively, by

H(1)(z, z̄) = I(z, z̄)
∑

i

ωiziz̄i , N(z, z̄) = I(z, z̄)
∑

i

ziz̄i . (4.57)
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Finally, the pair interaction (4.52) has the representation

H(2)(z, z̄) =
1

2
I(z, z̄)

∑

i1,i2,j1,j2

zi1zi2H
(2)
i1i2,j1j2

z̄j1 z̄j2 . (4.58)

The conservation of the number of particles leads to a symmetry U(1) ∼
SO(2) of the Hamiltonian, corresponding to the transformation

zi 7→ eiθ zi , z̄i 7→ e−iθ z̄i ,

since only monomials with an equal number of factors z and z̄ are present.

Of course, the same formalism allows also studying systems where the

number of particles is not conserved. The symmetry is then absent and the

chemical potential (cf. section 4.10) useless.
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4.10 Quantum statistical physics: the partition function

From the viewpoint of quantum statistical physics, two different strategies

are available to study the thermodynamic limit of a system of particles: one

can either work with a fixed number n of particles and then take the limit

n → ∞, or consider the direct sum ⊕Hn, n = 0, 1, ..., ∞ of Hilbert spaces,

and fix the average number of particles by varying the chemical potential

(this assumes a weak coupling to a reservoir of particles, the analogue of a

thermal bath for the temperature).

We study, here, the statistical properties of Bose systems in the latter

framework, called the grand canonical formulation of statistical physics,

using the formalism presented in section 4.9.
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4.10.1 Chemical potential

In quantum mechanics, conservation laws correspond to operators that com-

mute with the Hamiltonian. From the statistical viewpoint, conservation

laws lead to a breaking of ergodicity. States corresponding to different val-

ues of the conserved quantity do not thermalize.

In such a case, in the second quantization formulation, it is necessary to

add to the Hamiltonian a term proportional to the corresponding opera-

tor, to determine the expectation value of the conserved quantity. In the

case of the conservation of the number of particles, one thus replaces the

Hamiltonian H by the operator

H− µN ,

which amounts simply here to modifying H(1). The real parameter µ, which

is coupled to the particle number operator N, is called the chemical poten-

tial. It allows varying the average number of particles.
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4.10.2 Partition function and equation of state

To calculate the partition function

Z(β, µ) = tr e−β(H−µN),

we now use of the holomorphic formalism described in sections 4.3-4.7. The

partition function is given by a path integral of the form (4.50):

Z(β, µ) =

∫

[dzi(t)dz̄i(t)] exp [−S(z, z̄)] (4.59)

with an action

S(z, z̄) =
∫ β/2

−β/2

dt

{

−
∑

i

z̄i(t) [żi(t) + µzi(t)] +H
(

z(t), z̄(t)
)

}

(4.60)

and periodic boundary conditions

zi(−β/2) = zi(β/2), z̄i(−β/2) = z̄i(β/2).
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The kernel associated to the Hamiltonian (4.53) can be written as

〈z|H |z̄〉 = I(z, z̄)H(z, z̄),

where I is defined in (4.56) and H(z, z̄) can be inferred from expressions

(4.57, 4.58). One then finds

H(z, z̄) =
∑

i

ωiziz̄i +
1
2

∑

i1,i2,j1,j2

zi1zi2H
(2)
i1i2,j1j2

z̄j1 z̄j2 .

Equation of state. The equation of state is the relation between average

number of particles, temperature and chemical potential. It can be derived

from the partition function by differentiating with respect to the chemical

potential:

〈N〉 = 1

β

∂ lnZ
∂µ

.
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From the path integral representation, using time translation invariance,

one derives

〈N〉 = 1

β

∑

i

∫ β/2

−β/2

dt 〈zi(t)z̄i(t)〉 =
∑

i

〈zi(0)z̄i(0)〉 . (4.61)

Operator ordering. In any explicit calculation of the path integral, one is

confronted with ambiguities, which are related to the problem of operator

ordering. The products that appear in expressions (4.51, 4.52) are naturally

written in normal order. Therefore, if one insists using the symmetric con-

vention sgn(0) = 0, for reasons that have been explained in section 4.7, one

must modify H(1) by a term generated by H(2) and add a constant term to

cancel the ground state energy.
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4.11 S-matrix and holomorphic formalism

The holomorphic formalism has been discussed in section 4.3, and we adapt

it here to real time evolution. The holomorphic formalism in real time is

useful when the asymptotic states are eigenstates of the harmonic oscillator,

a situation that one encounters naturally in quantum many-body theory and

relativistic quantum field theory, as we start discussing in section 5.5.

4.11.1 Path integral representation

The representation of the evolution operator is formally obtained from the

statistical operator by the continuation t 7→ it. Then,

U(z′′, z̄′; t′′, t′) =

∫ [

dz̄(t)dz(t)

2iπ

]

exp [iA(z, z̄)] , (4.62)

A(z, z̄) = −iz̄(t′)z(t′)−
∫ t′′

t′
dt
[

iz̄(t)ż(t) + h
(

z(t), z̄(t)
)]

,

with the boundary conditions z(t′′) = z′′, z̄(t′) = z̄′.
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From the evolution operator one can derive the corresponding S-matrix.

Defining the S-matrix by expression (3.48) (for ~ = 1),

S = lim
t′→−∞
t′′→+∞

eiH0t
′′

U(t′′, t′) e−iH0t
′

,

where H0 is the Hamiltonian of the harmonic oscillator,

H0 = 1
2 p̂

2 + 1
2ω

2q̂2,

(ω > 0) one finds

S(z, z̄) = lim
t′→−∞

t′′→+∞

∫

dz′′dz̄′′

2iπ

dz′dz̄′

2iπ
e−z′′z̄′′

e−z′z̄′

eiωt′′/2 exp
(

zz̄′′ eiωt′′
)

× U(z′′, z̄′; t′′, t′) e−iωt′/2 exp
(

z′z̄ e−iωt′
)

.

Using equation (4.27), or integrating directly, one obtains

S(z, z̄) = lim
t′→−∞

t′′→+∞

eiωt′′/2 U(z eiωt′′ , z̄ e−iωt′ ; t′′, t′) e−iωt′/2 . (4.63)
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The coefficients of the expansion of S(z, z̄) in powers of z and z̄ yield the

matrix elements Smn of the transition between the corresponding eigenstates

of the harmonic oscillator,

S(z, z̄) =
∑

m,n

Smn
zm√
m!

z̄n√
n!
,

which are also states with different boson number. As in the position rep-

resentation (section 3.11.2), the configurations in the path integral which

contribute to the S-matrix are, for large time, asymptotic to the solutions of

the classical equation of motion. For the harmonic oscillator H0 this means

z(t′′) ∼
t′′→+∞

z eiωt′′ , z̄(t′) ∼
t′→−∞

z̄ e−iωt′ .
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4.11.2 Time-dependent force

In the case of a finite number of degrees of freedom a simple application

is the evaluation of transition rates between eigenstates of the harmonic

oscillator induced by a time-dependent perturbation that vanishes for large

positive and negative times. As an example we apply the result (4.63) to

the harmonic oscillator perturbed by a linear, time-dependent coupling to

a creation and annihilation operators of the form

H(z, z̄) = ωzz̄ − b(t)z̄ − b∗(t)z ,

where b(t) vanishes for |t| → ∞. The perturbed Hamiltonian is still hermi-

tian and thus the S-matrix unitary.
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After a straightforward calculation, one finds

S(z, z̄) = exp

[

zz̄ + i

∫ +∞

−∞
dt
(

z eiωt b∗(t) + z̄ e−iωt b(t)
)

−
∫ +∞

−∞
dt1 dt2 b

∗(t1)θ(t2 − t1) e
−iω(t2−t1) b(t2)

]

. (4.64)

Using the formalism of section 4.3, one verifies the unitarity of the S-matrix.

Moreover, it is convenient to express the result in terms of the Fourier

components of b(t). Setting

b(t) =

∫ +∞

−∞
dν eiνt b̃(ν),

one obtains (ε→ 0+)

S(z, z̄) = exp

[

zz̄ + 2iπ
(

zb̃∗(ω) + z̄b̃(ω)
)

−
∫ +∞

−∞
dν

2iπ

ν − ω + iε
|b(ν)|2

]

.

(4.65)
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Coupling to position only. If the function b(t) is real the perturbation is

coupled to the position q(t) only. From (4.45) we infer that the coefficient

of b(t) is
√
2ωq(t). Then the expression (4.64) can be symmetrized in time

and becomes

S(z, z̄) = exp

[

zz̄ + i

∫ +∞

−∞
dt
(

z eiωt +z̄ e−iωt
)

b(t)

− 1
2

∫ +∞

−∞
dt1 dt2 b(t1) e

−iω|t2−t1| b(t2)

]

. (4.66)

In terms of Fourier components, one finds

S(z, z̄) = exp

[

zz̄ + 2iπ
(

zb̃(−ω) + z̄b̃(ω)
)

− π

∫ +∞

−∞
dν

2iω

ν2 − ω2 + iε
|b(ν)|2

]

.

(4.67)
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4.11.3 Calculation with the path integral in the position basis

It is interesting to compare the expression with a direct calculation of the

real path integral

Z(b) =

∫

[dq] exp i

∫ +∞

−∞
dt
(

1
2 q̇

2(t)− 1
2ω

2q2(t) +
√
2ωb(t)q(t)

)

.

As such the path integral is not defined because the classical equation of

motion has non-trivial solutions. We thus define the real time path integral

as the analytic continuation of the euclidean path integral.

The iε rule. We perform a rotation in the time complex plane t 7→ t eiθ

where θ varies between 0 (the euclidean theory) and π/2, (the real time

theory). In the Fourier variable ν the corresponding rotation is ν 7→ ν e−iθ.

Following the rotation, we find that this amounts to giving to ω2 an in-

finitesimal negative imaginary part ω2 7→ ω2 − iε with ε→ 0+.
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The iε term then ensures the convergence of the Gaussian path integral and

one finds

Z(b) = Z(0) exp

[

− 1
2

∫ +∞

−∞
dt1 dt2 b(t1) e

−iω|t2−t1| b(t2)

]

.

We recognize the contribution quadratic in b in the expression (4.66). To

recover the complete expression (4.66), one has to slightly modify the path

integral.

Defining q0(t) = (2ω)−1/2
(

z eiωt +z̄ e−iωt
)

, where q0(t) is also the most

general solution of the equation of motion of the classical harmonic oscilla-

tor, one finds

Z(b) =

∫

[dq] exp i

∫ +∞

−∞
dt
(

1
2 q̇

2(t)− 1
2ω

2q2(t) +
√
2ω b(t)

(

q(t) + q0(t)
)

)

(4.68)

and then S(z, z̄) = ezz̄ Z(b)/Z(0).
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One can then shift q0(t) + q(t) 7→ q(t). Taking into account the equation of

motion, one finds that the action in expression (4.68) can be written as

A(q) =

∫ +∞

−∞
dt
(

1
2 q̇

2(t)− 1
2ω

2q2(t) +
√
2ωb(t)q(t)− 1

2 q̇
2
0(t) +

1
2ω

2q20(t)
)

,

where the contribution of q0 does not vanish, though q0 satisfies the equa-

tion motion derived from the harmonic action, because it does not vanish

asymptotically.

Actually, the contribution of q0 ensures the convergence of the time inte-

gral because the function q(t) now satisfies scattering boundary conditions,

q(t) ∼
|t|→∞

q0(t) = (2ω)−1/2
(

z eiωt +z̄ e−iωt
)

,

in agreement with general arguments.
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Exercises

Exercise 4.1

Space and momentum translation operators. In this exercise, one uses for

the momentum and position operators p̂, q̂ the holomorphic representation

q̂ =
1√
2

(

z +
d

dz

)

, p̂ =
i√
2

(

z − d

dz

)

.

1. Find the eigenvectors of the position operator q̂ in the space of entire

functions. Calculate the scalar product of two eigenvectors (it may be useful

to return to real integration).

Solution. The eigenvector fq(z), corresponding to the real eigenvalue q,

is solution of
1√
2

(

z +
d

dz

)

fq(z) = qfq(z).
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The solution can be written as

fq(z) = e−(z−q
√
2)2/2 .

Then,

(fq′ , fq) =
√
π e−q2 δ(q − q′).

2. One considers the operator T (α) as defined by its action on holomor-

phic vectors:

[T (α)f ](z) ≡ f(z, α) = e−αz/
√
2−α2/4 f(z + α/

√
2),

with α real. Verify the Abelian multiplication law

T (α)T (β) = T (α+ β),

by acting on an arbitrary vector f .
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Verify explicitly that the operator T (α) preserves the scalar product (and,

thus, that it is unitary).

Show by acting with T (α) on the eigenvectors fq of q̂:

[T (α)fq](z) = fq+α(z).

Show that f(z, α) satisfies the partial derivative equation

∂f(z, α)

∂α
=

1√
2

(

∂

∂z
− z

)

f(z, α). (4.69)

Infer that T (α) is the translation operator: T (α) = eiαp̂.

3. Determine the kernel associated with T (α) and directly verify unitarity.

Solution. One acts with T (α) on the identity kernel I:

T (α, z, z̄) ≡ [T (α)I](z, z̄) = e−αz/
√
2−α2/4 I(z + α/

√
2, z̄)

= ezz̄+α(z̄−z)/
√
2−α2/4 .
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The proof of unitarity then relies on the verification
∫

dvdv̄

2iπ
e−vv̄ T (α, z, v̄)T (α, v, z̄) = ezz̄ .

4. One now defines the operator

[V (β)f ](z) = e−iβz/
√
2−β2/4 f(z − iβ/

√
2),

with β real. Same questions as for T (α), equation (4.69) being replaced by

∂[V (β)f ]

∂β
= − i√

2

(

∂

∂z
+ z

)

[V (β)f ].

Infer that V (β) is the momentum translation operator V (α) = e−iαq̂.

5. Acting on holomorphic vectors, derive the commutation relation

V (β)T (α) = eiαβ T (α)V (β).

258



Exercise 4.2

Boson systems in the holomorphic representation.

One considers the Hilbert space of analytic functions f(z) endowed with

the scalar product (4.10).

The unperturbed Hamiltonian, in the holomorphic representation,

H0 = z
d

dz
,

describes a system of bosons that can occupy only one energy state. One

then adds an interaction between the bosons and a medium that can absorb

and emit boson pairs with equal probability. This corresponds to adding a

potential

V =
α

1 + α2

[

(

d

dz

)2

+ z2

]

to H0, where α is chosen real and the parametrization is convenient for what
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follows. With these assumptions, the Hamiltonian H = H0 + V remains

hermitian.

1. Introducing the operator

B =
d

dz
+ αz ,

express H in terms of B†B.

Solution.

B† = α
d

dz
+ z , H =

1

1 + α2

(

B†B − α2
)

.

2. Determine the holomorphic eigenvectors f±(z) with f±(0) = 1, such

that

Bf+ = 0 , B†f− = 0 ,

and calculate their norm. Under which conditions are the norms finite?
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Solution. f+(z) = e−αz2/2 and thus

(f+, f+) =
1√

1− α2
.

The norm is finite if |α| < 1.

Moreover,

[B†f−](z) = αf ′(z) + zf(z)

and thus f−(z) = e−z2/2α and

(f−, f−) =
|α|√
α2 − 1

.

One finds the condition α2 > 1. Both vectors cannot be normalized simul-

taneously and for α2 = 1, neither is normalizable.

3. Calculate the commutator [B,B†] and relate B and B† to creation and

annihilation operators of a harmonic oscillator (distinguishing the two cases
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|α| < 1 and > 1). Infer the spectrum of H. Show that for |α| 6= 1, it is a

spectrum of independent particles, which one can call quasi-bosons.

Solution. [B,B†] = 1− α2.

For |α| < 1, one can set B = A
√
1− α2, where A is the annihilation

operator with the standard normalization [A,A†] = 1 and, thus,

H =
(1− α2)A†A− α2

1 + α2
⇒ EN =

(1− α2)N − α2

1 + α2
, N ≥ 0 .

For |α| > 1, one can set B† = A
√
α2 − 1 and the spectrum of H is then

given by

EN =
(α2 − 1)N − 1

1 + α2
, N ≥ 0 .

These results are consistent with the normalizability conditions of f±. One

verifies that, like the Hamiltonian, the spectrum is invariant by α 7→ 1/α.

The change z 7→ iz shows also directly that H(α) has the same spectrum

as H(−α), which is consistent with the explicit result.
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For |α| 6= 1, one thus finds a spectrum of independent particles, of quasi-

bosons in the sense that these boson states consist in a superposition of

states with 1, 3, ..., initial bosons.

4. Determine the kernel 〈z|H |z̄〉 corresponding to the Hamiltonian H.

Infer, then, the path integral representation of the kernel 〈z|U(β, 0) |z̄〉 as-
sociated with the statistical operator U(β, 0) = e−βH .

Solution.

〈z|H |z̄〉 = ez̄zH(z, z̄), H(z, z̄) = zz̄ +
α

1 + α2

(

z2 + z̄2
)

.

One infers the path integral representation

〈z|U(β, 0) |z̄〉 =
∫ [

dz̄(t)dz(t)

2iπ

]

ez̄(0)z(0) exp [−S(z, z̄)]

with the euclidean action

S(z, z̄) =
∫ β

0

dt

[

−z̄(t)ż(t) + z̄(t)z(t) +
α

1 + α2

(

z2(t) + z̄2(t)
)

]

(4.70)
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and the boundary conditions z(β) = z, z̄(0) = z̄.

5. From now on, one restricts the discussion to 0 < α < 1 and sets

β(1− α2)/(1 + α2) = λ , α = e−µ .

Infer from the calculation of the path integral, the dependence of 〈z|U(β, 0)|z̄〉
on z, z̄.

One may use linear combinations of the classical equations of motion to

cast the action into the form

S(zc, z̄c) = − 1
2 [zc(β)z̄c(β)− zc(0)z̄c(0)] ,

where zc(t), z̄c(t) are solutions. Then, to solve the equations, one may in-

troduce the two linear combinations z(t)± z̄(t).

Solution. The integral is Gaussian and can thus be evaluated. One first

solves the equations of motion to eliminate the boundary conditions:

−ż(t) + z(t) +
2α

1 + α2
z̄(t) = 0 , (4.71)
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˙̄z(t) + z̄(t) +
2α

1 + α2
z(t) = 0 . (4.72)

Adding z̄(t) times equation (4.71) to z(t) times equation (4.72), one finds

z(t)z̄(t) +
α

1 + α2

(

z2(t) + z̄2(t)
)

=
1

2

(

z̄(t)ż(t)− ˙̄z(t)z(t)
)

.

Substituting this identity into the action (4.70), one obtains a total deriva-

tive, which leads to the first result:

S(z, z̄) = − 1
2 [z(β)z̄(β)− z(0)z̄(0)] .

Since z(β) and z̄(0) are fixed by the boundary conditions, it suffices to

calculate z(0) and z̄(β). The solutions of the equations can be written as

z(t) = a eωt −αb e−ωt

z̄(t) = −αa eωt +b e−ωt,
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with ω = (1− α2)/(1 + α2) and

a =
z eµ +z̄ e−λ

2 sinh(λ+ µ)
, b =

z + z̄ eλ+µ

2 sinh(λ+ µ)
.

Thus,

z(0) =
z sinhµ− z̄ sinhλ

sinh(λ+ µ)
, z̄(β) =

z̄ sinhµ− z sinhλ

sinh(λ+ µ)
,

and, finally,

S(z, z̄)− z̄(0)z(0) =
(z2 + z̄2) sinhλ− 2zz̄ sinhµ

2 sinh(λ+ µ)
.

6. Infer the normalization from the calculation of trU(β, 0) by comparing

the result, for example, with the expression obtained directly by using the

spectrum determined previously.
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Solution. The Gaussian integration yields a normalization N and

〈z|U(β, 0) |z̄〉 = N ez̄(0)z(0)−S(z,z̄) .

Calculating the trace, one obtains the partition function

Z(β) = N
∫

dzdz̄

2iπ
e−zz̄ ez̄(0)z(0)−S(z,z̄) =

N
2 sinh(λ/2)

√

sinh(λ+ µ)

sinhµ
.

The direct calculation based on the already determined spectrum yields

Z(β) =
eβ/2

2 sinh(λ/2)
⇒ N = eβ/2

√

sinhµ

sinh(λ+ µ)
.
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Exercise 4.3

One considers the partition function (4.47) with

S(z, z̄) =
∫ β/2

−β/2

dt
{

z̄(t) [−ż(t) + ωz(t)] + 1
4λ [z̄(t)z(t)]

2
}

,

where ω, λ are two positive constants. Calculate the ground state energy E0,

up to order λ2 with the convention θ(0) = 1
2 , that is sgn(0) = 0. Determine

then the whole spectrum to order λ. More generally, determine the exact

spectrum.

Solution. Help can be found in the calculations presented in section 4.2.

First, using Wick’s theorem, one obtains

tr e−βH =
1

2 sinh(ωβ/2)

[

1− 1
2λ

∫

dt 〈z̄(t)z(t)〉2 +O
(

λ2
)

]

,

where 〈z̄(t)z(t)〉 is given by the propagator (4.35) at time 0:

〈z̄(t)z(t)〉 ≡ ∆(0) = 1
2 (sgn(0) + 1/ tanh(ωβ/2)) .
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Expanding for β large, one obtains the spectrum to order λ:

Ek = (k + 1
2 )ω + 1

4λ(k
2 + k + 1

2 ).

This is also the exact spectrum. In the limit β → ∞, the Gaussian two-point

function (4.37) implies time ordering. Therefore, all connected diagrams,

except the order λ that is ambiguous, vanish and this proves the property

for the ground state energy. More generally, one verifies, before integrating

over time, that all perturbative contributions are time-independent. Time

integration then yields a factor βn at order λn. The expansion (?.?) then

implies that contributions of order higher than one no longer modify the

spectrum.

Exercise 4.4

Calculate the two-point function 〈z̄(u)z(v)〉 corresponding to the weight

e−S /Z to order λ2, for β → ∞. Infer the energy Ω = E1 − E0, where E1

corresponds to the first excited state (the one-particle state).
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Solution. Expanding in powers of λ2 and using Wick’s theorem, one finds

(again the causal property of the propagator much simplifies the calculation)

〈z̄(u)z(v)〉 = θ(u− v) e−ω(u−v)
(

1− 1
2λ(u− v) + 1

8λ
2(u− v)2

)

+O(λ3)

= θ(u− v) e−(ω+λ/2)(u−v)+O(λ3).

Thus, Ω = ω + 1
2λ+O(λ3), in agreement with the exact spectrum.

Exercise 4.5

Explain these results in terms of the corresponding Hamiltonian expressed

in terms of creation and annihilation operators.

Solution. The path integral defines the Hamiltonian up to the problem of

operator ordering. Therefore, it has the form

H = ω(a†a+ 1
2 ) +

1
4λ
(

(a†a)2 + αa†a+ β),
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where α, β are two numerical constants. The spectrum is then

Ek = ω(k + 1
2 ) + λ

(

k2 + αk + β).

Comparing with the result of the calculation, one concludes

α = 1 , β = 1
2 .

Finally, since the eigenvectors of the Hamiltonian are those of the harmonic

oscillator, the two-point function is given by

〈z̄(u)z(v)〉 = θ(u− v) 〈0| e−(H−E0)(u−v) |0〉
=
∑

k=0

〈0| a |k〉 e−(Ek−E0)(u−v) 〈k| a† |0〉

= θ(u− v) e−(E1−E0)(u−v) .
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