
Lecture 5: BOSONS: FROM NON-RELATIVISTIC TO

RELATIVISTIC QUANTUM FIELD THEORY



Having set up a suitable formalism, we now study more generally, quantum

boson systems in the so-called second quantization formulation.

In the preceding lecture, we have assumed that bosons can occupy only

a finite number of quantum states, for example, because only spin degrees

of freedom are relevant or because bosons live on a finite space lattice.

In this lecture, the available states belong themselves to a Hilbert space.

The simplest application is Bose–Einstein condensation for a system of in-

dependent bosons.

In the presence of interactions, the holomorphic formalism leads to a

description of the Bose gas in the grand canonical formulation in terms

of a non-relativistic quantum field theory. One application is the Helium

superfluid phase transition.

Replacing in the action the non-relativistic by the relativistic kinematics

and enforcing locality, we construct a relativistic quantum field theory for

a neutral scalar boson field.



Then, we begin our study of local, relativistic quantum field theory.

It is convenient to describe its properties first in real time, before returning

to the euclidean formalism because some aspects, like the relation between

fields and particles, are easier to understand. Various expressions for the

scattering S-matrix follow.



5.1 Bose–Einstein condensation

We first discuss the example of a system of independent bosons. Of course,

in such a case the sophisticated formalism that we have set-up in section 4.10

is not really required. But the application to this simple situation will give

us an opportunity to explain Bose–Einstein condensation and provide us

with a transition to section 5.2. It will lead us to generalize the holomorphic

formalism from finite vector space to Hilbert space.

In the case of independent particles, the partition function factorizes into

a product of partition functions of harmonic oscillators corresponding to

each energy level, a result that also follows directly from the path integral

representation (4.59).
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5.1.1 Independent bosons: the equation of state

In the absence of interactions, using the partition function or directly equa-

tion (4.61) (see section 4.10.2), the average occupation number is given by

〈N〉 =
∑

i

〈ni〉 , 〈ni〉 = 〈zi(0)z̄i(0)〉

where 〈ni〉 is the average occupation number of the state i with energy ωi.

Since the bosons do not interact, the two-point function for state i is just

related to the corresponding harmonic oscillator H0(ωi) − µN, where µ is

the chemical potential (equation (4.35)):

〈z̄i(t)zj(0)〉 = δij∆i(t) = δij e
−(ωi−µ)t

(

θ(t) +
1

eβ(ωi−µ)−1

)

.

For t = 0, setting θ(0) = 0 (normal order), one obtains the equation of state

〈N〉 =
∑

i

1

eβ(ωi−µ)−1
, (5.1)
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This expression can also be expressed in terms of the one-particle Hamilto-

nian H(1) with spectrum ωi as

〈N〉 = tr
1

eβ(H(1)−µ) −1
. (5.2)

Note that these expressions are defined only for µ < infi ωi. Moreover, 〈N〉
is an increasing function of µ and diverges for µ→ infi ωi.

5.1.2 From finite-dimensional vector space to Hilbert space: the harmonic

potential

Up to now, we have assumed that the one-particle states belong to a finite-

dimensional vector space. We now generalize the formalism to the situation

where one-particle states belong themselves to a Hilbert space. We discuss

this situation more systematically in section 5.2 but, here, as an introduc-

tion, we study the equation of state of a system of independent particles.

The formal expression (5.2) is still valid, but H(1) is then a one-particle

Hamiltonian operator.
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Harmonic potential in the semi-classical limit. We first consider the example

of particles in an isotropic harmonic well in d-dimensional space. The one-

particle quantum Hamiltonian can be written as

H(1)(p̂, q̂) =
1

2m
p̂2 +

1

2
mω2q̂2.

The average number of particles at high temperature (high compared to the

separation ~ω between energy levels and thus for β~ω ≪ 1) is given as an

integral over phase space by the semi-classical expression

〈N〉 ∼ 1

(2π~)d

∫

ddp ddq

eβ(H(1)(p,q)−µ) −1
. (5.3)

In the semi-classical approximation, 〈N〉 is not defined for µ > 0. For µ < 0

the average number of particles is still an increasing function of µ.
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We then note that for d > 1 the integral has a finite limit for µ = 0, which

can be calculated explicitly. One finds,

〈N〉 = ζ(d)/(~ωβ)d, (5.4)

where ζ is the Riemann function.

This result leads to an apparent paradox: by decreasing the temperature

at fixed average number of particles, one encounters a limiting temperature

Tc =
1

βc
= ~ω

( 〈N〉
ζ(d)

)1/d

.

At first instance, this phenomenon reflects a limitation of the semi-classical

approximation since, for a Hamiltonian with a discrete spectrum, or at least

a gap, 〈N〉 diverges when µ tends toward the ground state energy.

However, let us examine more closely what happens for energy levels close

to the ground state.
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At β or T = Tc fixed, we increase 〈N〉 by a macroscopic amount δN ,

that is, δN = O(〈N〉) = O((~ωβ)−d). The chemical potential then tends

toward the ground state energy E0 = d~ω/2.

For all states other than the ground state, the energy E satisfies E−µ ≥
E − E0 ≥ ~ω and this bounds the individual occupation numbers since

n ≤ 1

eβ~ω −1
= O(1/β~ω) ≪ δN = O((~ωβ)−d).

Therefore, these states can absorb only a negligible fraction of the increase,

and the sum of all corresponding occupation numbers is still given by equa-

tion (5.4). By contrast, for the ground state the equation

δN ∼ 1

eβ(E0−µ)−1
∼ 1

β(E0 − µ)

has the solution

β(E0 − µ) =
1

δN
= O((~ωβ)d) ≪ ~ωβ .
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For space dimensions larger than one, one thus observes a remarkable phe-

nomenon characteristic of bosons: at fixed average number of particles, be-

low Tc a macroscopic fraction of the gas occupies only one quantum state,

the ground state of the one-particle Hamiltonian. This is the essence of

the physical phenomenon called Bose–Einstein condensation and Tc is the

condensation temperature.
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5.1.3 Free Bose gas in a box

We now consider free identical bosons of mass m confined in a box of equal

size L in all dimensions and, thus, of volume Ld in dimension d. The one-

particle quantum Hamiltonian is simply the free Hamiltonian

H(1) = p̂2/2m.

In a box, momenta are quantized with the precise form depending on the

boundary conditions. Assuming periodic boundary conditions for conve-

nience, but this plays no role in the analysis, one finds

p = 2π~n/L , n ∈ Z
d.

In the infinite volume limit L→ ∞, the system always ends up here in a high

temperature situation, since the splitting between neighbouring energies

decreases as ~2/2mL2.
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The equation of state, limit of equation (5.1) where sums are replaced by

integrals, in d space dimensions takes a form analogous to equation (5.3):

〈N〉 ∼ 1

(2π~)d

∫

ddp ddq

eβ(p2/2m−µ) −1
.

The integration over q yields a factor Ld and, thus, the density is given by

ρ(β, µ) =
〈N〉
Ld

∼
L→∞

1

(2π~)d

∫

ddp

eβ(p2/2m−µ)−1
. (5.5)

One notes that this expression not defined for µ > 0 and that for d > 2 ρ,

which is an increasing function of µ, is bounded by

ρc =
1

(2π~)d

∫

ddp

eβp2/2m −1
= ζ(d/2)/6λd,

where ζ(z) is the Riemann function, and 6λ the thermal wave length:

6λ = 2π~
√

m/β = 2π~/
√
mT .
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Alternatively, at ρ fixed, the equation of state has no solution for temper-

atures T < Tc(ρ) ∝ (~2/m)ρ2/d. Returning to a box of finite size, in which

momenta are quantized and energy levels discrete (as in equation (5.1)),

one verifies that the remaining particles accumulate in the ground state,

here the state with zero momentum. This provides another realization of

Bose–Einstein condensation.

Finally, note that the chemical potential is not directly a physical observ-

able and is generally eliminated in favour of the gas pressure P = lnZ/βLd.

Remark. Thrice, we have used implicitly the identity
∫ ∞

0

ds sα−1

es −1
= Γ(α)ζ(α)

which can, for example, be proved by expanding

1

es −1
=
∑

n=1

e−ns,

integrating each term and summing.
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5.2 Generalized path integrals: the quantum Bose gas

In this section, we show how a natural generalization of the path integral

formalism presented in sections 4.9 and 4.10 allows deriving a functional

or field integral representation (one integrates over classical fields) of the

partition function for non-relativistic boson systems.

We again consider the thermodynamic properties of a system of particles

obeying the Bose statistics, in the grand canonical formulation.

5.2.1 Fock space

To show how functional methods can be used in this context, we proceed in

several steps.

We denote by ψn(x1, ..., xn), xi ∈ R
d, the wave function describing a

system of n identical bosons (assumed without other quantum numbers), a

function thus invariant under permutation of its n arguments.
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We then introduce a complex function (a field) ϕ(x) (which generalizes the

complex vector zi of section 4.9) and the functional

Ψ(ϕ) =
∑

n=0

1

n!

(
∫

∏

i

ddxi ϕ(xi)

)

ψn(x1, . . . , xn). (5.6)

Because the wave functions are symmetric, Ψ(ϕ) is a generating functional

of the wave functions (see section 3.6.2). The constant ψ0 is the coefficient

of the empty state or vacuum.

The vector space of generating functionals is then endowed with a scalar

product, which takes the form of a generalized path integral, a functional or

field integral, because it involves integrating over complex fields ϕ(x), ϕ̄(x).

The scalar product of Ψ1 generating functions {ψ(1)
n } and Ψ2 generating

functions {ψ(2)
n } is given by

(Ψ1,Ψ2) =

∫

[dϕdϕ̄] Ψ1(ϕ)Ψ2(ϕ) exp

[

−
∫

ddx ϕ̄(x)ϕ(x)

]

. (5.7)

286



The integral is implicitly normalized by the condition

(Ψ ≡ 1,Ψ ≡ 1) = 1 =

∫

[dϕdϕ̄] exp

[

−
∫

ddx ϕ̄(x)ϕ(x)

]

.

The complex vector space of functionals with finite norm is called a Fock

space.

Since the scalar product is given by a Gaussian integral, to calculate scalar

products one only needs the two-point function. It can be derived from the

general integral

J (J, J̄) =

∫

[dϕdϕ̄] exp

{
∫

ddx
[

−ϕ̄(x)ϕ(x) + J(x)ϕ̄(x) + J̄(x)ϕ(x)
]

}

.

Translating the field and using the normalization condition, one obtains

J (J, J̄) = exp

[
∫

ddx J̄(x)J(x)

]

.
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Functional differentiation with respect to J, J̄ then yields the two-point

function, (δ(d) is the d-dimensional Dirac-function)

∫

[dϕdϕ̄] ϕ̄(x1)ϕ(x2) exp

[

−
∫

ddx ϕ̄(x)ϕ(x)

]

= δ(d)(x1 − x2).

Using Wick’s theorem, one obtains the norm of the functional (5.6):

|Ψ|2 = (Ψ,Ψ) =
∑

n=0

1

n!

(

∫

∏

i

ddxi

)

|ψn(x1, . . . , xn)|2.

The Fock space is the space of functionals with finite norm. When |Ψ|2 = 1,

the nth term in the sum gives the probability to find bosons in an n-particle

state.
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5.2.2 Hamiltonians in Fock space

We consider the Hamiltonian of a quantum Bose gas, in d space dimensions,

of the form

H = T+V , (5.8)

where T is the kinetic term, which in the sub-space of n-particle wave

functions is represented by

Tn = − ~
2

2m

n
∑

i=1

∇2
xi

(5.9)

and V is a pair interaction represented by

Vn =
∑

i<j≤n

V (xi − xj) with V (x) = V (−x). (5.10)

For simplicity, we do not introduce here a one-particle potential.

We then introduce the formalism described in sections 4.9 and 4.10.
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Hamiltonian representation. The kinetic term and the pair potential can

be represented as operators acting on elements of Fock’s space of the form

(5.6).

To derive the representation of the kinetic term T, one starts from the

identity
∫

ddxϕ(x)∇2
x

δ

δϕ(x)
Ψ(ϕ)

=

∫

ddxϕ(x)∇2
x

∑

n

1

(n− 1)!

∫
(

∏

i<n

ddxi ϕ(xi)

)

ψn(x1, . . . , xn−1, x).

In the right hand side the argument x can be renamed xn, and the coefficient

of
∏

i≤n ϕ(xi) can then be symmetrized. This generates a factor 1/n and

yields the sum of all second derivatives, which is proportional to the kinetic

term (5.9). Thus,

[TΨ](ϕ) = − ~
2

2m

∫

ddxϕ(x)∇2
x

δ

δϕ(x)
Ψ(ϕ).
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Similarly, one verifies that the two-body potential V, which in the n-particle

subspace is given by (5.10), can be generated by differentiating twice with

respect to ϕ with two different arguments. One finds

[VΨ](ϕ) = 1
2

∫

ddx ddy ϕ(x)ϕ(y)V (x− y)
δ2

δϕ(x)δϕ(y)
Ψ(ϕ).

We have derived a representation of the total Hamiltonian H = T+V when

acting on Fock’s space. Finally, the representation of the particle number

operator is simply

N =

∫

ddxϕ(x)
δ

δϕ(x)
and [N,H] = 0 .

For reasons already explained in section 4.10, one considers, in what follows,

the modified Hamiltonian H − µN, where the chemical potential µ is a

parameter that allows varying the average occupation number 〈N〉.
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5.2.3 Kernels

Following the method of sections 4.9, one can derive the kernel represen-

tation of operators. The complex variables zi of the holomorphic represen-

tation (section 4.3) are replaced by ϕ(x) where the continuum coordinate

x plays the role of the indices i. We denote by ϕ̄(x) the field conjugate to

ϕ(x).

One verifies that the kernel representation of the identity associated with

the scalar product (5.7) reads (see also equation (4.18))

I(ϕ, ϕ̄) = exp

[
∫

ddx ϕ̄(x)ϕ(x)

]

.

The kernel representation of the Hamiltonian is then

〈ϕ|H|ϕ̄〉 = I(ϕ, ϕ̄)

×
[

− ~
2

2m

∫

ddxϕ(x)∇2
xϕ̄(x) +

1
2

∫

ddx ddy ϕ(x)ϕ(y)V (x− y)ϕ̄(x)ϕ̄(y)

]

.
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The particle number operator is represented by

〈ϕ|N|ϕ̄〉 = I(ϕ, ϕ̄)
∫

ddx ϕ̄(x)ϕ(x).

5.3 Partition function: the field integral representation

A representation of matrix elements of the statistical operator can then be

inferred from the results obtained in quantum mechanics in section 4.10.

Adapting the corresponding expressions, in particular equation (4.59),

one obtains a representation of the partition function as a functional or

field integral:

Z(β) = trU(~β/2,−~β/2) =

∫

[dϕ(t, x)dϕ̄(t, x)] exp[−S(ϕ̄, ϕ)] (5.11)

with the periodic boundary conditions

ϕ(β/2, x) = ϕ(−β/2, x), ϕ̄(β/2, x) = ϕ̄(−β/2, x).
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The euclidean action has in general the non-local form

S(ϕ̄, ϕ) = −
∫ β/2

−β/2

dt

∫

ddx ϕ̄(t, x)

(

∂

∂t
+

~
2

2m
∇2

x + µ

)

ϕ(t, x)

+ 1
2

∫ β/2

−β/2

dt

∫

ddx ddy ϕ̄(t, x)ϕ(t, x)V (x− y)ϕ̄(t, y)ϕ(t, y). (5.12)

The addition of a one-particle potential V1(x) leads simply to the substitu-

tion µ 7→ µ− V1(x).

Again, particle number conservation leads to a U(1) symmetry of the

action, corresponding to the transformations

ϕ(x) 7→ eiθ ϕ(x), ϕ̄(x) 7→ e−iθ ϕ̄(x).
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Remarks.

(i) Let us point out that, depending on the potential, in explicit calcula-

tions of field integrals new divergences may appear, which require operations

like regularizations and renormalizations, but these issues will be discussed

in the coming lectures.

(ii) We have constructed here a non-relativistic quantum field theory.

The transition to a relativistic quantum field theory now is essentially a

kinematic problem.

5.3.1 The free theory

For free bosons, the action (5.12) reduces to

S(ϕ̄, ϕ) = −
∫ β/2

−β/2

dt ddx ϕ̄(t, x)

(

∂

∂t
+

~
2

2m
∇2

x + µ

)

ϕ(t, x),

and the field integral is Gaussian.
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In a Gaussian theory, all quantities can be expressed in terms of the two-

point function. With the convention (5.12), the two-point function

〈ϕ̄(t, x)ϕ(t′, x′)〉Gaussian ≡ ∆(t− t′, x− x′)

satisfies the equation

(

∂

∂t
− ~

2

2m
∇2

x − µ

)

∆(t, x) = δ(t)δ(d)(x).

Setting

∆(t, x) =
1

(2π~)d

∫

ddp eipx/~ ∆̃(t, p),

one finds
(

∂

∂t
+

p2

2m
− µ

)

∆̃(t, p) = δ(t).

296



The solution of the equation with periodic boundary conditions can be in-

ferred directly from equations (4.36) and (4.35) with ωi 7→ ω(p) = p2/2m−
µ:

∆̃(t, p) = e−ω(p)t

[

θ(t) +
1

eω(p)β −1

]

. (5.13)

Due to the periodic boundary conditions in time, the field can be expanded

in a Fourier series

ϕ(t, x) =

+∞
∑

n=−∞

e2iπnt/β ϕ̃n(x) , ϕ̄(t, x) =

+∞
∑

n=−∞

e−2iπnt/β ˜̄ϕn(x).

Then, adapting equation (4.40), one finds

〈 ˜̄ϕn(p)ϕ̃n(−p)〉 =
1

β(p2/2m− µ)− 2iπn
. (5.14)
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5.3.2 The equation of state

The equation of state is obtained by differentiating the partition function

(5.11). Assuming a periodic box of linear size L, one finds the density

ρ(β, µ) =
1

βLd

∂ lnZ
∂µ

=
1

βLd

∫

dt ddx 〈ϕ̄(t, x)ϕ(t, x)〉

= 〈ϕ̄(0, 0)ϕ(0, 0)〉 = ∆(0, 0), (5.15)

where translation invariance in space and time has been used.

Expressing the result in terms of the Fourier representation (5.13) of the

two-point function, one obtains

ρ(β, µ) =
1

(2π~)d

∫

ddp ∆̃(0, p)

=
1

(2π~)d

∫

ddp

[

θ(0) +
1

eβω(p) −1

]

. (5.16)
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This expression coincides with the result (5.5) obtained directly when θ(0)

is chosen to be 0. The algebraically simpler choice θ(0) = 1
2 leads to a

divergent result, and a term proportional to µ has to be added to the action

to remove this additional contribution to ρ.

5.3.3 Zero temperature limit. Real time

In the zero temperature limit, the two-point function (5.13) reduces to

∆̃(t, p) = e−ω(p)t θ(t).

Its Fourier representation in the time variable is

∆̃(E, p) =

∫

dt eiEt ∆̃(t, p) =
1

p2/2m− µ− iE
. (5.17)

The continuation to real time and, thus, E 7→ E e−iθ, 0 ≤ θ < π/2, is

∆̃(E, p) =
1

p2/2m− µ− E − iε
, (5.18)

where ε→ 0+ indicates how to avoid the pole.
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5.3.4 Interactions

When one is interested in large scale phenomena and the interactions are

short range, the pair potential can be simulated by a Dirac δ-function (but

regularized at short distance in dimensions d > 1)

V (x) = g δd(x), g > 0 ,

and the action becomes local in space and time, in the sense that it becomes

the integral of a Lagrangian density depending only on the field and its

partial derivatives:

S(ϕ̄, ϕ) =
∫ β/2

−β/2

dt ddx

[

−ϕ̄(t, x)
(

∂

∂t
+

~
2

2m
∇2

x + µ

)

ϕ(t, x)

+ 1
2g
(

ϕ̄(t, x)ϕ(t, x)
)2
]

. (5.19)
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5.4 The Helium superfluid transition

The local action (5.19) gives a good model of the He4 boson system. More-

over, since the superfluid phase transition occurs at low temperature, quan-

tum effects are important. We show now how the formalism that has been

presented here, can be indeed been applied to the superfluid transition.

More generally, in presence of weak repulsive local interactions, it allows

studying the crossover between a Bose–Einstein condensation behaviour at

shorter distances and, ultimately, a superfluid transition at larger distances.

5.4.1 Leading order or mean field approximation

The field integral (5.11),

Z(β) = trU(~β/2,−~β/2) =

∫

[dϕ(t, x)dϕ̄(t, x)] exp[−S(ϕ̄, ϕ)],

in the example of the action (5.19) can be calculated by the steepest descent

method.
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General arguments indicate that saddle points correspond to constant fields.

The saddle point equations, obtained by varying ϕ̄ and ϕ, then read

−µϕ+ gϕ2ϕ̄ = 0 , −µϕ̄+ gϕ̄2ϕ = 0 .

For µ < 0, the equations have only the trivial solution ϕ = ϕ̄ = 0. The

solution is U(1) invariant and the U(1) symmetry is not broken.

In contrast, for µ > 0, they have other solutions: ϕ̄ϕ = µ/g and one

verifies that these are the leading saddle points since the corresponding

action in a large volume Ld is

S = −βLdµ2/2g ⇒ ρ = µ/g .

The leading saddle points thus are not U(1) invariant and this corresponds

to a spontaneous breaking of the U(1) symmetry related to the boson num-

ber conservation.

The phase transition, which at leading order, occurs at the value µ = 0

of the chemical potential, describes the He4 superfluid transition.
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However, note that beyond the leading order approximation, the first cor-

rection to ρ has, in the thermodynamic limit, the form (5.5)

∝ 1

(2π~)d

∫

ddp

eβ(p2/2m−µ)−1

and is finite for µ = 0 only for dimensions d > 2, as for the Bose–Einstein

condensation in a large box.

The marginal dimension d = 2 is special and corresponds to a phase tran-

sition without symmetry breaking, the peculiar Kosterlitz–Thouless phase

transition.
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5.4.2 The He4 superfluid transition beyond leading order for d = 3

We now specialize to the physical dimension three. Then, the potential is

generally parametrized in terms of the s-wave scattering length a (positive

because the interaction is assumed repulsive), g = 4π~2a/m. The action

becomes

S(ϕ̄, ϕ) =
∫ β/2

−β/2

dt d3x

[

−ϕ̄(t, x)
(

∂

∂t
+

~
2

2m
∇2

x + µ

)

ϕ(t, x)

+ 1
2g
(

ϕ̄(t, x)ϕ(t, x)
)2
]

. (5.20)

The local potential approximation is justified when the thermal wave length

is much larger than the scattering length,

6λ = ~

√

2πβ/m≫ a ,

that is, at sufficiently low temperature.
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In terms of the Fourier components of the field

ϕ(t, x) =
+∞
∑

n=−∞

e2iπnt/β ϕn(x) , ϕ̄(t, x) =
+∞
∑

n=−∞

e−2iπnt/β ϕ̄n(x),

it follows from equation (4.40) that the two-point function reads

〈 ˜̄ϕn(p)ϕ̃n(−p)〉 =
1

β(p2/2m− µ− iEn)
with En = 2πn/β .

At the phase transition, µ = 0 at this order, the correlation length ξ =

~/
√
2mµ diverges. When

ξ ≫ 6λ

the zero mode dominates the large scale behaviour and, thus, one can replace

the field, at leading order, by its zero-mode ϕ0(x). The action reduces to

S(ϕ̄, ϕ) = β

∫

d3x

[

−ϕ̄0(x)

(

~
2

2m
∇2

x + µ

)

ϕ0(x) +
1
2g
(

ϕ̄0(x)ϕ0(x)
)2
]

.
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We recognize the action of a three-dimensional relativistic, euclidean field

theory for a complex scalar field. In terms of real components φ = (φ1, φ2),

ϕ0(x) =
1

~

√

m

β

(

φ1(x) + iφ2(x)
)

, ϕ̄0(x) =
1

~

√

m

β

(

φ1(x)− iφ2(x)
)

,

one recovers the O(2) invariant (φ2)2 quantum field theory in a more con-

ventional notation,

S(φ) =
∫

d3x

[

1
2

(

∇xφ(x)
)2

+ 1
2rφ

2(x) +
g̃

4!

(

φ2(x)
)2
]

.

This theory can then be studied with the standard quantum field theory

and renormalization group (RG) methods.

Remark. The non-zero modes can be treated perturbatively and mainly

renormalize the parameters of the zero-mode action.
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A perturbative calculation of the RG β-function, combined with a Borel-

type summation method, shows that the β-function has a non-trivial zero

g̃ = g̃∗ = 26.63 ± 0.11, which corresponds to an infra-red fixed point and

thus governs the large scale behaviour.

The determination of the fixed point value leads to a first principle cal-

culation of the critical exponents of the superfluid He4 phase transition:

for example, for the correlation exponent ν, low gravity experiments yield

ν = 0.6708 ± 0.0004 while quantum field theory methods and RG lead to

ν = 0.6703± 0.0015.
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5.5 The Bose gas: time evolution

The formalism discussed in section 4.11 extends to the Bose gas. The evo-

lution operator, in the formalism of second quantization in the presence of

a chemical potential µ coupled to the particle number N, is given by a field

integral, generalization of the expression (4.62) to field theory.

One finds

〈ϕ′′|U(t′′, t′) |ϕ̄′〉 = 〈ϕ′′| e−i(t′′−t)(H−µN)/~ |ϕ̄′〉

=

∫

[dϕ̄(t, x)dϕ(t, x)] exp[iA(ϕ, ϕ̄)/~], (5.21)

where the complex fields {ϕ(t, x), ϕ̄(t, x)} satisfy the boundary conditions

ϕ̄(t, x′) ≡ ϕ̄′(x), ϕ(t, x′′) ≡ ϕ′′(x).
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In the example of an external potential V1(x) and a pair potential V2(x−y),
the action A(ϕ, ϕ̄) is the continuation of the expression (5.12),

A(ϕ, ϕ̄) = −i~ϕ̄(t, x′)ϕ(t, x′)

+

∫

dt ddx ϕ̄(t, x)

(

−i~ ∂
∂t

− ~
2

2m
∇2

x − V1(x) + µ

)

ϕ(t, x)

− 1
2

∫

dt ddx ddy ϕ̄(t, x)ϕ(t, x)V2(x− y)ϕ̄(t, y)ϕ(t, y).

In the absence of an external potential V1 and for a pseudo-potential V2 =

Gδ(x− y) the action simplifies and becomes local:

A(ϕ, ϕ̄) = −i~ϕ̄(t, x′)ϕ(t, x′)

+

∫

dt ddx

[

ϕ̄(t, x)

(

−i~ ∂
∂t

− ~
2

2m
∇2

x + µ

)

ϕ(t, x)

− 1
2G
(

ϕ̄(t, x)ϕ(t, x)
)2
]

. (5.22)
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Physical observables can then be calculated, for example, as a series expan-

sion in powers of the interaction, using the propagator (5.18),

∆̃(E, p) =
1

p2/2m− µ− E − iε
.
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5.5.1 Classical approximation: Gross–Pitaevski equation

Below, but near the transition temperature of the Bose gas discussed in

section 5.1, the field ϕ is almost classical for small coupling.

The field integral (5.21) in the limit ~ → 0 can be evaluated by the station-

ary phase approximation, replacing the field ϕ by a solution of the equation

δA/δϕ = δA/δϕ̄ = 0. The evolution of the Bose gas is thus approximately

described by the classical field (Gross–Pitaevski) equation

i~
∂

∂t
ϕ(t, x) =

(

− ~
2

2m
∇2

x + µ−Gρ(t, x)

)

ϕ(t, x),

where ρ(t, x) is the local condensate density:

ρ(t, x) = ϕ̄(t, x)ϕ(t, x),

and ϕ̄ and ϕ are complex conjugates. The equation has the form of a non-

linear Schrödinger equation.
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5.6 The relativistic neutral scalar field

Replacing in the non-relativistic action the non-relativistic kinematics by

the relativistic kinematics and enforcing locality, we construct now a rela-

tivistic quantum field theory for a neutral scalar boson field.

The classical field φ(t,x) is real and depends on time t and a (d − 1)-

dimensional space coordinate x. The classical field equations derive from a

Lagrangian density L(φ) of the form (we set the speed of light c = 1)

L(φ) = 1
2

(

φ̇(t, x)
)2 − 1

2

(

∇xφ(t, x)
)2 − V

(

φ(t, x)
)

, (5.23)

where V (φ) is a polynomial in φ.

The Lagrangian density (5.23) has the following properties:

(i) It is local in time and space because it depends only on the field φ(t, x)

and its partial derivatives (and not on the product of fields at different

points). This property, locality, plays a central role in quantum field theory.
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(ii) It is invariant under space and time translations since space and time

do not appear explicitly in the expression (5.23).

(iii) It is relativistic invariant, that is, invariant under the pseudo-ortho-

gonal group O(1, d− 1) acting linearly on t and x.

(iv) It leads after quantization (we set ~ = 1), for a suitable class of

potentials V (φ), to a hermitian quantum Hamiltonian bounded from below.

5.6.1 The φ4 field theory

An important example is provided by the so-called φ4 theory where,

V (φ) = 1
2m

2φ2 + 1
4!gφ

4 , g ≥ 0 .

In section 5.12, we argue that this theory has spinless bosons interacting

through a pair δ-potential (section 5.3.4) as a non-relativistic limit.

For g = 0 (Gaussian or free field theory) the parameter m is the physical

mass of the particle associated with the field φ. However, for g 6= 0, m2 is

generally negative and, thus, this traditional notation is slightly misleading.
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5.6.2 Canonical quantization and field integrals

We first quantize the classical theory with the canonical method of quantiza-

tion. We calculate the Hamiltonian density corresponding to the Lagrangian

density (5.23). Lagrangian and Hamiltonian densities are related by Legen-

dre transformation involving φ̇ and π(x), conjugate momentum of φ(x):

H(π, φ) + L(φ̇, φ)− π(x)φ̇(t, x) = 0 ,

π(x) =
∂L

∂φ̇(t, x)
⇔ φ̇(t, x) =

∂H
∂π(x)

.

The total Hamiltonian H is the integral of the Hamiltonian density:

H =

∫

dd−1xH [π(x), φ(x)] .

The coordinates qi of quantum mechanics are replaced here by the field

φ(x).
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The transition between quantum mechanics and quantum field theory can be

understood in much the same way as the transition between the discretized

action (3.10) and the continuum time limit (3.11).

The quantum Hamiltonian Ĥ is obtained by replacing classical fields

{π, φ} by quantum operators {π̂, φ̂} that satisfy the commutation relations

(for ~ = 1)
[

φ̂(x), π̂(x′)
]

= i δd−1(x− x′). (5.24)

The properties of such a quantum theory can then be studied using the stan-

dard methods of operator quantum mechanics. Instead, we now introduce

the formalism of field integrals, which generalize the path integrals defined

in section 3.3.3 and are closely related to the field integrals introduced in

section 5.3.

In the example of the Lagrangian density (5.23), the Hamiltonian density

reads

H(π, φ) = 1
2π

2(x) + 1
2 [∇φ(x)]

2
+ V

(

φ(x)
)

. (5.25)
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The Hamiltonian has an important property: it is quadratic in the momen-

tum π(x) and, thus, a generalization of Hamiltonians of the form p2/2m+

V (q). Extending to field theory the ideas presented in section 3.11.2, to

ensure unitarity we start from the action written in the Hamiltonian for-

mulation,

A(π, φ) =

∫

dt dd−1x
[

π(t, x)φ̇(t, x)−H
(

π(t, x), φ(t, x)
)

]

. (5.26)

The matrix elements of the evolution operator U(t2, t1) = e−i(t2−t1)H are

then given by

〈φ2|U(t2, t1) |φ1〉 =
∫

[dφ(t, x)dπ(t, x)] exp [iA(π, φ)] , (5.27)

with the boundary conditions φ(t1,x) = φ1(x), φ(t2,x) = φ2(x).
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The action is a quadratic form in π and the Gaussian integration over π can

be performed. The result of the integration amounts to replacing π by the

solution of the π equation of motion,

δA
δπ(t, x)

= φ̇(t, x)− π(t, x) = 0 .

This is equivalent to a Legendre transformation and yields the action inte-

gral of the Lagrangian density (5.23)

A(φ) =

∫ t2

t1

dt

∫

dd−1x
{

1
2

[

(

φ̇(t, x)
)2 −

(

∇xφ(t, x)
)2
]

− V
(

φ(t, x)
)

}

.

(5.28)

The matrix elements of U(t2, t1) are then given by the field integral

〈φ2|U(t2, t1) |φ1〉 =
∫

[dφ(t, x)] exp [iA(φ)] (5.29)

with the boundary conditions φ(t1,x) = φ1(x), φ(t2,x) = φ2(x).
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Note that in a Schrödinger-like formulation of quantum field theory, wave

functions are replaced by functionals of classical fields like φ1(x) or φ2(x) in

expression (5.29), which correspond to an infinite number of usual variables.

5.7 The free field

The free field action A0(φ) for the scalar field φ is obtained from the general

expression (5.28) by specializing to V (φ) = m2φ2/2:

A0(φ) =

∫

dt dd−1x
[

1
2

(

φ̇(t, x)
)2 − 1

2

(

∇xφ(t, x)
)2 − 1

2m
2φ2(t, x)

]

. (5.30)

We denote by H0 the corresponding quantum Hamiltonian.

After continuation to imaginary time t 7→ −it, one obtains the euclidean

action

S0(φ) =

∫ β/2

−β/2

dt dd−1x
[

1
2

(

φ̇(t, x)
)2

+ 1
2

(

∇xφ(t, x)
)2

+ 1
2m

2φ2(t, x)
]

.

(5.31)
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5.7.1 The euclidean action in Fourier representation

Because the action (5.31) is quadratic in φ(t, x), the field φ can be considered

as a collection of harmonic oscillators. We can diagonalize the action by

setting

φ(t, x) =

∫

dd−1k̂ eik̂x φ̃(t, k̂).

Then,

S0(φ) =
1
2 (2π)

d−1

∫ β/2

−β/2

dt dd−1k̂
[

∂tφ̃(t, k̂)∂tφ̃(t,−k̂)

+ (k̂2 +m2)φ̃(t, k̂)φ̃(t,−k̂)
]

.

The energy splitting for the oscillator corresponding for the momentum k̂

is thus

ω(k̂) =

√

k̂2 +m2 . (5.32)

In the boson interpretation, it is the one-particle energy for a particle of

momentum k̂.
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The ground state energy. The ground state |0〉 of the Hamiltonian H0 is the

tensor product of the ground states of the oscillators of momentum k̂. In the

particle interpretation it is the empty state, also called the vacuum. Then

H0 |0〉 = E0 |0〉 ,
where E0 is the ground state or vacuum energy. In the usual quantization

of the harmonic oscillator it is formally given by the undefined quantity

E0 = 1
2

∑

k̂

√

m2 + k̂2 .

To give a precise meaning to E0, it is necessary to quantize in a large box

of linear size L and to modify the theory at short distance or at large

momenta so that the Fourier modes are cut-off at some momentum scale Λ

(a space lattice would provide such a cut-off). The Fourier variables k̂ are

then quantized:

k̂ = 2πn/L , n ∈ Z
d−1.

320



The vacuum energy becomes

E0 = 1
2

∑

n

ω(k̂).

For L large, sums can be replaced by integrals and dn = Ld−1/(2π)d−1dk̂.

The space volume factorizes, showing as expected that the energy is an

extensive, but cut-off dependent quantity:

E0/L
d−1 = 1

2

∫ Λ dd−1k̂

(2π)d−1

√

m2 + k̂2 . (5.33)

The large momentum divergence of the vacuum energy is not important

here because in a non-gravitational theory the ground state energy is not

an observable: the Hamiltonian can always be shifted by a constant (but

this would no longer be the case if the field theory is coupled to gravitation).

However, even if the vacuum energy itself is not a physical observable, a

variation (imposed for example by a change in boundary conditions) of the

vacuum energy may be one (c.f., the Casimir effect).
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5.7.2 The two-point function

The two-point function, in the infinite volume, at zero temperature, is (equa-

tion (3.38))

〈

φ̃(t, k̂)φ̃(t,−k̂)
〉

=
1

(2π)d−1

1

2ω(k̂)
e−ω(k̂)|t| =

1

(2π)d

∫

dκ
eiκt

κ2 + k̂2 +m2
.

In the infinite volume, at zero temperature, the euclidean action is O(d)

invariant and can be rewritten as

S0(φ) =

∫

ddx
[

1
2

(

∇xφ(t, x)
)2

+ 1
2m

2φ2(t, x)
]

. (5.34)

After Fourier transformation over time, one verifies that

〈φ(t, x)φ(0, 0)〉 = 1

(2π)d

∫

ddk
eikx

k2 +m2
. (5.35)
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Field operators.We have shown in section 3.7 that correlation functions have

an operator interpretation. In particular, in the zero temperature limit, they

are related to the ground state or vacuum expectation value of time-ordered

products of operators:

〈φ(t, x)φ(0, 0)〉 = 〈0| φ̂(x) e−(H0−E0)|t| φ̂(0) |0〉 .

The two-point function for real time. To return to real time we perform

the inverse rotation t→ it and simultaneously κ→ −iκ. We find

〈φ(t, x)φ(0, 0)〉 = 1

(2π)d

∫

dk eikx
i

k2 −m2 + iε
(5.36)

with ε→ 0+ and k2 = κ2 − k̂2. The addition of the iε contribution directly

in the action ensures the convergence of the real time field integral.
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5.8 Free field theory and the holomorphic formalism

To further exhibit the relation between relativistic fields and quantum par-

ticles, following the example of the non-relativistic field theory of section

4.11, we introduce the holomorphic formalism.

We first return again to the free field theory and the action (5.30),

A0(φ) =

∫

dt dd−1x
[

1
2

(

φ̇(t, x)
)2 − 1

2

(

∇xφ(t, x)
)2 − 1

2m
2φ2(t, x)

]

.

Following the remarks of section 4.7.1, we first write the phase space integral,

generalization of the path integral (3.53), and then change variables. The

action in the Hamiltonian formalism is

A0(π, φ) =

∫

dt dd−1x
{

π(t, x)φ̇(t, x)− 1
2π

2(t, x)− 1
2 [∇φ(t, x)]

2

− 1
2m

2φ2(t, x)
}

. (5.37)
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Since the different harmonic oscillators decouple in the momentum basis,

we introduce the fields ϕ(t, k̂), ϕ̄(t, k̂), analogues of the complex functions

z̄(t), z(t) of section 4.11.1 (k̂ is the momentum vector).

Using the notation (5.32) ω(k̂) =
√

k̂2 +m2, we define

φ(t, x) =

∫

dd−1k̂

2ω(k̂)

[

eik̂x ϕ(t, k̂) + e−ik̂x ϕ̄(t, k̂)
]

, (5.38a)

π(t, x) = i

∫

dd−1k̂

2ω(k̂)
ω(k̂)

[

eik̂x ϕ(t, k̂)− e−ik̂x ϕ̄(t, k̂)
]

. (5.38b)

The sign conventions ensure that when ϕ̄ and ϕ are formally conjugated.

The integration measure dd−1k̂/2ω(k̂) is O(1, d−1) covariant. Indeed, let

us introduce the notation (convenient but slightly inconsistent with our eu-

clidean notation) k = {k0, k̂}, where k0 is the energy and k̂ the momentum.
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Then k2 = k20 − k̂2 and we define

δ+(k
2 −m2) = δ(k2 −m2)θ(k0), (5.39)

with θ(s) = 0 for s < 0, θ(s) = 1 for s > 0. One verifies

∫

dd−1k̂

2ω(k̂)
f(k̂) =

∫

ddk δ+(k
2 −m2)f(k̂).
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5.8.1 The action and field integral

In terms of ϕ, ϕ̄, the free action (5.37) becomes

A0(ϕ, ϕ̄) = −(2π)d−1

∫ t′′

t′
dt

dd−1k̂

2ω(k̂)

[

iϕ̄(t, k̂)ϕ̇(t, k̂) + ω(k̂)ϕ̄(t, k̂)ϕ(t, k̂)
]

.

(5.40)

The formalism again confirms (see also sections 4.11, 4.11.1) that one parti-

cle states are relativistic particles of momentum k̂ and energy ω(k̂). However,

a drawback is that the holomorphic formalism is not explicitly local.

Field integral. A representation of the free evolution operator U0 as a field

integral in the holomorphic formalism follows

U0(t
′′, t′;ϕ′′, ϕ̄′) =

∫

[ω−1(k̂)dϕ(t, k̂)dϕ̄(t, k̂)] exp [iA0(ϕ, ϕ̄)] ,

where A0(ϕ, ϕ̄) is the action (5.40).
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Interactions. Locality implies that the interaction terms must be local

polynomials of the field and derivatives. The decomposition (5.38a) then

immediately shows that interaction terms like φ4 will involve contributions

that do not conserve the number of particles.

5.8.2 Fock’s space

In the holomorphic formalism, the differences with the non-relativistic ex-

ample discussed in section 4.11 are mostly of kinematic nature.

For completeness, we briefly review the construction of the corresponding

Fock’s space. We work in the momentum representation, where the Hamil-

tonian is diagonal.
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Let ψ1(k̂), ψ2(k̂) be two wave functions associated with one-particle states

of a boson of mass m. The scalar product of two states |ψ1〉, |ψ2〉 can be

written in the relativistic covariant form

〈ψ1|ψ2〉 = (2π)d−1

∫

dd−1k̂

2ω(k̂)
ψ∗
1(k̂)ψ2(k̂).

We now introduce a complex field ϕ(k̂) and the generating functional Ψ(ϕ)

of general n-particle wave functions for bosons

Ψ(ϕ) =

∞
∑

n=0

(2π)n(d−1)

n!

∫

ψ(k̂1, k̂2, . . . , k̂n)

n
∏

i=1

ϕ(k̂i)
dd−1k̂i

2ω(k̂i)
,

where ψ(k̂1, k̂2, . . . , k̂n) is a wave function totally symmetric in the momenta

k̂i. The direct sum of the n-particle spaces for all n is called Fock space.
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The scalar product of two vectors Ψ1 and Ψ2 in Fock’s space takes the form

〈Ψ2|Ψ1〉 =
∫

[ω−1(k̂)dϕ(k̂)dϕ̄(k̂)]

× exp

[

−(2π)d−1

∫

dd−1k̂

2ω(k̂)
ϕ̄(k̂)ϕ(k̂)

]

Ψ2(ϕ)Ψ1(ϕ). (5.41)

5.8.3 Operators in Fock’s space

The free action (5.40) shows that the one-particle Hamiltonian has an energy

spectrum of the form ω(k̂). Acting on Ψ(ϕ), the free Hamiltonian is thus

represented by the operator

H0 =

∫

dd−1k̂ ϕ(k̂)ω(k̂)
δ

δϕ(k̂)
+ E0 ,

where E0 is the ground state or vacuum, that is, the zero-particle state

energy.
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The kernel representing the identity which corresponds to the scalar product

(5.41) is

I(ϕ, ϕ̄) = exp

[

(2π)d−1

∫

dd−1k̂

2ω(k̂)
ϕ̄(k̂)ϕ(k̂)

]

. (5.42)

The kernel associated with the Hamiltonian follows

H0 7→
[

1
2 (2π)

d−1

∫

dd−1k̂ ϕ̄(k̂)ϕ(k̂)

]

I(ϕ, ϕ̄).

Note that the free Hamiltonian commutes with the particle number operator

N:

N =

∫

dd−1k̂ ϕ(k̂)
δ

δϕ(k̂)
7→ (2π)d−1

∫

dp−1k̂

2ω(k̂)
ϕ(k̂)ϕ̄(k̂) I(ϕ, ϕ̄)

and thus [N,H0] = 0, a property that, in general, no longer holds in the

presence of local interactions.
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5.8.4 Two-point function

The φ-field two-point function, expressed as the expectation value of a time-

ordered product of two fields (see for example section 3.7, equation (3.30)),

is given by

〈0|T[φ̃(t, k̂)φ̃(0̂, k̂′)] |0〉 = 〈0| φ̃(k̂) e−i(H0−E0)|t| φ̃(k̂′) |0〉

= (2π)1−d 1

2ω(k̂)
δd−1(k̂ + k̂′) e−iω(k̂)|t| . (5.43)

After Fourier transformation over time, one recovers a form of expression

(5.36),

1

2π

∫

eik0t dt 〈0|T[φ̃(t, k̂)φ̃(0, k̂′)] |0〉 = 1

(2π)d
δd−1(k̂ + k̂′)

i

k20 − ω2(k̂) + iε
,

(5.44)

(k20−ω2(k̂) = k2−m2) where the iε term in the denominator indicates that

we have to add a small positive imaginary part.
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The real time two-point function is a distribution in the mathematical sense,

boundary value of an analytic function

i

k20 − ω2(k̂) + iε
≡ 2πδ(k20 − ω2(k̂)) + iPP

1

k20 − ω2(k̂)
,

where PP means principal part.

5.9 The S-matrix: generalities

Having explored the relation between fields and particles, we can now define

the scattering S-matrix. We first calculate explicitly the scattering by an

external source. The result will lead to a perturbative expression for the

S-matrix in a general interacting theory.
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5.9.1 Scattering by an external source

To the free action (5.30),

A0(φ) =

∫

dt dd−1x
[

1
2

(

φ̇(t, x)
)2 − 1

2

(

∇xφ(t, x)
)2 − 1

2m
2φ2(t, x)

]

,

we add a source term, corresponding to the linear coupling of the field φ to

an external classical source J(t, x). The resulting action AG then takes the

form

AG(φ) = A0(φ) +

∫

dt dd−1x J(t, x)φ(t, x).

We introduce the complex fields ϕ, ϕ̄ (equation (5.38a)) and the Fourier

components of the source,

J(t, x) =

∫

eik̂x J̃(t, k̂)dk̂ .
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The action AG then reads

AG(ϕ, ϕ̄) = A0(ϕ, ϕ̄)+(2π)d−1

∫

dt
dk̂

2ω(k̂)

[

J̃(t,−k̂)ϕ(t, k̂) + J̃(t, k̂)ϕ̄(t, k̂)
]

,

where A0(ϕ, ϕ̄) is the action (5.40):

A0(ϕ, ϕ̄) = −(2π)d−1

∫ t′′

t′
dt

dd−1k̂

2ω(k̂)

[

iϕ̄(t, k̂)ϕ̇(t, k̂) + ω(k̂)ϕ̄(t, k̂)ϕ(t, k̂)
]

.

A straightforward adaptation of the expression (4.64) yields the holomorphic

S-matrix:

lnSG(J, ϕ, ϕ̄) = (2π)d−1

∫

dk̂

2ω(k̂)
K(k̂) with

K(k̂) = ϕ(k̂)ϕ̄(k̂) + i

∫

dt
[

ϕ(k̂) eiω(k̂)t J̃(t,−k̂) + ϕ̄(k̂) e−iω(k̂)t J̃(t, k̂)
]

− 1
2

∫

dt1 dt2 J̃(t1,−k̂) e−iω(k̂)|t2−t1| J̃(t2, k̂).
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(In the last term we have symmetrized in k̂ 7→ −k̂ and then t1 ↔ t2.)

As explained in section 4.11.1, the coefficients of the scattering matrix

are obtained by expanding the functional in powers of ϕ and ϕ̄.

Introducing the time Fourier components

J̃(t, k̂) =

∫

dk0 e−ik0t J̃(k0, k̂),

one obtains the more useful expression

lnSG(J, ϕ, ϕ̄) = (2π)d−1

∫

dk̂

2ωk̂)
ϕ(k̂)ϕ̄(k̂) + i(2π)d

∫

dk̂ dk0 J̃(k0, k̂)

×
[

δ+(k
2
0 − k̂2 −m2)ϕ(−k̂) + δ−(k

2
0 − k̂2 −m2)ϕ̄(k̂)

]

− 1

2
(2π)d

∫

dk̂ dk0 J̃(−k0, k̂)
i

k20 − k̂2 −m2 + iε
J̃(k0, k̂) (5.45)

with the notation (see definition (5.39))

δ±(k
2
0 − k̂2 −m2) = θ(±k0)δ(k20 − k̂2 −m2).
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In the coefficient of the term quadratic in J we recognize the free two-point

function (5.44).

5.9.2 General interacting theory

An interaction term VI(φ) can then be added to the free action,

A(φ) =

∫

dt dd−1x
{

1
2

[

(φ̇(t, x))2 − (∇xφ(t, x))
2 −m2φ2(t, x)

]

−VI
(

φ(t, x)
)}

, (5.46)

where φ has to be expressed in terms of ϕ, ϕ̄. Using the definition of the

functional differentiation applied on the field integral, one can derive the

form of the S-matrix for the interacting theory

S(ϕ, ϕ̄) = exp

[

−i
∫

dt dd−1xVI

(

1

i

δ

δJ

)]

SG(J, ϕ, ϕ̄)

∣

∣

∣

∣

J=0

. (5.47)
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The S-matrix thus has a Feynman diagram expansion with internal propa-

gators ∆ given by the quadratic term in J in expression (5.45):

∆(k0, k̂) =
i

k20 − k̂2 −m2 + iε
≡ i

k2 −m2 + iε
. (5.48)

We note that we have indeed obtained a propagator, which otherwise would

be singular on the mass-shell k2 = k20− k̂2 = m2, with the usual iε prescrip-

tion.

Unitarity. With our conventions the unitarity of the S-matrix takes the

functional form

∫

[dϕ̄′(k̂)dϕ′(k̂)]S∗(ϕ′, ϕ̄)S(ϕ′, ϕ̄) exp

[

−(2π)d−1

∫

dk̂

2ω(k̂)
ϕ′(k̂)ϕ̄′(k̂)

]

= exp

[

(2π)d−1

∫

dk̂

2ωk̂)
ϕ(k̂)ϕ̄(k̂)

]

.
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Discussion. We have constructed our basis of states from the eigenstates

of the unperturbed Hamiltonian. More generally, we can take another har-

monic oscillator basis corresponding to a different mass, at the price of

adding to the interaction terms quadratic in the field.

Actually, and this will become clearer when we discuss the structure of

the ground state in field theory, if we take an arbitrary basis, in general, all

eigenstates of the interacting Hamiltonian will be orthogonal to all vectors

of the basis, a property specific to systems with an infinite number of degrees

of freedom.

Moreover, the Hamiltonian of a massive theory has a unique, translation

invariant, lowest energy excited state (in the case of several fields this can be

generalized to all super-selection sectors). The physical mass m (or inverse

correlation length in the statistical language) is defined as the energy of this

state. This defines the zero momentum one-particle state.
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A more general one-particle state is obtained by boosting the zero momen-

tum state, that is, performing a O(1, d− 1) transformation, and creating a

one-particle state of momentum k̂ and energy ω(k̂). Additional eigenstates

have energies at least equal to 2m.

Therefore, we have to take as vacuum state the true ground state of the

full Hamiltonian, and as asymptotic free states, free particles with the true

physical mass. These conditions implicitly define a reference free theory

with action A0, and ensures that it describes the asymptotic states at large

times.

The vacuum state and the physical mass can be calculated in perturbation

theory. To calculate scattering amplitudes one has to perform order by order

field and mass renormalizations, which involves, in particular, taking the

physical mass as a parameter of the perturbative expansion by inverting

the relation between the physical mass as defined by the pole of the two-

point function and the coefficient of φ2 as it appears in the action.
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Finally, note that the functional integral has to be normalized by the

condition S(0, 0) = 1, which means that we divide by a factor related to

difference in energies between the true and the unperturbed ground state.
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5.10 S-matrix and field asymptotic conditions

Since the action is only local when written in terms of the initial real field

φ, it is convenient to find an expression of the S-matrix in the φ formalism.

We know how to calculate the matrix elements of the evolution operator

by integrating over the field φ.

We now compare this expression of the evolution operator with the ex-

plicit form (5.47) of the S-matrix as derived from the holomorphic repre-

sentation.

5.10.1 The Gaussian integral in an external source and S-matrix

We first consider the Gaussian theory in an external source

ZG(J) =

∫

[dφ] exp

[

iA0(φ) + i

∫

dt dd−1x J(t, x)φ(t, x)

]

. (5.49)
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The action can be written in terms of the Fourier components of the source

J and the field φ,

φ(t, x) =

∫

dk eik̂x−ik0t φ̃(k0, k̂).

The total action becomes

A(φ) = (2π)d
∫

dk0 dk̂
[

1
2 φ̃(−k0,−k̂)(k

2
0 − k̂2 −m2)φ̃(k0, k̂)

+J(−k0,−k̂)φ̃(k0, k̂)
]

. (5.50)

Unlike the euclidean functional integral, the functional integral for the evo-

lution operator has convergence problems because classical field equations

have non-trivial solutions. This problem has already been discussed in sec-

tion 4.11.2, and we use the same strategy here.
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We define the functional integral as the analytic continuation in time of the

euclidean path integral. We perform a rotation in the time complex plane

t 7→ t eiθ where θ varies between 0 (the euclidean theory) and π/2, (the

Minkowsky theory). In the energy variable k0 the corresponding rotation is

k0 7→ k0e
−iθ.

As we have indicated this amounts to adding to m2 an infinitesimal nega-

tive imaginary part which ensures the convergence of the field integral (5.49)

for large fields. The generating functional ZG(J) can then be calculated and

one finds

lnZG(J) = −1

2
(2π)d

∫

dk0dk̂ J(k0, k̂)∆(k0, k̂)J(−k0,−k̂), (5.51)

where ∆(k0, k̂) is the free propagator

∆(k0, k̂) =
i

k20 − k̂2 −m2 + iε
≡ i

k2 −m2 + iε
. (5.52)
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We note that the propagator obtained by this prescription is identical to the

internal propagator (5.48) that appears in the Feynman graph expansion of

the S-matrix. The analytic continuation leads to an iε rule for real time

Feynman diagrams.

S-matrix in an external source. Comparing the expressions (5.51) and

(5.45), we see that the quadratic term is reproduced but not the term linear

in the source. This term corresponds to an addition to the field φ̃:

φ̃(k0, k̂) 7→ φ̃(k0, k̂) + φ̃0(k0, k̂)

with

φ̃0(k0, k̂) = δ(k20 − k̂2 −m2)
[

ϕ(k̂)θ(−k0) + ϕ̄(−k̂)θ(k0)
]

. (5.53)

The additional term φ̃0(k0, k̂) thus is, in some specific parametrization, the

general solution of the free classical field equation

(k20 − k̂2 −m2)φ̃0(k0, k̂) = 0 .
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It is non-vanishing only on the mass hyperboloid k2 = m2. The parametriza-

tion (5.53) of the solution reflects the property that the mass hyperboloid

has two disconnected components, depending on the sign of the energy k0.

As we have noted in section 4.11.2, we can shift the field φ taking φ+φ0 as

the integration variable. The shifted field φ then satisfies scattering bound-

ary conditions and the S-matrix can thus be derived from the functional

integral

ZG(J) =

∫

[dφ] exp

[

iA0(φ)− iA0(φ0) + i

∫

dt dx J(t, x)φ(t, x)

]

. (5.54)

The interpretation is the following: the field φ in the functional integral

(5.49) satisfies general free field boundary conditions, φ→ φ0, and its two-

point function or propagator is then given by equation (5.52).
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General interaction. The general functional representation (5.47) can then

be rewritten in a different way. Introducing the form (5.54) of ZG in (5.47)

and applying the functional derivatives, one finds

S(ϕ, ϕ̄) = I(ϕ, ϕ̄)
∫

[dφ] exp i [A(φ)−A0(φ0)] , (5.55)

where I is the identity kernel (5.42), and the field φ satisfies fixed free field

asymptotic boundary conditions.

The expression (5.55), up to the factor I, is a functional integral in the

presence of a background field φ0. This field integral differs from the vacuum

amplitude only in the boundary conditions, which are free field boundary

conditions.
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This result is consistent with the analysis of section 3.12.1. We have shown

that in quantum mechanics S-matrix elements can be calculated from the

path integral representation of the evolution operator, by integrating over

paths which satisfy prescribed classical scattering boundary conditions, that

is, which correspond to asymptotic free classical motion.

In particular, the starting point of the semi-classical expansion is a clas-

sical scattering trajectory. The arguments can be generalized to quantum

field theory with massive particles (to ensure proper cluster properties and

thus the existence of an S-matrix).
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Remark. Considerations based on asymptotic field boundary conditions, or

the more direct considerations of section 5.8 lead to the same perturbative

S-matrix.

However, as suggested by the discussion given at the beginning of section

3.12.1, the preceding considerations generalize to the scattering of solitons,

that is, states obtained by expanding the functional integral around finite

energy static solutions of the complete classical field equations

δA(φ)

δφ(x)
= 0 .

In this case, the S-matrix of soliton scattering is obtained by expanding the

field integral around classical soliton scattering solutions of the complete

field equations.
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5.10.2 S-matrix and correlation functions

Alternatively, let us consider the following expression for a general interac-

tion,

Z(J ) = exp

[

−i
∫

ddxVI

(

1

i

δ

δJ(x)

)]

exp
[

− 1
2 (J + J)∆(J + J)

]

∣

∣

∣

∣

J=0

,

(5.56)

where J is an additional external source and the last term a formal repre-

sentation of

1
2 (J + J)∆(J + J)

≡ 1
2 (2π)

d

∫

ddk
(

J̃(−k) + J̃ (−k)
) i

k2 −m2 + iε

(

J̃(k) + J̃ (k)
)

. (5.57)
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Comparing expression (5.56) with expression (5.45),

lnSG(J, ϕ, ϕ̄) = (2π)d−1

∫

dk̂

2ωk̂)
ϕ(k̂)ϕ̄(k̂)

+ i(2π)d
∫

dk J̃(k)
[

δ+(k
2 −m2)ϕ(−k̂) + δ−(k

2 −m2)ϕ̄(k̂)
]

− 1
2 (2π)

d

∫

dk J̃(−k) i

k2 −m2 + iε
J̃(k),

combined with equation (5.47),

S(ϕ, ϕ̄) = exp

[

−i
∫

dt dxVI

(

1

i

δ

δJ

)]

SG(J, ϕ, ϕ̄)

∣

∣

∣

∣

J=0

,

we see that the two expressions are very close if one sets

i

k2 −m2 + iε
J̃ (k0, k̂) 7→ −iδ(k2 −m2)

[

ϕ(k̂)θ(−k0) + ϕ̄(−k̂)θ(k0)
]

.

(5.58)
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Therefore, we conclude that S-matrix elements can be obtained from real

time correlation functions by first multiplying them by the product of ex-

ternal inverse propagators, and then by restricting the external momenta to

the mass-shell k2 = m2.

This does not imply that the result vanishes. Indeed, correlation functions

have poles on the mass-shell. The final answer is proportional to the so-called

amputated correlation functions on mass-shell.
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Connected contributions. The relation between correlation functions and

S-matrix elements shows that the matrix elements as defined here have

disconnected contributions. Instead, the new functional

T (ϕ, ϕ̄) = i lnS(ϕ, ϕ̄), (5.59)

is the generating functional of connected scattering amplitudes (see section

6.10.1).

Crossing symmetry. We see that only a linear combination of ϕ and ϕ̄

appears, with identical coefficients, up to the sign of the energy. The sign

of k0 specifies the incoming and outgoing particles. This has deep implica-

tions, specific to relativistic quantum field theory: in d > 2 dimensions, the

same analytic functions lead to scattering amplitudes of different physical

processes, a property known as crossing symmetry.
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5.10.3 The φ3 example

We illustrate the analysis by calculating a four-point scattering amplitude

in the simple φ3 field theory, in the tree approximation. We consider the

action

A(φ) =

∫

dt dd−1x
[

1
2

(

φ̇(t, x)
)2 − 1

2

(

∇xφ(t, x)
)2 − 1

2m
2φ2(t, x)

− 1
3!gφ

3(t, x)
]

.

We introduce the Fourier components of the field φ,

φ(t, x) =

∫

e−ik0t+ik̂x φ̃(k)ddk .

In terms of Fourier components, the field equation takes the form

(

k2 −m2
)

φ̃(k)− 1
2g

∫

ddq φ̃(q)φ̃(k − q) = 0 . (5.60)
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The equation can be solved as a series in the coupling constant g starting

from the solution (5.53) of the free equation:

φ̃0(k) = δ(k2 −m2)
[

ϕ(k̂)θ(−k0) + ϕ̄(−k̂)θ(k0)
]

.

The classical solution at order g is

φ̃(k) = φ̃0(k) +
g

2(k2 −m2)

∫

ddq φ̃0(q)φ̃0(k − q) +O
(

g2
)

.

By looking for perturbative solutions of the field equation we have explicitly

excluded scattering states corresponding to bound states or solitons (see the

remark at the end of section 5.10.1).

Using equation (5.60) we can rewrite T in the tree approximation as

T (φ0) = i lnS(φ0)

= − 1
12g(2π)

d

∫

ddk1 d
dk2 d

dk3 δ
(d)(k1 + k2 + k3)φ̃(k1)φ̃(k2)φ̃(k3).

355



We then replace φ by its expansion in powers of g. The term of order g,

which would describe one φ particle decaying into two, vanishes by energy

conservation. The next term of order g2 has the form

−1

8
g2(2π)d

∫

δ(d)(k1 + k2 + k3 + k4)
1

(k1 + k2)2 −m2

4
∏

i=1

dki φ̃0(ki).

The connected four-particle scattering amplitude is then obtained by differ-

entiating with respect to φ̃0(k). The result is the product of a factor that

contains the momentum conservation,

(2π)dδ(d)(k1 + k2 + k3 + k4),

and an amplitude (k2i = m2),

− g2

(k1 + k2)2 −m2
− g2

(k1 + k3)2 −m2
− g2

(k1 + k4)2 −m2
.
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The term we have calculated also contains, in principle, the decay of one

particle into three but again this process vanishes by energy conservation.

Higher orders in g yield five, six . . . particle scattering amplitudes.

5.11 Two-point function: spectral representation and field renor-

malization

We now derive the spectral representation of the two-point function and its

implication on field renormalization. This can more conveniently be done in

the euclidean formulation.

We define the field operator in the Schrödinger representation φ̂(x) in

such a way that 〈0|φ̂|0〉 = 0, where |0〉 is the ground state or vacuum. This

can always be achieved by a constant shift. It follows from the discussion of

section 3.7 (equation (3.31)) that the two-point function is given by

W (2)(x− y; t− u) = 〈0| φ̂(x) e−(H−E0)|t−u| φ̂(y) |0〉 ,
where E0 is the ground state or vacuum energy.
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5.11.1 Spectral representation

Symbolically, we denote by |α〉 a complete set of eigenvectors of the Hamil-

tonian and we denote by E0 + εα the corresponding energy eigenvalues.

Then,

e−(H−E0)|t| =

∫

dα |α〉 e−εα|t| 〈α|

and, thus,

W (2)(x− y; t) =

∫

dα 〈0| φ̂(x) |α〉 e−εα|t| 〈α| φ̂(y) |0〉 .

We define the Fourier transform of the field operator by

φ̂(k̂) =
1

(2π)d−1

∫

dd−1x e−ik̂x φ̂(x).
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We then calculate the two-point correlation function W (2) in the Fourier

representation. From translation invariance, we know that the Fourier trans-

form has the form

δd−1(k̂ + k̂′)W̃ (2)(t, k̂) = (2π)d−1 〈0| φ̂(k̂) e−|t|(H−E0) φ̂(k̂′) |0〉 , (5.61)

= (2π)d−1

∫

dα 〈0| φ̂(k̂) |α〉 e−εα|t| 〈α| φ̂(k̂′) |0〉 .

The right hand side is a distribution with a support reduced to k̂′ = −k̂.
In this limit, since φ̂(−k̂) = φ̂†(k̂), the left hand side is a sum of positive

terms. (A more careful argument would involve a finite box with quantized

momenta.)

We thus find

W̃ (2)(t, k̂) =

∫

dα ρ(α, k̂) e−|t|εα ,

where ρ is a positive measure.
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The Fourier transform with respect to time is given by

W̃ (2)(k0, k̂) =

∫

dt e−ik0t

∫

dαρ(α, k̂) e−|t|ε(α)

=

∫

dα
2ε(α)ρ(α, k̂)

k20 + ε2(α)
.

The relativistic O(d) invariance allows to set k̂ = 0 and replace k20 by k2

without changing the right hand side. We conclude

W̃ (2)(k) =

∫

dα
ρ(α)

k2 + α2
(5.62)

with ρ(α) = 2ε(α)ρ(α, 0) is a positive measure. This form is called the

Källen–Lehmann (KL) representation.

360



5.11.2 Field renormalization

Conversely, the Fourier transform with respect to the k0 now is

W (2)(t, k̂) =
1

2π

∫

dk0 eik0t W̃ (2)(k) =
1

2π

∫

dk0 eik0t

∫

dα
ρ(α)

k2 + α2

=

∫

dα
ρ(α)

2
√

k̂2 + α2
e−|t|

√
k̂2+α2

. (5.63)

For t > 0, taking the derivative with respect to time and the limit t = 0,

one concludes
∂

∂t
W (2)(k̂, t)

∣

∣

∣

∣

t→0+

= − 1
2

∫

dα ρ(α) . (5.64)

Returning to the definition (5.61), taking for t > 0 the derivative with

respect to time and the limit t = 0, one finds

δd−1(k̂ + k̂′)
∂

∂t
W (2)(k̂, t)

∣

∣

∣

∣

t→0+

= −(2π)d−1 〈0| φ̂(k̂)(H− E0)φ̂(k̂
′) |0〉 .

(5.65)
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The product (H − E0)φ̂ in the right hand side can be replaced by the

commutator [H, φ̂]. Indeed,

〈0| φ̂[H, φ̂] |0〉 = 〈0| φ̂
(

Hφ̂ |0〉 − φ̂H |0〉
)

= 〈0| φ̂(H− E0)φ̂ |0〉 .

Similarly, on the left hand side,

〈0| [H, φ̂]φ̂ |0〉 =
(

〈0|Hφ̂− 〈0| φ̂H
)

φ̂ |0〉 = 〈0| φ̂(E0 −H)φ̂ |0〉 .

Exchanging k̂ and k̂′ in the second expression (W (2) is symmetric) and

taking the half difference, one concludes

〈0| φ̂(k̂)(H− E0)φ̂(k̂
′) |0〉 = 1

2 [φ̂(k̂), [H, φ̂(k̂
′)]].

Thus,

δd−1(k̂ + k̂′)
∂

∂t
W (2)(k̂, t)

∣

∣

∣

∣

t→0+

= − 1
2 (2π)

d−1 〈0| [φ̂(k̂), [H, φ̂(k̂′)]] |0〉 .
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If the Hamiltonian density has the form (5.25), classical fields being replaced

by quantum operators,

H(π̂, φ̂) = 1
2 π̂

2(x) + 1
2

(

∇φ̂(x)
)2

+ V
(

φ̂(x)
)

,

the commutator is proportional to the conjugated momentum:

[H, φ̂(k̂)] =

∫

dd−1x

(2π)d−1
e−ik̂x[H, φ̂(x)] = −i

∫

dd−1x

(2π)d−1
e−ik̂x π̂(x).

Then,

[φ̂(k̂), [H, φ̂(k̂′)]] = (2π)1−dδd−1(k̂ + k̂′).

It follows that
∂

∂t
W (2)(t, k̂)

∣

∣

∣

∣

t→0+

= −1

2
.

Comparing this result with equation (5.64), we infer
∫

dαρ(α) = 1 .
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Since by definition the physical massm is the lowest energy eigenstate above

the ground state, the support of ρ is α ≥ m. Moreover, at k̂ = 0 the state

is isolated. Therefore, the measure has an isolated δ-function and then a

continuous part starting at the threshold for scattering states (M = 3m in

the simple φ4 scalar field theory).

ρ(α) = Zδ(α−m) + ρ′(α), ρ′(α) = 0 for m < α < M . (5.66)

We conclude that, except in a free field theory, the residue Z of the pole at

p2 = −m2, is strictly smaller than 1:

0 < Z < 1 .
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5.11.3 Implications

This result has several implications, one being related to the S-matrix. Let

us evaluateW (2)(t, k̂) for t large. The state of lowest energy, with momentum

k̂, gives the leading contribution. From the KL representation (5.63) and the

decomposition (5.66), we then learn that

W (2)(t, k̂) ∼
t→∞

Z

2
√

k̂2 +m2
e−|t|

√
k̂2+m2

.

If we compare this result with the contribution of a normalized one-particle

eigenstate of the Hamiltonian H0 (see equation (5.43)),

(2π)d−1
〈

1, k̂
∣

∣

∣
e−|t|(H−E0)

∣

∣

∣
1, k̂′

〉

= δd−1(k̂ + k̂′)
1

2
√

k̂2 +m2
e−|t|

√
k̂2+m2

,

we observe that the field φ has only a component
√
Z on the one-particle

states.
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Another way to formulate the same result is to verify that in real time the

Heisenberg field has a free field large time behaviour with an amplitude
√
Z

on normalized creation or annihilation operators. After continuation to real

time, one finds the two-point function

〈0|T[φ̂(t, k̂)φ̂(0, k̂′)] |0〉 = 〈0| φ̂(k̂) e−i(H−E0)|t| φ̂(k̂′) |0〉

= (2π)1−dδd−1(k̂ + k̂′)

∫

dµ
ρ(µ)

2

√

k̂2 + µ2

e−i|t|
√

k̂2+µ2
.

It can be verified that its large time behaviour is related to the leading

singularity of the measure ρ. Since ρ(µ) is the sum of a δ-function and a

continuous function (for d ≥ 2), one obtains

〈0| φ̂(k̂) e−i(H−E0)|t| φ̂(k̂′) |0〉 =
|t|→∞

(2π)1−dδd−1(k̂+ k̂′)
Z e−iω(k̂)|t|

2ω(k̂)
+O (1/t) .

366



Introducing ϕ, ϕ̄, the properly normalized creation and annihilation oper-

ators of the one-particle states, we conclude that for large time the field

φ̂(t, k̂) tends in a weak sense (not in an operator sense, but in all expecta-

tion values) towards

φ̂(t, k̂) ∼
|t|→∞

√
Z

1

2ω(k̂)

[

ϕ(−k̂) + ϕ̄(k̂)
]

.

The constant
√
Z is the field renormalization constant.

Normalized S-matrix elements. To calculate properly normalized S-matrix

elements we can calculate with the action A(φ
√
Z). Alternatively, if we keep

the initial field we have to renormalize the matrix elements.
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5.12 The non-relativistic limit

Since a general discussion of the non-relativistic limit of quantum field the-

ory would be somewhat involved, we consider here only one example that

illustrates the main point. We show that the low-energy limit of relativistic

quantum field theory for massive particles is many-body quantum mechan-

ics, and leads to a formalism naturally adapted to the statistical physics of

non-relativistic quantum particles.

The φ4 interaction. We consider a massive scalar field theory with a φ4

type interaction. To discuss the non-relativistic limit, it is convenient to

employ the real time formalism. The real-time evolution operator is given

by a functional integral of the form

U =

∫

[dφ] exp iA(φ),

A(φ) =

∫

dt dx
[

1
2

(

φ̇(t, x)
)2 − 1

2

(

∇xφ(t, x)
)2 − 1

2m
2φ2(t, x)− 1

4!gφ
4(t, x)

]

.
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At least for a coupling weak enough, the integral is dominated by fields

satisfying the free field equation

(

∂2t −∇2
x +m2

)

φ(t, x) = 0 .

In the non-relativistic limit the space variation is small compared to the

time variation. If space variations are completely neglected, the solutions to

the field equation reduce simply to φ(t, x) ∝ e±imt. It is thus natural to in-

troduce the holomorphic representation of fields, taking as the unperturbed

harmonic oscillator A0(φ):

A0(φ) =

∫

dt dx
[

1
2

(

φ̇(t, x)
)2 − 1

2m
2φ2(t, x)

]

.

Denoting by ϕ(t, x), ϕ̄(t, x) the complex fields, in terms of which the field

φ(t, x) reads

φ(t, x) = (2m)−1/2
(

ϕ(t, x) + ϕ̄(t, x)
)

,
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one finds the action

A(ϕ, ϕ̄)

=

∫

dt dx

[

−iϕ̄ϕ̇−mϕϕ̄− 1

4m

(

∇x (ϕ+ ϕ̄)
)2 − g

96m2
(ϕ+ ϕ̄)4

]

.

To separate the fast time frequencies, one then takes new field variables

ϕ(t, x) 7→ eimt ϕ(t, x), ϕ̄(t, x) 7→ e−imt ϕ̄(t, x),

where the new fields ϕ̄, ϕ have slow time variation compared to the factors

eimt.

After this transformation, the monomials of the form ϕ̄rϕs are multiplied

by a factor eim(s−r)t. For r 6= s the corresponding time integrals give small

contributions due to the rapid time oscillations. Hence, at leading order,

the only surviving terms are those that have an equal number of ϕ̄ and ϕ

factors. The action, at leading order in the non-relativistic limit, reduces to

A(ϕ̄, ϕ) =

∫

dt dx

(

−iϕ ˙̄ϕ− 1

2m
∇xϕ∇xϕ̄− g

16m2
ϕϕϕ̄ϕ̄

)

.
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We recognize a real-time action written in terms of complex fields of the form

(5.22). Therefore, the Hamiltonian in the non-relativistic limit commutes

with the particle number. This property, in general, is shared in relativistic

quantum field theory only by free Hamiltonians. By contrast, in the non-

relativistic limit of a massive theory all momenta are small compared to

masses and, therefore, the number of particles is necessarily conserved.

Up to an infinite energy shift (the vacuum energy), the n-particle Hamil-

tonian Hn has the form

Hn = − 1

2m

n
∑

i=1

∇2
xi

+
g

8m2

∑

i<j≤n

δ(xi − xj).

This is an n-particle Hamiltonian with two-body δ-function repulsive forces.

Finally, note that if we had expanded the fields with respect to the true

physical mass, which is equal to m only for g = 0, we would have generated

an additional chemical potential.

371



This analysis shows that the low-energy, non-relativistic limit of relativis-

tic quantum field theory is many-body quantum mechanics in the second

quantization formulation.
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