
Lecture 6: THE SCALAR FIELD: FORMAL

PERTURBATION THEORY



In this lecture we introduce the generating functionals of connected correla-

tion functions and vertex functions. Expressed in terms of field (functional)

integrals, these functions can be calculated by perturbation theory, the suc-

cessive perturbative contributions being Gaussian expectation values which

can be evaluated with the help, for example, of Wick’s theorem.

They have a graphical representation in the form of Feynman diagrams.

We illustrate diagrammatically the relations between the first connected

correlation functions and the corresponding vertex functions.

Perturbative calculations have an algebraic structure which is already

apparent in the calculations of path integrals presented in section 3.10 .

The calculation of a field integral by the steepest descent method orga-

nizes the perturbative expansion as an expansion in the number of loops in

the Feynman diagram representation.

We define quite generally dimensional continuation of Feynman diagrams

and introduce the concept of dimensional regularization.
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6.1 Correlation functions and generating functionals

Let φ(x) be a classical field endowed with a probability distribution, a nor-

malized positive measure in the space of fields [dφ] e−S(φ) /Z, where S(φ)
is the euclidean action and

Z =

∫
[dφ] e−S(φ)

the associated partition function.

Correlation functions. The n-point correlation function is defined by

〈φ(x1)φ(x2) . . . φ(xn)〉 =
1

Z

∫
[dφ]φ(x1)φ(x2) . . . φ(xn) e

−S(φ), (6.1)

where the normalization ensures that 〈1〉 = 1.
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6.1.1 Generating functional

Correlation functions can be inferred by functional differentiation from the

generating functional (see also section 3.6)

Z(J) =

∫
[dφ] exp

[
−S(φ) +

∫
ddx J(x)φ(x)

]
(6.2a)

= Z(0)
〈
exp

∫
ddxφ(x)J(x)

〉
, Z(0) ≡ Z . (6.2b)

Indeed,

〈φ(x1)φ(x2) . . . φ(xn)〉 =
1

Z(0)

(∏

i

δ

δJ(yi)

)
Z(J)

∣∣∣∣
J=0

. (6.3)
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6.1.2 Connected correlation functions and cluster properties

The functional W(J) = lnZ(J) generates connected correlation functions

(generalized cumulants):

W(J) =
∑

n=0

1

n!

∫
ddx1 . . .d

dxnW
(n)(x1, . . . , xn)J(x1) . . . J(xn).

It can be proved that in local field theories, connected correlation functions

W (n)(x1, . . . , xn) decays at least algebraically when the points x1, x2, . . . , xn
belong to two largely separated non-empty subsets {x1 . . . xp}, {xp+1 . . . xn}:

W (n)(x1 . . . xp, xp+1 . . . xn) → 0 when min
i=1···p

j=p+1···n

|xi − xj | → ∞ .

This property, called cluster property, is a characteristic property of con-

nected correlation functions.

As a consequence, in a perturbative expansion to connected correlation

functions contribute only connected Feynman diagrams.
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6.1.3 Generating functional of vertex functions

We also define the generating functional Γ(ϕ) of vertex functions:

Γ(ϕ) =
∑

n=0

1

n!

∫
ddx1 . . . d

dxn Γ
(n)(x1, . . . , xn)ϕ(x1) . . . ϕ(xn).

where ϕ is a classical field (the local magnetization in magnetic systems)

and Γ(ϕ) is the Legendre transform of W(J):

W(J) + Γ(ϕ) =

∫
ddx J(x)ϕ(x), ϕ(x) =

δW(J)

δJ(x)
, (6.4)

The role of the vertex functions Γ(n) will be discussed later. In statistical

physics, Γ(ϕ) is the thermodynamic potential, a function, for example, of

the local magnetization for magnetic systems.

In a perturbative expansion only one-line or one-particle irreducible (1PI)

Feynman diagrams contribute to vertex functions.
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A general property. We now assume that W(J) depends on a parameter

h. Then, after differentiating the first equation (6.4) with respect to h at

J fixed, one finds

∂Γ

∂h

∣∣∣∣
ϕ fixed

+

∫
ddx

δΓ

δϕ(x)

∂ϕ(x)

∂h
+
∂W
∂h

∣∣∣∣
J fixed

=

∫
ddx J(x)

∂ϕ(x)

∂h
.

Then, using the second equation (6.4), one notes that the two terms pro-

portional to ∂ϕ/∂h cancel and one infers

∂Γ

∂h

∣∣∣∣
ϕ fixed

+
∂W
∂h

∣∣∣∣
J fixed

= 0 . (6.5)
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6.1.4 Fourier representation

We have assumed that the field theory is translation invariant. This hypoth-

esis implies that for all a ∈ R
d, the n-point connected correlation function

satisfies

W (n)(x1 + a, . . . , xn + a) =W (n)(x1, . . . , xn).

As a consequence, the relation between an n-point function and its Fourier

transform can be written as

(2π)dδ(d)
( n∑

i=1

pi

)
W̃ (n)(p1, . . . , pn)

=

∫
ddx1 . . . d

dxnW
(n)(x1, . . . , xn) exp

(
i

n∑

j=1

xjpj

)
. (6.6)

Cluster properties of connected correlation functions imply regularity prop-

erties of W̃ (n)(p1, . . . , pn) in the variables pi.
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Vertex functions. In section 6.1.3, we have also defined vertex functions.

The Fourier transform of the n-point vertex function is defined by

(2π)dδ(d)
( n∑

i=1

pi

)
Γ̃(n)(p1, . . . , pn)

=

∫
ddx1 . . .d

dxn Γ
(n)(x1, . . . , xn) exp

(
i

n∑

j=1

xj · pj
)
. (6.7)

Vertex functions, due to the regularity properties of the Γ̃(n), play a central

role in the perturbative expansion and in renormalization theory.

Note that in a translation invariant theory, as assumed above, the rela-

tions between connected and vertex functions are purely algebraic.
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6.2 Gaussian or free field theory. Wick’s theorem

In field theory, as in other stochastic processes, the simplest measure is the

Gaussian measure, as several examples have already illustrated.

6.2.1 Gaussian or free field theory

In quantum field theory, unitarity (necessary for conservation of probabili-

ties) is only satisfied for the simple Gaussian theory of the form

SG(φ) =
1
2

∫
ddx

[(
∇xφ(x)

)2
+m2φ2(x)

]
.

The limit m = 0 corresponds to a massless theory (a critical theory in the

terminology of phase transitions). For m > 0 the theory is massive (in the

terminology of statistical physics the correlation length ξ = ~/mc is finite).

However, in presence of local interactions, such a theory leads to large

momentum or short distance divergences that have to be regularized. This

can be achieved, for example, by adding unphysical higher derivative terms.
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Therefore, we consider a more general Gaussian theory with a translation

and rotation invariant euclidean action of the form

SG(φ) =
1
2

∫
ddx

{
∇xφ(x)

(
1 +

∑

k=1

uk+1(−∇2
x)

k

)
∇xφ(x) +m2φ2(x)

}
,

(6.8)

where the coefficients uk are such that the quadratic form is positive.

The field integral,

ZG(J) =

∫
[dφ] exp[−SG(φ)] exp

[∫
ddxφ(x)J(x)

]

=

∫
[dφ] exp

[
−SG(φ) +

∫
ddxφ(x)J(x)

]
,

a functional of the external field J(x), is proportional to the generating func-

tional of correlation functions corresponding to the measure e−SG(φ) /ZG(0),〈
exp

[∫
ddxφ(x)J(x)

]〉

HG

= ZG(J)/ZG(0).
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6.2.2 Calculation of the integral

To calculate the field integral, we solve the classical field equation derived

from the action (6.8),

K(∇x)φ(x) = J(x)

with

K(∇x) = −∇2
x +

∑

k=1

uk+1(−∇2
x)

k+1 +m2.

In terms of ∆, the inverse of K, the solution can be written as

φ(x) =

∫
ddy∆(x− y)J(y). (6.9)

One then change variables φ(x) 7→ φ′(x) with

φ(x) = φ′(x) +

∫
ddy∆(x− y)J(y). (6.10)
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This shift of φ(x) eliminates the term linear in φ in the exponential. The

measure is invariant and the integrand becomes

ZG(J) = exp

[
1

2

∫
ddy J(x)∆(x− y)J(y)

] ∫
[dφ′] exp[−SG(φ

′)].

The dependence in J is now explicit. The residual integral yields only a nor-

malization. Its calculation may be difficult but it cancels in the calculation

of correlation functions. Indeed, the measure must be normalized in such a

way that 〈1〉G = 1, where 〈•〉G means Gaussian expectation value (or free

field in the context of quantum field theory). One concludes
〈
exp

[∫
ddxφ(x)J(x)

]〉

G

= ZG(J)/ZG(0)

= exp

[
1
2

∫
ddx ddy J(x)∆(x− y)J(y)

]
.(6.11)

The kernel ∆, the inverse of K, is the Gaussian two-point function, and is

also called the propagator.
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In a translation-invariant theory, it is convenient to introduce the Fourier

representation:

K =

∫
ddp

(2π)d
e−ip·x K̃(p), K̃(p) = p2 +

∑

k=1

uk+1(p
2)k+1 +m2,(6.12a)

∆(x) =

∫
ddp

(2π)d
eip·x ∆̃(p), ∆̃(p) =

∫
ddx eip·x ∆(x), (6.12b)

and thus

∆̃(p)K̃(p) = 1 .

In order for the field integral to exist, K̃(p) must be positive for p 6= 0.

Since K(p) is rotation-invariant (the special orthogonal group SO(d)), the

function ∆(x) is a function only of |x|, and ∆̃(p) only of |p|.
Connected correlation functions. The generating functional of connected

correlation functions WG = lnZG reduces to a simple quadratic form:

WG(J)−WG(0) =
1
2

∫
ddx ddy J(x)∆(x− y)J(y).
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As we have already pointed out, in the case of Gaussian integrals, connected

functions (generalized cumulants) with more than two points vanish.

Vertex functions. Finally, we calculate the generating functional ΓG(ϕ) of

vertex functions by a Legendre transformation. First,

ϕ(x) =
δWG

δJ(x)
=

∫
ddy∆(x− y)J(y) ⇒ J(x) = K(∇x)ϕ(x).

Thus,

ΓG(ϕ) =

∫
ddxϕ(x)J(x)−W(J)

= 1
2

∫
ddxϕ(x)K(∇x)ϕ(x) = SG(ϕ),

is directly related to the action.
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Wick’s theorem. Expression (6.11) combined with the arguments of section

3.8.3, leads to an immediate generalization of equation (3.43), which ex-

presses Wick’s theorem in a scalar field theory:

〈
2s∏

1

φ(xi)

〉

G

=

[
2s∏

i=1

δ

δJ(xi)
exp [WG(J)−WG(0)]

]∣∣∣∣∣
J≡0

=
∑

all pairings
of {1,2,...,2s}

∆(xi1 − xi2) . . .∆(xi2s−1
− xi2s). (6.13)
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6.3 Perturbative expansion

We now consider a more general (euclidean) action of the form

S(φ) = SG(φ) + VI(φ), (6.14)

where SG(φ) is the quadratic form (6.8) and VI(φ) is a local polynomial in

the field, which, in the context of quantum field theory, is called an interac-

tion. In a local field theory, that is, in the class that we have introduced in

the preceding lectures, VI(φ) is the space integral of a function of the field

and its derivatives:

VI(φ) =

∫
ddxVI[φ(x), ∂µφ(x), . . .]. (6.15)

Although most results presented in this section will be illustrated only by

actions of φ3 and φ4 types, these results apply to more general theories.
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6.3.1 Perturbative expansion

The perturbative expansion of correlation functions is obtained by expand-

ing expression (6.14) in powers of VI, keeping only the quadratic term SG(φ)

in the exponential. The interaction (6.15) is a sum of monomials called inter-

action vertices. The expansion then reduces to the calculation of Gaussian

expectation values of products of fields of the form

〈
φ(x1) · · ·φ(xn)

∫
ddy1 φ

p1(y1)

∫
ddy2 φ

p2(y2) · · ·
∫

ddyk φ
pk(yk)

〉

G
(6.16)

(to simplify, we have omitted possible derivatives) and, thus, to Wick’s

theorem. Wick’s theorem involves the Gaussian two-point function or prop-

agator ∆ (equation (6.9)). Each contribution takes the form of a product of

propagators integrated over all points corresponding to interaction vertices

and has a graphical representation in terms of Feynman diagrams.
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The perturbative expansion has a formal global representation. Using sys-

tematically the property,

δ

δJ(x)
exp

[∫
ddy J(y)φ(y)

]
= φ(x) exp

[∫
ddy J(y)φ(y)

]
,

one can express Z(J) in terms of the Gaussian functional ZG(J) in the form

Z(J) = exp

[
−VI

(
δ

δJ

)]
ZG(J) = exp

[
−VI

(
δ

δJ

)]
exp [WG(J)]

= ZG(0) exp

[
−VI

(
δ

δJ

)]
exp

[
1
2

∫
ddx ddy J(x)∆(x− y)J(y)

]
. (6.17)

Combining identities (6.3) and (6.17), one can calculate correlation functions

of the field φ as formal series in powers of the interaction VI, to use quantum

field theory terminology. To each monomial contributing to VI corresponds a

differential operator: a product of derivatives δ/δJ that generates a product

of propagators ∆.
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Discussion. As we have already stressed, the kernel K cannot be reduced

to the Gaussian form −∇2
x +m2 because the perturbative expansion then

contains short-distance divergences. This is a manifestation of a coupling

between the different physical scales.

In the Fourier representation, short-distance divergences become large-

momentum or ultraviolet (UV) divergences (in quantum field theory the

arguments of the Fourier transform are momenta or energies).

These divergences are unphysical in the theory of phase transitions since

the fixed-point two-point function is only the asymptotic form at large dis-

tance, and the lattice, or more generally the microscopic structure, modify

the theory at short distance.

In particle physics, the existence of such a necessary short distance mod-

ification can only be guessed and its precise form is unknown.
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Here, we work in the continuum and we add to the action irrelevant (sub-

leading at large distance) terms with higher order derivatives, to generate a

propagator ∆(x−y) sufficiently regular for |x−y| → 0. This modification is

called a regularization. In the Fourier representation, finiteness of the per-

turbative expansion requires that ∆̃(p), the Fourier transform of ∆(x − y)

decays fast enough for p→ ∞.

These regularization terms are different from those of the true theory.

In quantum field theory they even lead to unphysical properties. However,

renormalization theory and renormalization group arguments imply that the

precise form of the regularization does not affect large distance properties.

A fictitious lattice can also be used because, since momenta vary in a

bounded domain, a Brillouin zone, these divergences are absent.

Here, we assume that the large momentum decay of the propagator, in

the Fourier representation, is sufficiently fast to render the perturbative

expansion finite to all orders.
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6.4 Feynman diagrams: loops

We now define Feynman diagrams. To each monomial contributing to the

interaction, one associates a vertex, a point from which originates a number

of lines equal to the degree of the monomial. A propagator is represented

by a line that joins the points that correspond to its arguments. These

points are either vertices, or points corresponding to external arguments of

a correlation function.

In what follows we call an internal line a line that joins two vertices. By

contrast, an external line joins a vertex to a point of a correlation function.

In a local action, a vertex corresponds to a space integral of a product

of fields and their derivatives (representation (6.15)). Each vertex, in a di-

agram, thus corresponds to an argument on which one integrates.
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After Fourier transformation, to each line is attached a momentum, the

argument of the propagator in the Fourier representation. This assumes an

orientation of the lines: changing the orientation changes the sign of the

momentum attached to the line.

In the Fourier representation, due to translation invariance, at each vertex

the sum of the entering momenta vanishes: this is analogous to Kirchoff’s

laws for current intensities in an electric circuit.

Finally, one integrates over all remaining free, independent momenta.
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A topological relation. For any connected diagram, the number of loops L,

the number I of internal lines, or propagators, relating vertices and the

number of vertices n are related by

L = I − n+ 1 . (6.18)

A method for proving the relation is the following:

(i) Cutting one internal line, one also suppresses one loop and L − I is

unchanged.

(ii) A diagram without loops is a tree. Suppressing one vertex on the

boundary of a tree, one transforms an internal line into an external line and

I − n is unchanged. Eventually, every diagram is reduced to a vertex which

corresponds to L = I = 0, n = 1.
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In the Fourier representation, L is also the number of independent momenta

over which to integrate: it is equal to the number of propagators minus the

number of vertices, due to momentum conservation at each vertex, plus 1

because the conservation of the total momentum entering in a diagram is

then automatic.

Remark. Local interactions may also contain derivatives of the fields.

Then, the evaluation of expression (6.16) involves also derivatives of the

propagator. The representation in terms of Feynman diagrams, as they have

been defined so far, is no longer faithful since the presence of derivatives is

not indicated. One can construct a more faithful representation by splitting

vertices and by placing arrows on lines.
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6.4.1 Connected and one-line irreducible diagrams

In the Feynman diagram representation, the perturbative expansion of Z(J)

contains non-connected contributions in the sense of graphs. By contrast,

W(J) = Z(J), is the sum of connected contributions.

Finally, the functional Γ(ϕ) has the simplest perturbative properties: in-

deed, one proves that its expansion contains only one-line irreducible dia-

grams, that is, diagrams that cannot be decomposed into several connected

components by cutting only one line.

Renormalization theory deals directly with one-line irreducible diagrams

also called 1PI for one-particle irreducible.
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2

1 3

W (2) = , Γ(n) =

n

Fig. 6.1 – Representations of the connected two-point correlation function and the
n-point vertex function.

For illustration, we give a graphical representation of the first relations

between connected and vertex functions.

In figure 6.1, we define the graphical representation of W (2) and Γ(n). In

the representation of Γ(n), we have emphasized the property that no prop-

agator is attached to the points of the boundary of the graph, in contrast

with the diagrams contributing to connected functions.
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The relation between two-point functions is
∫

ddz W (2)(x− z)Γ(2)(z − y) = δ(d)(x− y).

It is convenient to set

Γ(2)(x− y) = K(x− y) + Σ(x− y),

where we have separated the Gaussian contribution K from the sum Σ of

contributions generated by the interactions VI, also called the mass operator.

In terms of Σ, the perturbative expansion of W (2) can be organized as a

geometrical series:

W (2)(x− y) = ∆(x− y)−
∫

ddz1 d
dz2 ∆(x− z1)Σ(z1 − z2)∆(z2 − y) + · · · ·

Fig. 6.2 displays one term of the sum expressed in terms of Σ, that is, of

1-irreducible components.
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Σ Σ Σ

Fig. 6.2 – Contribution to the connected two-point function W (2).

The graphical representations of the correlation functionsW (3) andW (4),

for example, in terms of the corresponding vertex functions and of W (2) are

given in Figs. 6.3 and 6.4, respectively.

Fig. 6.3 – The connected three-point function W (3).
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2 terms.

Fig. 6.4 – The connected four-point function W (4).

6.5 Example: the φ4 interaction

We now consider the example, specially useful both for particle physics and

the theory of macroscopic phase transitions, of the quartic interaction

VI(φ) ≡
g

4!

∫
ddxφ4(x). (6.19)

The first non-trivial order in g of the RG functions can be derived from the

expansion of the two- and four-point functions up to order g2.
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(a) (b)

Fig. 6.5 – The two-point function: contributions of order 1 and g.

6.5.1 Two-point function

The two-point function at order g2 is given by

〈φ(x1)φ(x2)〉 = (a)− 1
2g (b) +

1
4g

2 (c) + 1
4g

2 (d) + 1
6g

2 (e) + O
(
g3
)
.

In the expansion, (a) is the propagator and (b) the Feynman diagram that

appears at order g, and both are displayed in figure 6.5. The diagrams (c),

(d), (e) of order g2 are displayed in figure 6.6.
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(c) (d) (e)

Fig. 6.6 – The two-point function: contributions of order g2.

The three additional contributions that factorize into

〈φ(x1)φ(x2)〉G
〈
φ4(y)

〉
G
,
〈
φ(x1)φ(x2)φ

4(y1)
〉
G

〈
φ4(y2)

〉
G

and

〈φ(x1)φ(x2)〉G
〈
φ4(y1)φ

4(y2)
〉
G
,

cancel after division by the partition function Z.

In quantum field theory, the connected diagrams contributing to lnZ
are also called vacuum diagrams, because in the quantum context they

contribute to the ground state (the vacuum) energy.
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More explicitly, one thus finds (here W (2) = Z(2))

W (2)(x1 − x2) = ∆(x1 − x2)− 1
2g

∫
ddy∆(x1 − y)∆(0)∆(y − x2)

+ g2
∫

ddy1 d
dy2
[
1
4∆

2(0)∆(x1 − y1)∆(y1 − y2)∆(y2 − x2)

+ 1
4∆(0)∆2(y1 − y2)∆(x1 − y2)∆(x2 − y2)

+ 1
6∆(x1 − y1)∆

3(y1 − y2)∆(y2 − x2)
]
+O(g3).

Only the diagram (c) is 1-reducible and it cancels in the Legendre transfor-

mation. Also, the external propagators are removed. One then finds

Γ(2)(x1 − x2) = S(2)(x1 − x2) +
1
2gδ

(d)(x1 − x2)∆(0)

− 1
4g

2∆(0)

∫
ddy∆2(y)δ(d)(x1 − x2)− 1

6g
2∆3(x1 − x2) +O(g3),

which is a simpler expression.

405



Fourier transformation. As we have already pointed out, in a translation-

invariant theory the relations between correlation and vertex functions take

simpler forms in the Fourier representation. We thus introduce the functions

defined in (6.6), (6.7) and the representations (6.12) of the propagator and

of its inverse. With this notation, the vertex two-point function becomes

Γ̃(2)(p) = K̃(p) +
g

2

∫
ddq

(2π)d
∆̃(q)− g2

4

∫
ddq1
(2π)d

∆̃(q1)

∫
ddq2
(2π)d

∆̃2(q2)

− g2

6

∫
ddq1
(2π)d

ddq2
(2π)d

∆̃(q1)∆̃(q2)∆̃(p− q1 − q2) +O(g3). (6.20)

The connected two-point function is then obtained by expanding the relation

W̃ (2)(p)Γ̃(2)(p) = 1 .
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(f) (g) (h)

Fig. 6.7 – Feynman diagrams, connected four-point function: contributions of order

g and g2.

6.5.2 Four-point function

At order g2, the four-point function is given by

〈φ(x1)φ(x2)φ(x3)φ(x4)〉
= [ (a)12 (a)34 + 2 terms ]− 1

2g [ (a)12 (b)34 + 5 terms ]− g (f)

+ g2
{
(a)12

[
1
4 ((c)34 + (d)34) +

1
6 (e)34

]
+ 5 terms

}

+ 1
4g

2 [ (b)12 (b)34 + 2 terms ] + 1
2g

2 [(g) + 3 terms ]

+ 1
2g

2 [(h) + 2 terms ] +O
(
g3
)
.
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The diagrams (f), (g), (h) are displayed in Fig. 6.7. The notation (a)12, for

example, means diagram (a), contributing to the two-point function, with

arguments x1 and x2. Finally, the terms that must be added in order to

restore the permutation symmetry of the four-point function are obtained

by exchanging the external arguments.

Diagrams such as a12a34, which are expressed in terms of two-point func-

tion contributions, are not connected and factorize into a product of func-

tions that depend on disjoint subsets of variables.

Again, as in the case of the two-point function, we have omitted non-

connected diagrams in which one factor has no external arguments. These

diagrams are cancelled by the perturbative contributions of the partition

function Z in expression (6.3).
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The connected four-point function, in a more explicit notation, reduces to

W (4)(x1, x2, x3, x4)

= −g
∫

ddy∆(x1 − y)∆(y − x2)∆(x3 − y)∆(x4 − y) + 1
2g

2

×
∫

ddy1d
dy2 ∆(x1 − y1)∆(x2 − y1)∆(x3 − y2)∆(x4 − y2)∆

2(y1 − y2)

+ 2 terms

+ 1
2g

2

∫
ddy1d

dy2 ∆(y1 − y1)∆(y1 − y2)∆(x1 − y1)∆(x2 − y2)

×∆(x3 − y2)∆(x4 − y2) + 3 terms +O(g3).

The Legendre transformation is simple also for the four-point function in

this theory: here it suffices to remove the contributions of the two-point

functions on the external lines, an operation called an amputation, and to

change the sign.
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One finds

Γ(4)(x1, x2, x3, x4) = gδ(d)(x1 − x2)δ
(d)(x1 − x3)δ

(d)(x1 − x4)

− 1
2g

2δ(d)(x1 − x2)δ
(d)(x3 − x4)∆

2(x1 − x3) + 2 terms +O(g3).

The respective Fourier transforms are then given by

W̃ (4)(p1, p2, p3, p4) = ∆̃(p1)∆̃(p2)∆̃(p3)∆̃(p4)

×
[
−g +

g2

2

∫
ddq

(2π)d
∆̃(p1 + p2 − q)∆̃(q) + 2 terms

+
g2

2
∆̃(p1)

∫
ddq

(2π)d
∆̃(q) + 3 terms

]
+O(g3)

and

Γ̃(4)(p1, p2, p3, p4) = g− g2

2

∫
ddq

(2π)d
∆̃(p1+ p2− q)∆̃(q)+ 2 terms+O(g3).
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6.6 Loop expansion

The perturbative expansion can be organized in the form of a loop expan-

sion. For this purpose, it is convenient to reinstate a factor ~ and consider

the partition function

Z(J) =

∫
[dφ] exp

[
−1

~

(
S(φ)−

∫
ddx J(x)φ(x)

)]
.

In the formal limit ~ → 0, the integral can be calculated by the steepest

descent method applied to field integrals.

The saddle point φc is given by the minimum of the functional

S(φ, J) = S(φ)−
∫

ddx J(x)φ(x),

and thus is solution of the equation

δS(φ, J)
δφ(x)

∣∣∣∣
φ=φc

=
δS(φ)
δφ(x)

∣∣∣∣
φ=φc

− J(x) = 0 .
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After the change of variables φ 7→ χ,

φ(x) = φc(J ;x) + χ(x),

one expands S(φ, J) in powers of χ:

S(φ, J) = S(φc, J) +
1

2!

∫
ddx1d

dx2 χ(x1)
δ2S(φ)

δφ(x1)δφ(x2)

∣∣∣∣
φ=φc

χ(x2)

+O(χ3).

One keeps the term quadratic in χ in the exponential and expands the

terms of higher degree in χ. This reduces the calculation of each term to a

Gaussian expectation value but with a propagator and vertices that have

now a non-trivial dependence in the classical field φc.

It is convenient to normalize connected correlation functions as

W(J) = ~ lnZ(J). (6.21)
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6.6.1 Leading order: tree diagrams

Approximating the field integral by its value at the saddle point, one finds

the leading contribution to the connected functional

W0(J) = −S(J, φc) = −S(φc) +
∫

ddx J(x)φc(x) . (6.22)

One then verifies that the Legendre transform Γ0 of W0(J) is given by

Γ0(ϕ) = S(ϕ).

Indeed, first

ϕ(x) =
δW
δJ(x)

= φc(x)−
∫

ddy
δS(J, φc)
δφc(y)

δφc(y)

δJ(x)
= φc(x). (6.23)

Then, from equation (6.22),

Γ0(ϕ) =

∫
ddx J(x)ϕ(x)−W0(J) = S(ϕ).
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Loop expansion and perturbative expansion. The direct perturbative expan-

sion is obtained by expanding the solution φc(J) in powers of J . The di-

agrams generated in this way are tree diagrams (without loops). In the

example of an action of the form (6.14),

S(φ) = SG(φ) + VI(φ),

the expansion takes the form

φc(x) =

∫
ddy∆(x− y)J(y)−

∫
ddy∆(x− y)

δVI(φc)

δφ(y)

=

∫
ddy∆(x− y)J(y)−

∫
ddy∆(x− y)

δVI

δφc(y)
(∆J) + · · · ,

where the argument ∆J of VI represents the substitution

φc(x) 7→ ∆J ≡
∫

ddy∆(x− y)J(y).
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If, for example,

VI(φ) =
g

4!

∫
ddxφ4(x),

the expansion of φc in powers of J takes the diagrammatic form shown in

figure 6.8.

φc(x) = x J − g

3!
x

J

J

J + · · ·

Fig. 6.8 – Expansion of φc in powers of J .
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6.6.2 Next order: one-loop diagrams

Keeping only the term quadratic in χ in the expansion of S(φ), one calcu-

lates the Gaussian integral and one finds

Z(J) ∝ Z0(J)

[
det

δ2S
δφc(x1)δφc(x2)

]−1/2

,

where the normalization, which is independent of J , depends on the contin-

uum limit of a specific lattice regularization. Setting

W(J) = W0(J) + ~W1(J) + · · · ,

one finds the next contribution to the connected functional

W1(J) = − 1
2 tr ln

δ2S
δφc(x1)δφc(x2)

,

where the general identity ln det = tr ln has been used. The functional

W1(J), expanded in powers of J , generates all one-loop connected diagrams.

Fig. 6.9 exhibits a typical contribution to W1(J).
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Fig. 6.9 – Example of a connected one-loop contribution.

Vertex functions. As a consequence of the property (6.5) applied to ~,

∂Γ

∂~

∣∣∣∣
ϕ fixed

+
∂W
∂~

∣∣∣∣
J fixed

= 0 ,

the leading corrections to W and Γ are opposite. Since ϕ = φc at leading

order (equation (6.23)), the one-loop contribution Γ1(ϕ) to the functional

Γ(ϕ) is

Γ1(ϕ) =
1
2 tr ln

δ2S
δϕ(x1)δϕ(x2)

. (6.24)
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Loop expansion. Quite generally, the successive terms generated by the

steepest descent method correspond to a power series in ~ and to Feyn-

man diagrams with an increasing number of loops. The expansion is thus

called a loop expansion.

Since we have normalized W(J) as (equation (6.21))

W = ~ lnZ,

the tree contributions to W and Γ are of order ~0. The introduction of the

parameter ~ has the effect of replacing the propagator ∆ by ~∆ (it is the

inverse of the coefficient of φφ) and to divide all vertices by ~.

For a 1-irreducible diagram, calling I the number of propagators and n

the total number of vertices, one thus finds a factor ~I−n+1, the last factor

~ coming from the normalization (6.21) of W . Using the topological relation

(6.18), one recognizes the factor ~L where L is the number of loops.
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ϕ2(x2) ϕ2(x3)

ϕ2(x1)

ϕ2(xn)

Fig. 6.10 – Contribution to the 1-irreducible functional at one-loop.

6.6.3 The φ4 field theory

Again, we illustrate the result with the φ4 field theory (equation (6.19)).

The first term is the expansion is the action. Then, in symbolic notation,

Γ1(ϕ)− Γ1(0) =
1
2 tr ln

(
1+ 1

2g∆ϕ
2
)
,

where ∆ϕ2 is the operator associated with the kernel

[∆ϕ2](x, y) = ∆(x− y)ϕ2(y).
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Expanding in powers of ϕ2,

Γ1(ϕ)− Γ1(0) =
∑

n=1

(−1)n+1 gn

n 2n+1
tr(∆ϕ2)n,

one generates the one-loop, 1-irreducible diagrams of Fig. 6.10:

tr(∆ϕ2)n =

∫ n∏

i=1

ddxi ϕ
2(xi)∆(xi − xi−1) with xn = x0 .

We introduce the Fourier representations (6.12b),

∆(x) =

∫
ddp

(2π)d
eip·x ∆̃(p)

and

ϕ(x) =

∫
ddp eipx ϕ̃(p).
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We can rewrite the terms in the expansion as

tr(∆ϕ2)n =

∫ ( 2n∏

i=1

ddpi ϕ̃(pi)

)
Dn(p1, . . . , p2n)

with

Dn(p1, . . . , p2n) =

∫ n∏

j=1

(
ddxj

ddqj
(2π)d

ei(xj(p2j+p2j−1) eiqj(xj−1−xj) ∆̃(qj)

)

= (2π)dδ(d)
( 2n∑

i=1

pi

)∫
ddq

(2π)d

n∏

j=1

∆̃(qj)

and

q1 = q , qj − qj+1 = p2j−1 + p2j , qn+1 = q1 .
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6.7 Divergences in perturbation theory

We have already anticipated the existence of divergences in perturbation

theory by introducing immediately a regularized form of the action. We

now investigate the problem of divergences in naive perturbation theory

when the action is not regularized. We examine the problem first in the

example of the φ3 at one-loop order.

6.7.1 The φ3 field theory

The euclidean action for a local quantum field theory in d dimensions in-

volving a scalar field φ with a φ3 self-interaction can be written as

S(φ) =
∫

ddx
[
1
2

(
∇xφ(x)

)2
+ 1

2m
2φ2(x) + 1

3!g φ
3(x)

]
, (6.25)

where g and m are constants. This theory is somewhat unphysical because

the φ3 potential is not bounded from below.
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However, it has a well-defined perturbative expansion where this non-

perturbative pathology does not show up. Note that the expansion param-

eter is g2, which plays the role of ~.

Moreover, for g imaginary, it makes sense beyond perturbation theory and

describes in classical statistical physics universal properties of the Yang–Lee

edge singularity of the Ising model.

Tree approximation. In the tree approximation the 1PI functional Γ(ϕ)

reduces to the action S(ϕ). The inverse or 1PI two-point function is thus

Γ
(2)
tree(x, y) =

(
−∇2

x +m2
)
δ(x− y),

and after Fourier transformation,

Γ̃
(2)
tree(p) = p2 +m2.

More generally, the Fourier components of the 1PI n-point functions are

Γ̃
(3)
tree(p1, p2,−p1 − p2) = g , Γ̃

(n)
tree(p1, . . . , pn) = 0 for n > 3 .
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6.7.2 Perturbation theory at one-loop order

The 1PI functional Γ(ϕ) has been calculated at one-loop order in section

6.6.2. Specializing equation (6.24), we obtain the one-loop order contribution

Γ1(ϕ)− Γ1(0) =
1
2 tr ln

[
1 + g

(
−∇2

x +m2
)−1

ϕ
]
.

The expansion of Γ1(ϕ) in powers of ϕ generates all one-loop contributions

to the 1PI functions Γ(n). After Fourier transformation, for the first three

functions (Fig. 6.11) one finds

Γ̃
(1)
1 loop = 1

2g

∫
ddq

(2π)d
1

q2 +m2
,

Γ̃
(2)
1 loop = − 1

2g
2

∫
ddq

(2π)d
1

(q2 +m2)
(
(p+ q)2 +m2

) ,

Γ̃
(3)
1 loop = g3

∫
ddq

(2π)d
1

(q2 +m2)
(
(p1 + q)2 +m2

)(
(p1 + p2 + q)2 +m2

)
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Fig. 6.11 – First one-loop diagrams in a φ3 field theory.

More generally, Γ̃
(n)
1 loop is the sum of 1

2 (n−1)! terms obtained by symmetriz-

ing over {p1, p2, . . . , pn} with
∑

i pi = 0 the integral

(−1)n+1gn
∫

ddq

(2π)d
1

q2 +m2

1

(q + p1)
2 +m2

· · ·

× 1

(q + p1 + · · ·+ pn−1)
2 +m2

, (6.26)

425



p2
q + p1 + p2

q + p1

p1
q

pn

Fig. 6.12 – One-loop 1PI diagrams.

(−1)n+1gn

(2π)d

∫
ddq

(q2 +m2)
(
q + p1)2 +m2

)
· · ·
(
(q + p1 + · · ·+ pn−1)2 +m2

) ,

(6.27)

which is represented by the Feynman diagram of Fig. 6.12.

The integrand in expression (6.27) behaves, for large momentum q, like

1/q2n, and the integral thus diverges for 2n ≤ d.
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Except for d = 1 (quantum mechanics) divergences appear. For d = 2

the one-point function, which has no momentum dependence, diverges like∫
d2q/q2.

With increasing dimension d more correlation functions diverge. For d =

6, the one, two and three-point functions diverge. If the momentum integrals

are cut at a large momentum |q| = O(Λ), then the one- and two-point

functions diverge like powers of Λ, while Γ̃(3) diverges logarithmically.

To calculate the contributions which diverge with Λ explicitly, in massive

theory one can expand the integrand in a Taylor series in the external

momenta (the massless theory has to be defined as a limit). It is simple

to verify, using dimensional analysis, that the coefficients of the terms of

global degree k in the momenta are given by integrals which diverge only

for d ≥ k + 2n.

Therefore, the divergent part of a one-loop contribution to the n-point

function is a polynomial of degree (d− 2n).
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The first important observation is that since the divergences are polynomials

in the external momenta, the divergent part Γdiv.
1 (ϕ) of the 1PI functional

Γ(ϕ) is local, that is, takes the form of the space integral of a function of

the field and its derivatives, like the action itself.

To define more precisely a divergent part, we introduce a specific regu-

larization.

For d = 6, cutting the momentum integral according to Schwinger’s reg-

ularization (a specific cut-off scheme), one finds

Γ̃
(1)
1 loop =

g

27π3

[
1
2Λ

4 − 1
2m

2Λ2 +m4 ln(Λ/m) +O(1)
]
,

Γ̃
(2)
1 loop = − g2

27π3

[
Λ2 −

(
2m2 + p2/3

)
ln(Λ/m) +O(1)

]
,

Γ̃
(3)
1 loop =

g3

26π3
ln(Λ/m) +O(1).

(6.28)

The three divergent one-loop diagrams are displayed in Fig. 6.11.
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We note that the dimension 6 is special in the following sense: the 1PI

correlation functions that diverge are all those which are already non-trivial

in the tree approximation (a term linear in φ can be added to the initial

action (6.25) by translating φ by a constant). Moreover, the divergent terms

and the tree approximation have the same momentum dependence.

By contrast, for d ≥ 8 the four-point function, which vanishes in the tree

approximation, is also divergent.

6.7.3 Empirical removal of divergences at one-loop order

For d ≤ 6 dimensions, the divergent parts of the one-loop correlation func-

tions have the structure of the initial action. For example in d = 6, Γdiv.
1 (ϕ),

the divergent part at one-loop of Γ(ϕ), has the structure

Γdiv.
1 (ϕ) =

∫
d6x

[
1
2g

2a0(Λ)
(
∇xϕ(x)

)2
+ ga1(Λ)ϕ(x) +

1
2g

2a2(Λ)ϕ
2(x)

+ 1
3!g

3a3(Λ)ϕ
3(x)

]
. (6.29)
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The functions ai(Λ) follow from equations (6.28) and are, therefore, defined

only up to additive finite parts. In the minimal subtraction scheme, one

defines them as the sum of the divergent terms in the asymptotic expansion

in a dimensionless parameter. Choosing here Λ/m, one finds

27π3a0(Λ) =
1
3 ln(Λ/m),

27π3a1(Λ) =
1
2Λ

4 − 1
2m

2Λ2 +m4 ln(Λ/m),

27π3a2(Λ) = −Λ2 + 2m2 ln(Λ/m),

27π3a3(Λ) = 2 ln(Λ/m).

(6.30)

Adding the local counter-term −Γdiv.
1 (φ) to the initial action S(φ), S1(φ) =

S(φ)− Γdiv.
1 (φ), one obtains

S1(φ) = S1(φ) = S(φ)− Γdiv.
1 (φ) =

∫
d6x

[
1
2

(
1− g2a0(Λ)

)
(∇xφ)

2

−ga1(Λ)φ+ 1
2

(
m2 − g2a2(Λ)

)
φ2 + 1

3!

(
g − g3a3(Λ)

)
φ3
]
.
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The new action S1 can be reduced to the form (6.25) by a multiplica-

tive renormalization of the field and a constant shift to cancel the linear

term. It thus differs from the initial action by a field redefinition and by its

parametrization, but involves the same monomials of the field.

The new 1PI functional Γ(ϕ) at one-loop order is then

Γ(ϕ) = S1(ϕ) + Γ1(ϕ) +O (two loops)

= S(ϕ)− Γdiv.
1 (ϕ) + Γ1(ϕ) +O (two loops) ,

where Γ1(ϕ) is the sum of one-loop diagrams calculated only with S(φ).
Therefore, Γ(ϕ) now has a limit at one-loop order when the cut-off becomes

infinite.

Finally, note that a change in the definition of the divergent part changes

Γdiv.
1 (ϕ) by a finite local polynomial, and the conclusions are the same.

Generalizing this method to all loop orders, one defines a renormalized

action whose coefficients are functions of the renormalized parameters and

the cut-off.
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The renormalization idea. To solve, at least formally, the problem of diver-

gences in perturbation theory, one tries to generalize the previous method

to all orders in the loop expansion and to more general field theories.

One introduces a large momentum cut-off in the theory, or equivalently

modify the field theory at short distance, as we have done here, to charac-

terize the divergences of Feynman diagrams (the physical reality of such a

cut-off is from this point of view irrelevant).

One then investigates the possibility of choosing the initial parameters of

the theory as functions of the cut-off in such a way that correlation functions

have a finite large cut-off limit. When such a limit exists, one can show that

it is independent of the cut-off procedure (under some general conditions).

The local field theories, for which this procedure works, are called renor-

malizable (or super-renormalizable if some parameters in the interaction are

cut-off independent).
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Renormalizable theories are to some extent short distance insensitive in

the sense that even if a large mass or a microscopic scale in space provide a

true physical cut-off, their long distance or low momentum properties can

be described, without detailed knowledge of the short distance structure, in

terms of a small number of effective parameters.

However, and this is a deep issue, the necessity of an underlying micro-

scopic scale is implied by the existence of divergences in the field theory

before regularization.

We already emphasize these ideas here because they motivate the techni-

cal analysis that follows. Renormalization group will eventually provide us

with the necessary tool to understand the renormalization procedure.

Note, that in the φ3 theory, for d ≥ 8, the renormalization method fails

already at one-loop order. Indeed to generate in the tree approximation a

term proportional to the divergence of the four-point function, for example,

a φ4 term is required in the action.
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We show below that such an interaction induces, in turn, worse divergences

which cannot be reproduced. Power counting will show that for d > 6 no

polynomial interaction leads to a renormalizable theory.

6.8 Divergences: general analysis and power counting

Divergences in perturbation theory and field integrals. Contributions to per-

turbation theory are Gaussian expectation values,which are expressed in

terms of the Gaussian two-point function. The perturbative divergences are

thus related to the singularity of the two-point function ∆(x) at short dis-

tance. In the Fourier representation

∆(x) =
1

(2π)d

∫
ddp eipx ∆̃(p),

they are related to the behaviour of ∆̃(p) for large momentum.
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We now assume that ∆̃(p) behaves like

∆̃(λp) ∝ λ−σ ∀ p 6= 0 for λ→ ∞ ,

From the viewpoint of field integrals, these singularities are related to the

regularity of fields contributing to the field integrals. Indeed, calculating the

Gaussian expectation value, we find

1
2

〈(
φ(x)− φ(y)

)2〉
=

1

(2π)d

∫
ddp

(
1− eip(x−y)

)
∆̃(p) ∝

|x−y|→0
|x− y|σ−d,

for d < σ ≤ d+2 for boson fields and d < σ ≤ d+1 for fermion fields, while

the integral diverges for σ ≤ d.

Thus, typical fields are continuous only for σ > d and, thus, [φ] < 0, and

this condition ensures that the perturbative expansion is finite in the absence

of derivative couplings. With derivative couplings, typical fields have to be

differentiable and this implies at least σ ≥ d + 2. In all cases except free

field theory, a regularization is thus required for d ≥ 2.
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6.8.1 Power counting: dimension of fields

We now introduce the notion of canonical, or engineering, dimension of fields

and interaction vertices.

We explicitly assume that the propagator of every field φ is O(d) covariant

in d dimensions, or at least has a uniform large momentum behaviour of the

form

C1λ
−σ <

∣∣∣∆̃(λp)
∣∣∣ < C2λ

−σ ∀ p 6= 0 for λ→ ∞ ,

in which C1 is a strictly positive constant. Other cases require a special

analysis. The canonical, or engineering dimension [φ] of a field φ(x) is then

defined in terms of the large momentum behaviour of the φ propagator by

[φ] = 1
2 (d− σ). (6.31)

Fields contributing to the field integral are continuous only for [φ] < 0.

436



6.8.2 Field dimensions: unregularized field theory

We now determine the field dimensions in the initial, unregularized field

theory.

In the scalar field theory (6.25),

∆(λp) ∝ 1/λ2 , for λ→ ∞ ⇒ [φ] = 1
2 (d− 2). (6.32)

For the fermions that will be considered in section 11.9, the propagator of

the field Fourier components reads

W̃
(2)
αβ (p) =

〈
ψ̄α(−p)ψβ(p)

〉
= (m+ i6p)−1

βα

and, thus,

∆(λp) ∝ 1/λ , for λ→ ∞ ⇒ [ψ] = [ψ̄] = 1
2 (d− 1). (6.33)

In the case of scalar and spinor fermion fields, the definition (6.31) coincides

with the natural mass dimension of the field as deduced from the quadratic

part of the action by dimensional analysis.

437



Indeed, let us assign a dimension +1 to momenta p and masses m,

[p] = [m] = 1 ,

correspondingly a dimension −1 to length and position variables,

[x] = −1 ⇒ [∂/∂x] = +1 .

If one expresses the condition that the action is dimensionless, one finds

[∫
ddx (∇xφ(x))

2

]
= 0 ⇒ −d+ 2 + 2[φ] = 0 ,

[∫
ddx ψ̄(x)6∂ψ(x)

]
= 0 ⇒ −d+ 1 + 2[ψ] = 0 .

This property no longer holds for higher spin fields, in general.
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For example, the free action for a massive vector field Aµ is

S(A) =
∫

ddx

(
1
4

∑

µ,ν

(∂µAν − ∂νAµ)
2 + 1

2m
2AµAµ

)
.

The A-field propagator in the Fourier representation then reads

∆̃µν(p) =
δµν + pµpν/m

2

p2 +m2
.

It is such that

∆̃µν(λp)∼λ0
pµpν
m2p2

⇒ [Aµ] = d/2 , (6.34)

while dimensional analysis indicates that Aµ has the dimension of a scalar

field. This property is directly related to the presence of negative powers of

m2 in the propagator: the quadratic form in the action is not invertible for

m = 0.
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A similar phenomenon occurs with higher spin fields. A spin s massive field

propagator has the form

∆̃(p) =
P2s(p/m)

p2 +m2
,

in which P2s(p) is a polynomial of degree 2s in p, which is a projector on

‘mass-shell’, that is, for p2 = −m2. The dimension of the corresponding field

φs, which generalizes equations (6.32, 6.33, 6.34), is

[φs] =
1
2 (d− 2 + 2s). (6.35)
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6.8.3 Power counting: dimension of vertices

We consider here only theories invariant under space translations. The inter-

action term in the action is thus the space integral of a linear combination

of monomials which are products of fields and their derivatives.

We write a monomial V (φ) symbolically as

V (φ) ∝
∫

ddx (∇x)
k
φn1

1 (x)φn2

2 (x) . . . φns
s (x),

where the k derivatives act in an unspecified way on the fields φi.

We call these elementary interaction terms vertices because they are rep-

resented by vertices in Feynman diagrams.

We define the dimension [V ] of the corresponding vertex by

[V ] = −d+ k +
s∑

i=1

ni [φi] , (6.36)

where ni the power of the fields φi present in the vertex V .
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In terms of the Fourier components φ̃i(p) of the fields φi(x), and taking into

account translation invariance, the vertex V (φ) can be written (in analogous

symbolic notation) as

V (φ) ∝
∫ N∏

n=1

ddpn δ
(d)(p1 + p2 + · · ·+ pN ) pkφ̃1(p1) . . . φ̃s(pn1+···+ns

),

where N = n1+ · · ·+ns and pk represents a linear combination of products

of k momenta.
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6.8.4 Superficial degree of divergence: power counting

We consider only 1PI diagrams. Each vertex yields a δ-function of momen-

tum conservation. The number of independent integration momenta in a

Feynman diagram, taking into account momentum conservation at vertices,

thus equals the number of loops. This follows directly from one of the defi-

nitions of the number of loops L in a diagram given in section 6.4.

Finally, a vertex multiplies the numerator of a Feynman diagram by the

product of k momenta.

Therefore, if all integration momenta in a diagram γ are scaled by a factor

λ, for λ→ ∞ the diagram is scaled by a factor λδ(γ) with

δ(γ) = dL−
∑

i

Iiσi +
∑

α

vαkα, (6.37)

in which vα is the number of vertices of type α with kα derivatives, and Ii
the number of internal lines corresponding to propagators ∆i joining the

different vertices.
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The number δ(γ) is called the superficial degree of divergence of the dia-

gram γ. For a one-loop diagram regularized with a momentum cut-off, it

characterizes the divergence of the diagram as a power of the cut-off.

More generally, if δ(γ) is positive a regularized diagram diverges at least

like Λδ(γ). If δ(γ) = 0, it diverges at least like a power of lnΛ. If δ(γ) is neg-

ative, the diagram is superficially convergent, which means that divergences

can come only from subdiagrams.

An example: the φ3 field theory for d = 6. In the example of the φ3 field

theory in d = 6 dimensions, since σ = 2 and k = 0, expression (6.37) yields

δ(γ) = 6− 2I .

To I = 1, 2, 3, respectively, correspond the values 4, 2, 0 in agreement with

equations (6.28). For I > 3 the diagrams are superficially convergent.
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Fig. 6.13 – Superficially convergent diagram with divergent (red) subdiagram.

Fig. 6.13 exhibits a superficially convergent diagram with a divergent sub-

diagram in the φ3 theory: the superficial degree of divergence is −2, the

diagram is superficially convergent, but the subdiagram inside the dotted

box is divergent.
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6.8.5 Divergences: other expressions

Various topological relations on graphs allow to write δ(γ) in different forms.

Combining equation (6.37) with the relation (6.18) rewritten in the form

L =
∑

i

Ii −
∑

α

vα + 1 , (6.38)

we eliminate L and obtain

δ(γ) = d+ 2
∑

i

Ii[φi] +
∑

α

vα(kα − d), (6.39)

where [φi] the dimension of φi (equation (6.31)),

[φi] =
1
2 (d− σi).

We verify that when the relevant fields in the field integral are continuous

and thus [φ] < 0 and the vertices have no derivatives, the only divergent

term corresponds to all vα = 0 and, thus, to the normalization of the field

integral in the free theory.
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Another topological relation. We consider a diagram γ contributing to a 1PI

correlation function with Ei (for external line) fields φi.

Then if we call nα
i the number of fields φi at a vertex α belonging to the

diagram, we have the relation

Ei + 2Ii =
∑

α

nα
i vα . (6.40)

The derivation of the relation is simple: each internal line connects two

vertices while an external line is only attached to one vertex.

Fig. 6.14 gives an example.
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E1= 4, I1= 4
E2= 1, I2= 7
v= 3, n1= 2, n2= 1
v= 2, n1= 0, n2= 3
v= 3, n1= 2, n2= 2

Fig. 6.14

Application. Combining equation (6.40) with the relation (6.39) to eliminate

Ii in δ(γ), we obtain

δ(γ) = d−
∑

i

Ei[φi] +
∑

α

vα[Vα], (6.41)

where [φi] is the dimension of φi and [Vα] the dimension of the vertex α,

[Vα] = −d+ kα +
∑

i

nα
i [φi].
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6.9 Classification of renormalizable field theories

Equation (6.41) directly leads to a classification of renormalizable quantum

field theories.

The program outlined in section 6.7.1 can only be realized if the superficial

degree of divergence is bounded. When this condition is fulfilled we call the

theory renormalizable by power counting.

Non-renormalizable theories. If at least one vertex V has a positive di-

mension, [V ] > 0, then the degree of divergence of diagrams contributing to

any 1PI correlation function can be rendered arbitrarily large by increasing

the number v of vertices of this type.

A field theory with such a vertex is not renormalizable because, in order

to cancel divergences, one has to add an infinite number of new interactions

to the action and the final theory thus depends on an infinite number of

parameters.
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In the context of effective field theories (a notion we discuss later), such

a theory may still be useful because it may retain some non-trivial informa-

tion.

The φ3 theory in d > 6 dimensions or the φ4 theory in d > 4 dimensions

provide some examples.

Super-renormalizable theories. When only a finite number of Feynman

diagrams are superficially divergent the corresponding field theory is called

super-renormalizable. This happens when all vertices have strictly negative

dimensions.

Example. In the φ4 field theory in d = 3 dimensions,

δ(γ) = 3− 1
2E − v .

The superficially divergent diagrams are listed in figure 6.15.
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Fig. 6.15 – Superficially divergent diagrams in φ4
d=3.

Renormalizable theories. These theories are characterized by the property

that at least one vertex has dimension zero, and no vertex has a positive

dimension. Then, an infinite number of diagrams have a positive superfi-

cial degree of divergence; however, the maximal degree of divergence at Ei

fixed does not increase with the number of loops, and is independent of the

number of insertions of the vertices of dimension zero.

In addition, if all fields [φi] have a strictly positive dimension, then only

a finite number of correlation functions are superficially divergent.
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If at least one field has dimension zero, the situation is more complicate: the

degree of divergence is bounded; however, an infinite number of correlation

functions are superficially divergent. Generically this leads to field theo-

ries depending on an infinite number of parameters although, in contrast

to the case of non-renormalizable theories, only a subclass of all possible

interactions is generated by renormalization.

In addition, in some cases symmetries relate all these parameters so that

only a finite number are really independent.
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6.9.1 Classification of renormalizable theories

In what follows we restrict ourselves to the most frequent situation, [φi] > 0

for all fields. Other cases require a special analysis. We consider simple

theories involving fields of spin s with dimensions [φs] given by equation

(6.35),

[φs] =
1
2 (d− 2 + 2s).

The condition [φs] > 0 is satisfied for d ≥ 2 except for the s = 0, d = 2,

case which must be examined separately.

All vertices should satisfy

−d+ k + 1
2

∑

s

ns(d− 2 + 2s) ≤ 0 . (6.42)

This condition bounds k, the number of derivatives, s the spin, ns the

number of fields of spin s at the vertex and the dimension d.
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Scalar field theories. For k = s = 0, the condition (6.42) implies for all

vertices

n ≤ 2d/(d− 2) .

The corresponding renormalizable interactions are φ3 in d = 6 dimensions,

φ4 in d = 4 dimensions, φ6 in d = 3 dimensions (φ5 is either non- or

super-renormalizable). Finally, any polynomial in φ is super-renormalizable

in d = 2 dimensions.

With two derivatives, k = 2, the only solution is d = 2, but then [φ] = 0.
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Theories with spin 1/2 fermions. We now consider vertices with one spinor

fermion pair ψ̄ψ and n scalar fields. The condition (6.42) then becomes

n ≤ 2/(d− 2) .

Renormalizable interactions are ψψ̄φ (of Yukawa-type) in d = 4 dimensions,

ψ̄ψφ2 in d = 3 dimensions.

In two dimensions, P (φ)ψ̄ψ, in which P (φ) is a polynomial in φ, is super-

renormalizable. Finally, the vertex (ψ̄ψ)2 is renormalizable in two dimen-

sions.

The vertices P (φ)(ψ̄ψ)2 and P (φ)ψ̄6∂ψ also have dimension zero in two

dimensions but again the dimension of φ vanishes.
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Higher spins. For spin one vector fields, general O(d) invariance leaves only

dimension d = 2 as a possibility. The only candidate with only fermions is

the vertex

ψ̄Aµγµψ ≡ ψ̄ 6Aψ ,

which is renormalizable in two dimensions. In addition the vertices φ∂µφAµ

and φ2A2
µ, which appear in gauge theories, are dimensionless. However, they

again lead to a non-trivial renormalization problem because scalar fields are

dimensionless ([φ] = 0).

No higher spin field leads to renormalizable theories by power counting.

This includes Einstein–Hilbert action.

However, note that spin one vector fields associated with gauge symme-

tries do not enter into this classification because their propagator has in

some gauges the behaviour of a scalar field propagator (for a discussion of

gauge theories see coming lectures).
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Finally, no physically acceptable, from the point of view of particle physics,

and renormalizable theory by power counting exists above dimension 4. It is

not known whether this property has a physics relation with the empirical

fact that space–time has just four dimensions, or is a mere coincidence.
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6.10 S-matrix and correlation functions

This section uses concepts and results that have been presented in section

5.10.2 but contains also material that has, naturally, its place in this lecture.

6.10.1 Connected correlation functions

By comparing the general form of the S-matrix with correlation functions,

we have seen in section 5.10.2 that connected S-matrix elements generated

by a functional T are related to the analytic continuation to real time (t 7→
it, k0 7→ ip0) of euclidean correlation functions in the mass-shell limit.

More precisely, we introduce

∆̃(k) =
i

k2 −m2 + iε
,

which is the propagator with a pole at the physical mass.
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Then in terms of W(J) the generating functional of connected correlation

functions,

T (φ0) = iW(∆−1J),

where J is inferred from equation (5.58),

i

k2 −m2 + iε
J̃(k) 7→ −iδ(k2 −m2)

[
ϕ(k̂)θ(−k0) + ϕ̄(−k̂)θ(k0)

]
,

and φ0 is given by equation (5.53),

φ̃0(k0, k̂) = δ(k20 − k̂2 −m2)
[
ϕ(k̂)θ(−k0) + ϕ̄(−k̂)θ(k0)

]
.

Connected correlation functions can then be expressed in terms of ampu-

tated functions by

W̃ (n)(p1, . . . , pn) =

[
n∏

i=1

Ŵ (2)(pi)

]
W̃ (n)

amp.(p1, . . . , pn).
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The two-point function W̃ (2)(p) has a pole located at p2 = −m2 where m

is the physical mass. Near the pole

W̃ (2)(p) ∼
p2→−m2

Z

p2 +m2
, (6.43)

where Z is the field renormalization constant (section 5.11). We conclude

that the coefficient T (n)
r of T (φ0/

√
Z) in the expansion in powers of φ0 is

given by

T (n)
r (p1, . . . , pn) = iZn/2 W̃ (n)

amp.(p1, . . . , pn)
∣∣∣
p2

i
=−m2

. (6.44)

The factor Z in the equation corresponds to a finite renormalization of the

field such that the residue of the two-point function (equation (6.43)) on

the physical pole p2 = −m2 of the renormalized field is 1. It ensures that

the matrix elements T (n)
r satisfy the unitarity relations with the proper

normalization.

The generalization to several particles is straightforward.
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6.10.2 S-matrix and 1PI generating functional

We now also exhibit a direct relation with the analytic continuation of the

generating functional of proper vertices Γ(ϕ). We start from the euclidean

form

eW(J) =

∫
[dφ] e−A(φ)+J·φ

with the symbolic notation

J · φ ≡
∫

dt dd−1x J(t, x)φ(t, x).

We then substitute Γ(ϕ), the Legendre transform of W(J):

W(J) + Γ(ϕ) =

∫
dt dd−1x J(t, x)ϕ(t, x), ϕ(t, x) =

δW
δJ(t, x)

;

e−Γ(ϕ)+J·ϕ =

∫
[dφ] e−A(φ)+J·φ . (6.45)
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Using

J(t, x) =
δΓ

δϕ(t, x)
,

we can write equation (6.45) as

e−Γ(ϕ) =

∫
[dφ] exp

[
−A(φ) +

∫
dt dd−1x

(
φ(t, x)− ϕ(t, x)

) δΓ

δϕ(t, x)

]
,

or equivalently translating φ(t, x),

e−Γ(ϕ) =

∫
[dφ] exp

[
−A(φ+ ϕ) +

∫
dt dd−1xφ(t, x)

δΓ

δϕ(t, x)

]
. (6.46)

We now take the limit of a vanishing source J and ϕ is then a solution of

δΓ

δϕ(t, x)
= 0 .
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Clearly, this equation has propagating type solutions only after continuation

to real time. One then verifies that Γ(ϕ) coincides with iT (ϕ), when the

solution ϕ(x) of the equation is expanded around φ0 defined in equation

(5.53).

6.10.3 Change of field variables

In our previous discussion we have derived S-matrix elements from field

correlation functions. We now show that S-matrix elements are to some ex-

tent invariant under local field transformations. Field correlation functions

thus contain more information than the scattering matrix. This leads to

problems in the point of view where only the scattering data are physical.

On the other hand, such a property is important in theories like gauge

theories, where all gauges are equivalent, or models defined on Riemannian

manifolds, where the fields φi(x) correspond only to a particular choice of

coordinates on the manifold.
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We have seen that S-matrix elements are calculated from connected correla-

tion functions by taking the residues of the poles of the external propagator

(see sections 5.10.2, 6.10). We consider, for simplicity, the case of only one

species of field φ, which we have defined in such a way that it has a vanish-

ing expectation value. Then the connected elements of the scattering ma-

trix S(n) can be expressed in terms of the amputated correlation functions

(equation (6.44)):

S(n)(p1, . . . , pn) = Zn/2W (n)
amp.(p1, . . . , pn)

∣∣
p2=−m2 ,

where Z is the field renormalization constant.

S-matrix and field representation.We now compare the S-matrix obtained

from the φ-field correlation functions to the S-matrix derived from the cor-

relation functions of a different field φ′(x) related to φ(x) by

φ′(x) = C1φ(x) +
∞∑

2

Ck

k!
φk(x), C1 6= 0 . (6.47)

464



We assume, when necessary, that the theory has been regularized in such a

way that the new correlation functions exist.

Using relation (6.47) we can express the φ′ correlation functions in terms

of the φ correlation functions.

The expansion of the φ′ propagator shows immediately that the φ and φ′

two-point functions have poles at the same location (see figure 6.16).

φ′ φ′ = φ φ + +

+ · · ·

Fig. 6.16

The contributions to the n-point functions which have poles on the external

lines then have the form shown in figure 6.17.

In the mass shell limit (p2i = −m2), the φ′ and φ correlation functions

become proportional. The S-matrix elements are identical. Here, again, all

fields related by transformation (6.43) are equivalent.
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Fig. 6.17

In such situations not all parameters of the theory are physical. For exam-

ple, the field amplitude renormalization is obviously unphysical. The same

physical theory may have renormalizable and non-renormalizable realiza-

tions.

Using the background field method one can avoid the calculation of un-

physical quantities (but to prove renormalizability the study of correlation

functions cannot be avoided).
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