
Lecture 7: FROM QED TO THE GENERAL

RENORMALIZATION GROUP



Without a minimal understanding of quantum (or statistical) field theory

and renormalization group, the theoretical basis of a notable part of the

physics of the second half of the twentieth century remains incomprehensi-

ble.

Indeed, quantum field theory, in its various forms, describes completely

the physics of fundamental interactions at the microscopic scale, the sin-

gular properties of continuous phase transitions (like liquid–vapour, ferro-

magnetism, superfluidity, binary mixtures...) near a transition point, the

properties of dilute quantum gases beyond the model of Bose–Einstein con-

densation, the statistical properties of long polymer chains (as self-avoiding

random walk), percolation...

In fact, quantum field theory (QFT) offers, up to now, the most pow-

erful framework in which physical systems characterized by many strongly

interacting, fluctuating degrees of freedom can be discussed.



However, at its birth, QFT has been confronted with a somewhat unex-

pected problem, the problem of infinities. The calculation of physical pro-

cesses was yielding infinite results. An empirical recipe, renormalization, was

eventually discovered, which allowed deriving finite predictions from diver-

gent expressions. The procedure would hardly have been convincing if the

corresponding predictions would not have been confirmed with increasing

precision by experiments.

A new concept, Renormalization Group (RG), first abstracted from for-

mal properties of QFT, but whose full meaning, in a more general form,

was only completely appreciated in the general framework of continuous,

macroscopic phase transitions (a process in which Wilson’s contribution

was essential), has led, later, to a satisfactory interpretation of the origin

and role of renormalizable QFT and of the renormalization process.

As a consequence, in the modern interpretation, QFT’s are only effective

large distance, low energy field theories.



7.1 A brief history

1925– Heisenberg formulates the basis of Quantum Mechanics as a mechan-

ics of matrices.

1926– Schrödinger publishes his famous equation, which bases Quantum

Mechanics on the solution of a non-relativistic wave equation. Since the

relativistic theory was already well-established at the birth of quantum me-

chanics, this may surprise. Indeed, for accidental reasons, the spectrum of

the hydrogen atom is better reproduced by the non-relativistic Schrödinger

equation than a relativistic spinless equation,the Klein–Gordon equation

(1926).

1928– Dirac introduces his famous equation, a relativistic wave equation

that incorporates the spin 1/2 of the electron, and leads to a spectrum of

the hydrogen atom in much better agreement with experiment, and this

opens the way for a relativistic quantum theory.
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1929–1930, Heisenberg and Pauli establish the general principles of

Quantum Field Theory.

1934– First correct calculation of a Quantum Electrodynamics (QED)

correction by Weisskopf and confirmation of the existence of infinities, called

UV divergences (since due, in this case, to very short wave length photons).

1937– Landau publishes his general theory of phase transitions.

1944– Exact solution of the two-dimensional Ising model by Onsager.

1947– Measurement of the Lambshift and surprising agreement with the

QED prediction, after cancellation of infinities between physical observables.

1947–1949 Development of a general empirical strategy to eliminate di-

vergences called Renormalization.

1954–1956 Discovery of a formal property of massless QED, called

renormalization group, whose deeper meaning is not fully understood

(Peterman–Stückelberg, Gellman–Low, Bogoliubov–Shirkov).
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1967–1975 The Standard Model (Glashow, Weinberg, Salam), a renormal-

izable Quantum Field Theory based on the concept of non-Abelian gauge

symmetry (Yang–Mills 1954) and spontaneous symmetry breaking (Higgs...

1964), is formulated, quantized (Faddeev–Popov, DeWitt) and shown to

be consistent (’t Hooft–Veltman, Lee–Zinn-Justin). It describes, up to now,

with remarkable precision fundamental microscopic physics, except neutrino

masses and oscillations, but does not include gravitation.

1971–1972 Inspired by some premonitory ideas of Kadanoff, Wilson, Weg-

ner... develop a more general Renormalization Group, based on the iterative

integration over short-distance degrees of freedom, which includes the field

theory RG in some limit, and which is able to explain universal non mean-

field (or non quasi-Gaussian)-like properties of continuous phase transitions

(like liquid–vapour, binary mixtures, superfluidity, ferromagnetism) or sta-

tistical properties of long polymeric chains.
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1972–1975 Several groups, including Brézin, Le Guillou and Z.-J., de-

velop efficient quantum field techniques to prove universality and calculate

universal quantities.

1973–Politzer, Gross–Wilczek establish the asymptotic freedom of a class

of non-Abelian gauge theories, which provides a RG explanation to the free

particle behaviour of quarks at short distance inside nucleons.

1975–1976 Additional insight in the universal properties of phase transi-

tions is provided by the study of non-linear σ model and the (d−2) expansion

(Polyakov, Brézin–Z-J).

1977–Nickel determines the perturbative expansion of the RG functions in

the φ4 field theory in three dimensions, within the Callan–Symanzik scheme

as suggested by Parisi, up to six loops. The first precise estimates of critical

exponents, based on Borel summation and conformal mapping applied to

the perturbative expansion, are reported by Le Guillou and Z-J.
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7.2 QED and the problem of infinities

At the beginning of the thirties, a quantum and relativistic theory had been

proposed, which allows describing electromagnetic interactions between pro-

tons et electrons.

This theory is a field theory and not a theory of individual particles to

unify the description of photons and charged particles.

One expected answer: a solution to the puzzle of the infinite Coulomb

contribution to the electron mass.

Unfortunately, divergences survived, though less severe, for deep reasons:

They were unavoidable consequences of the point-like character of the elec-

tron and conservation of probabilities (and it is very difficult to construct a

relativistic theory of non point-like particles).
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Eventually, an empirical procedure, called renormalization, was discovered

that led to finite results, based on elimination of initial parameters in favour

of direct relations between physical observables.

The method allowed calculations with increasing precision for physical

processes governed by QED. The concept of renormalizable QFT became

so fruitful that it could later be applied to all fundamental interactions

but gravitation: the Standard Model of weak, electromagnetic and strong

interactions has successfully survived, except for the neutrino sector, to more

than 40 years of confrontation with experiment and again been confirmed

by the discovery of the Higgs particle.

However, the deep logic behind the renormalization procedure has itself

remained for a long time a mystery for some theorists. A set of convergent

ideas, arising both from microscopic physics and the theory of macroscopic

phase transitions, which can be collected under the general name of renor-

malization group, has finally led to a new and consistent picture.
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As a result of the essential coupling of physics at very different scales, renor-

malizable field theories have a limited range of validity.

One speaks of effective field theories, low energy or large distance approx-

imations to more fundamental theories, often known in statistical physics

but as yet unknown in particle physics.

This is the evolution in ideas that we want to briefly explain here.
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7.3 QED: a local quantum field theory

QED, which describes, in a quantum relativistic framework, interactions

between charged particles is not a theory of individualized particles, like in

non-relativistic quantum mechanics, but a Quantum Field Theory. It is a

quantum extension of a classical relativistic field theory, where the dynamic

variables are fields, the electric and magnetic fields.

Such a theory differs drastically from a theory of particles in the sense that

fields have an infinite number of coupled, fluctuating degrees of freedom, the

values of fields at each point in space. The non-conservation of particles in

high-energy scattering is a manifestation of this property.

The field theory that describe microscopic physics is local, a generalization

of the notion of point-like particles: it lacks a short-distance structure. The

infinite number of fluctuating degrees of freedom combined with locality are

the basic reasons why QFT’s have somewhat unusual properties.
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7.4 First calculations: the problem of infinities

Shortly after the work of Dirac, Heisenberg and Pauli, the first, but wrong,

calculations of the order α = e2/4π~c ≈ 1/137 (the fine structure constant)

correction to the electron propagation in the photon field were published

(Oppenheimer, Waller 1930). (The electric charge e being defined in terms

of the Coulomb potential written as e2/R.)

One motivation: Cure the disease of the ‘classical relativistic model’ of

the point-like electron. In a model where the electron is represented by a

charged sphere of radius R, the contribution to its mass coming from the

Coulomb self-energy diverges as e2/R when R → 0.

The first correct result was published by Weisskopf (1934) in an erratum

after correction of a a last mistake in a preceding article, which had been

pointed out by Furry.
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γ(k)

el. (q) q − k el. (q)

Fig. 7.1 – Electron propagation: dotted line for the photon and full line for the

electron.

The contribution to the mass was still infinite, the linear classical divergence

being only replaced by a softer logarithmic UV divergence:

δmel.QED = −3
α

2π
mel. ln(mel./Λγ) with Λγ ≈ ~/cR .

In terms of Feynman diagrams (a representation imagined only much later),

the relevant physical process consists in the emission and re-absorption of a

virtual photon of energy-momentum k by an electron of energy-momentum

q, (Fig. 7.1).

479



It became slowly clear that the problem was very deep; these divergences

seemed unavoidable consequences of locality (point-like particles with con-

tact interactions) and unitarity (conservation of probabilities). Indeed,

(i) one must sum over the contribution of virtual photons with arbitrarily

high energies because there is no short-distance structure.

(ii) Due to conservation of probabilities, all processes contribute additively.

These divergences seemed to indicate that QED was an incomplete theory,

but it was hard to figure out how to modify it without giving away some

fundamental physical principle.

Dirac (1942) proposed to abandon unitarity, but physical consequences

seemed hardly acceptable. A non-local relativistic extension (which would

correspond to give an inner structure to all particles) was hard to imagine in

a relativistic context, though Heisenberg (1938) proposed the introduction of

a fundamental length. In fact, only in the eighties were plausible candidates

proposed in the form of string theories.
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Even more drastic: Wheeler (1937) et Heisenberg (1943) proposed to com-

pletely abandon QFT in favour of a theory of physical observables (scatter-

ing data): the so-called S-matrix theory, an idea that became very popular

in the 1960’s in the theory of Strong Interactions (responsible for nuclear

forces).

7.4.1 Infinities and charged scalar bosons

More pragmatic physicists in the meantime explored the nature and form

of divergences in quantum corrections, calculating other physical quanti-

ties. An intriguing remark (Weisskopf 1939): while in the case of charged

fermions logarithmic divergences are numerically acceptable if some rea-

sonable momentum cut-off can be found (the range of nuclear forces, about

100 MeV, seemed a plausible candidate), charged scalar bosons lead to large

quadratic divergences, which are totally unacceptable because they would

spoil the classical results. Thus, can scalar bosons be fundamental particles?
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The problem remains very much relevant because the Standard Model of

interactions at the microscopic scale contains a scalar particle, called Higgs

boson, and, indeed, recently a boson with a 125 GeV mass has been dis-

covered at the Large Hadron Collider (CERN) with apparently the right

properties.

It becomes even more acute if one assumes that the Standard Model is

valid up to a possible grand unification (∼ 1015 Gev) or gravitation (Planck’s

mass) (1019 GeV) scales. It leads to the fine tuning problem and has been

one motivation for introducing supersymmetry (a symmetry relating bosons

and fermions). Supersymmetric particles are thus intensively searched at

LHC, with little success up to now.
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7.5 Renormalization procedure

An empirical observation. It was eventually noticed that in some combina-

tions of physical observables, divergences cancelled (see, for instance, Weis-

skopf 1936) but the meaning of this observation remained obscure.

An essential experimental input. In 1947 Lamb et Retheford measured pre-

cisely the splitting between the levels 2s1/22p1/2 of the hydrogen atom,

Rabi’s group in Columbia measured the anomalous magnetic moment of

the electron.

The first QED results. Remarkably enough, it was possible to organize the

calculation of the Lambshift in such a way that all infinities cancel (first

approximate calculation by Bethe) and the result agreed beautifully with

experiment. Shortly after, Schwinger obtained the leading contribution to

the anomalous magnetic moment of the electron.
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Soon, the idea of divergence subtraction was generalized to the concept

of renormalization (building up on work of Kramers) and in 1949 Dyson,

following work by Feynman, Schwinger and Tomonaga, gave the first proof

that, after renormalization, divergences cancel to all orders of perturbation

theory. The principles of renormalization theory were thus established.

The general idea. To render the theory finite, one first introduces a mo-

mentum cut-off cΛ which modifies in a somewhat arbitrary and unphysical

way the theory at a very short distance of order ~/cΛ.

One then calculates physical observables in terms of the initial bare pa-

rameters of the Lagrangian, the bare mass m0, the bare charge e0 of the

electron (mass and charge for vanishing interaction), or equivalently the

bare fine structure constant α0 = e20/4π~c, as series in α0.

In particular, one determines the physical mass m and physical charge e

as renormalized by the interaction.
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The results take the form (β2, γ1 and C1 are numerical constants):

e2/4π~c ≡ α = α0 − β2α
2
0 ln(Λ/m0) + · · · ,

m = m0 − γ1 m0α0 ln(ΛC1/m0) + · · · .

One inverts the relations,

α0 = α+ β2α
2 ln(Λ/m) + · · · ,

m0 = m+ γ1 mα ln(ΛC1/m) + · · · ·
expressing then all other physical observables in terms of the renormalized

parameters m and α as expansions in α.

Most surprisingly, all physical observables expressed in terms of renor-

malized fields and renormalized parameters then have an infinite cut-off Λ

limit.

This a priori somewhat strange renormalization procedure, had led to

QED predictions that agree, with unprecedented precision, with experiment.
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Moreover, the success of renormalization theory has led to the very impor-

tant concept of renormalizable QFT. Since the renormalization procedure

works only for a limited number of theories, this has strongly constrained

the structure of possible QFT’s.
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7.6 The nature of divergences and the meaning of renormalization

Renormalized QED was obviously the right theory because predictions agreed

with experiment, but why? Several answers were proposed, for example:

(i) Divergences were a disease of the perturbative expansion in α0 and

a proper mathematical handling of the theory with non-perturbative input

would free it from infinities. In the same spirit, Axiomatic QFT tried to

establish rigorous non-perturbative results from general principles.

(ii) More drastic, the problem was fundamental: QFT was only defined

by perturbation theory but the procedure that generated the perturbative

expansion had to be modified in order to generate automatically finite renor-

malized quantities. The initial bare theory, based on a Lagrangian with di-

vergent coefficients, was physically meaningless. It provided a simple book-

keeping device to generate the perturbative expansion.
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This line of thought led, in particular, to the BPHZ formalism (Bogoli-

ubov, Parasiuk, Hepp, Zimmerman), and eventually to the Epstein–Glaser

work, where renormalized Feynman diagrams where generated directly and

taken as fundamental building blocks of the theory.

While this approach clarified the properties of renormalized perturbation

theory, it had also the effect of disguising the problem of infinities as if it

had never existed in the first place.

(iii) The cut-off had a real physical meaning, being generated by addi-

tional interactions beyond QED (like Strong Interactions), but then the

meaning of renormalizability, which reflected some form of short-distance

insensitivity, had still to be understood.

This last viewpoint is the closest to modern thinking, except that the

cut-off is no longer linked to Strong Interactions but to a as yet unknown

much higher energy scale.
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7.7 QFT and renormalization group

An intriguing consequence of renormalization in massless QED (Peterman–

Stückelberg (1953), Gell-Mann–Low (1954), Bogoliubov–Shirkov (1955)).

In a QED with massless electrons, the renormalized charge cannot be

defined in terms of the interaction between non-existing static electrons

since they propagate at the speed of light.

One must introduce some arbitrary mass or energy or momentum-scale

µ to define the renormalized charge e in terms of the strength of the e.m.

interaction at scale µ: it is the effective charge at scale µ.

But then the same physics can be parametrized by the effective charge

e′ at another scale µ′. The set of transformations of physical quantities

associated with this change of scale and required to keep physics constant

was called Renormalization Group (RG).
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Moreover, one could show that in an infinitesimal scale change, the variation

(or the flow) of the effective charge satisfies a differential equation of the

form

µ
dα(µ)

dµ
= β

(

α(µ)
)

, β(α) = β2α
2 +O(α3). (1)

In fact, even in a massive theory such a definition can be used. It also leads

to a parametrization in terms of the effective charge at some mass scale µ.

Interpretation: At large distance, the strength of the electromagnetic in-

teraction remains constant at the value measured through the Coulomb

force. However, at distances much smaller that the wave length ~/mc as-

sociated with the electron (one explore in some way the ‘interior’ of the

particle), one observes screening effects. What has to be noticed is that

these short-distance screening effects are related to renormalization.
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Gell-Mann and Low’s initial hope, which was to use this flow equation to

determine the bare charge as the large momentum limit of the effective

charge, failed because due to the sign β2 > 0, the effective charge increases

at large momentum (a phenomenon verified experimentally at the Z boson

mass at CERN) until perturbation theory becomes useless.

A related issue: Landau’s ghost. A leading log summation of high en-

ergy contributions to the electron propagator exhibits an unphysical (a

ghost) pole (Landau and Pomeranchuk (1955)) at a mass M ∝ m e1/β2α ≈
1030GeV. For Landau, this was a sign of QED inconsistency, but Bogoli-

ubov and Shirkov noticed that this amounted to solving RG flow equation

for α small and using it for α large.

Still, it seems that Landau’s intuition was right but inconsistency at such

high energy is physically irrelevant.
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7.8 The triumph of renormalizable QFT: The Standard Model

The principle of looking for renormalizable QFT’s led, at the beginning of

the 70s, to the construction of the Standard Model describing all interactions

(but gravity) at the microscopic scale, based on non-Abelian gauge theories.

In the perplexing sector of Strong Interactions, the negative sign of the RG

β-function allowed explaining the weakness of interactions between quarks

at short distance as seen in deep inelastic experiments (Gross–Wilczek,

Politzer 1973) in a way consistent with quark confinement and led to Quan-

tum Chromodynamics (QCD).
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Fig. 7.2 – O(2)-symmetric potential with spontaneous symmetry breaking.

The short range of weak interactions could be explained by intermediate

vector bosons getting masses due a combination of spontaneous symmetry

breaking and gauge invariance.
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One outstanding problem remained: to include gravitation into the frame-

work of renormalizable theories.

The failure of reaching this goal has led to a search for non-field theoretical

extensions of the theory in the form, in particular, of string theories.
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7.9 Critical phenomena: other infinities

Second order or continuous macroscopic phase transitions, with short-range

interactions, are characterized by a collective behaviour leading to correla-

tions on large scales (compared to the microscopic defining scale) near the

critical temperature. The scale of these dynamically generated correlations

is characterized by the correlation length, which diverges at the critical

temperature.

At the scale of the correlation length, non-trivial macroscopic physics is

observed. The usual idea of scale decoupling leads to expect that macro-

scopic physics could be described by a small number of well-chosen effective

parameters, without explicit reference to the initial microscopic interactions.

This idea leads to Mean Field Theory and, more generally, to Landau’s

theory of critical phenomena (1937), theories that can be called perturbed or

quasi-Gaussian with reference to the central limit theorem of probabilities.
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Among the simplest universal predictions of such a theory, one finds the

universality of the singular behaviour of thermodynamic quantities near

the critical temperature Tc.

For example, in magnetic systems the spontaneous magnetization van-

ishes

M ∝
√

Tc − T ,

the correlation length diverges as

ξ ∝ 1/
√

T − Tc

..., and these properties are independent of dimension of space, of symme-

tries, and the form of the microscopic dynamics.

However, it came slowly apparent that these predictions disagreed with

more precise experiments and lattice model calculations. They also dis-

agreed with the exact solution of the 2D Ising model (Onsager 1944).
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Moreover, an attempt to calculate corrections to the Gaussian theory

leads to infinities for all space dimensions d ≤ 4 when the correlation length

diverges.

In fact, numerical investigations seemed to indicate that some universality

survived but in a more limited form, the critical behaviour depending on the

dimension of space as well as some general qualitative properties of models

but not on the detailed form of the interaction.
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7.10 Scale decoupling in physics

A basic paradigm in physics:

The decoupling of physical phenomena corresponding to too different

scales of distances.

Example: the period τ of the pendulum: τ ∝
√

ℓ/g.

Implicit hypothesis: the sizes that are very different from the pendulum

length ℓ, like the size of the atoms or the radius of the earth play no role in

the period of the pendulum.

In the same way, orbits of planets can be determined to a very good

approximation by replacing planets and the sun by point-like objects, and

by forgetting all other stars in the galaxy.

Provided one is able to discover the relevant degrees of freedom and pa-

rameters, one can devise models adapted to the scale of the phenomena.
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This empirical property is essential for the predictivity of models. If physics

would be sensitive to all scales, prediction would be impossible, since it

would require a complete knowledge of all physical laws and all parame-

ters of nature. Nevertheless, in the twentieth century, in two a priori very

different domains of physics, this commonly accepted paradigm has been

challenged.

To explain the compatibility between a non-decoupling of scales and, never-

theless, the relative insensitivity of large distance physics to the microscopic

structure, a new tool had to be invented:

the Renormalization Group.

This rather abstract concept has allowed not only understanding such a

property, but has also inspired number of precise calculation methods.

It has provided a new interpretation to renormalizable Quantum Field

Theories as effective large distance field theories.
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KADANOFF–WILSON’S RG IDEA:

We consider a lattice model with classical spins φ, short range interactions

and a Z2 reflection symmetry φ 7→ −φ. The partition function has the form

(a is the lattice spacing)

Z =
∑

{φ(na)}, n∈Zd

exp [−H(φ)] , H(φ) = H(−φ)

where the interactions in the spin Hamiltonian H(φ) are short range.

Kadanoff and Wilson suggested to sum iteratively over short-distance

degrees of freedom. For example, one sums over the initial spins with the

constraint that their average values on a cell are fixed:

φ(na) 7→ φ′(na) =

√
Z

2d

∑

an′ neighbours of 2an

φ(an′),

where Z is a renormalization factor.
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Fig. 7.3 – Initial (blue) lattice with lattice size a and (red) lattice with lattice size

2a.
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This transformation leads to a new Hamiltonian, function of average spins

on a lattice with double lattice size. Iterating, one constructs a renormal-

ization group:

H(φ; 2na) = T
[

H(φ; 2n−1a)
]

.

Fixed points: One looks for fixed points, solution of (this requires adjusting

the value of the renormalization Z)

H∗(φ) = T [H∗(φ)] .

If attractive fixed points can be found, then

H(
√
Zφ; 2na) →

n→∞
H∗(φ).

The existence of attractive fixed points of a RG allows understanding uni-

versality, within universality classes, when scales do not decouple.

502



Fixed points and QFT. Even if initially the spin variables take only

discrete values and space has a lattice structure, after a large number of

iterations the effective spins can be replaced by continuous variables and

the lattice by continuum space: a fixed point Hamiltonian, if it exists, thus

corresponds to a local statistical field theory (Wilson 1971):

Z =

∫

[dφ(x)] exp [−H(φ)] .

The Gaussian fixed point. One verifies that the Gaussian field theory

(free massless scalar theory),

Z =

∫

[dφ(x)] exp [−HG(φ)] , HG(φ) =
1
2

∫

ddx
(

∇xφ(x)
)2
,

is a fixed point (related to the central limit theorem of probabilities).
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The Gaussian fixed point is related to Landau or mean field theory. It

becomes unstable when the dimension d of space is lower than 4.

Near dimension 4, the instability is induced by the perturbation
∫

ddxφ4(x).

If another fixed point exists in a neighbourhood of the Gaussian fixed point,

universal properties can be determined from the local statistical field theory

(quantum field theory in imaginary time):

H(φ) = HG(φ) +

∫

ddx
[

1
2rφ

2(x) + 1
4!gφ

4(x)
]

,

where the parameter r plays the role of temperature near Tc and allows

exploring the neighbourhood of Tc (the critical domain). This statistical

field theory is renormalizable at and near dimension 4 and, thus, admits a

field theory renormalization group.
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Fixed points, geometric analogies: straight line and fractals

A Gaussian fixed point analogue: the straight line.

→

A RG transformation analogue.

→ →

A geometric fractal: a non-trivial fixed point analogue.
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In the continuum, the RG or flow equation for the Hamiltonian takes the

general form of the functional equations (Wegner–Wilson)

Λ
d

dΛ
H(φ,Λ) =

1

2

∫

ddk

(2π)d
D̃Λ(k)

[

δ2H
δφ̃(k)δφ̃(−k)

− δH
δφ̃(k)

δH
δφ̃(−k)

]

+

∫

ddk

(2π)d
L̃Λ(k)

δH
δφ̃(k)

φ̃(k).

The renormalization group of QFT appears, in the general RENORMAL-

IZATION GROUP framework, as an asymptotic renormalization group in

the neighbourhood of the Gaussian fixed point (the free massless scalar field

theory).

Indeed, in the neighbourhood of the Gaussian fixed point, all interactions

corresponding to stable directions in Hamiltonian space at the Gaussian

fixed point (irrelevant interactions) can be neglected .
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The general discrete transformation H 7→ T (H) then reduces to g(ℓ) 7→
g(2ℓ). In continuum space, in an infinitesimal dilatation ℓ 7→ ℓ(1 + δℓ/ℓ),

ℓ
∂g

∂ℓ
= −β[g(ℓ)].

The fixed point equation reduces to

β(g∗) = 0 .

To determine universal properties in the critical domain (near the transition

temperature), one must first determine the zeros g∗ of the β-function, and

then calculate all other physical quantities for g = g∗.

This program has led to precise determinations of various physical quanti-

ties like critical exponents (Le Guillou and ZJ) and equation of state (Guida

and ZJ), in very good agreement with values extracted from lattice models

and experiments.
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Critical exponents from O(N) symmetric (φ2)23 field theory
(Le Guillou and Z.-J. (1980) updated by Guida and Z.-J. (1998))

N 0 1 2 3

g∗ 26.63± 0.11 23.64± 0.07 21.16± 0.05 19.06± 0.05

γ 1.1596± 0.0020 1.2396± 0.0013 1.3169± 0.0020 1.3895± 0.0050

ν 0.5882± 0.0011 0.6304± 0.0013 0.6703± 0.0015 0.7073± 0.0035

η 0.0284± 0.0025 0.0335± 0.0025 0.0354± 0.0025 0.0355± 0.0025

β 0.3024± 0.0008 0.3258± 0.0014 0.3470± 0.0016 0.3662± 0.0025

α 0.235± 0.003 0.109± 0.004 −0.011± 0.004 −0.122± 0.010

θ 0.478± 0.010 0.504± 0.008 0.529± 0.009 0.553± 0.012

This success has confirmed that, somewhat unexpectedly, large distance

physics near a continuous phase transition in systems with short-range in-

teractions, can be described by local renormalizable quantum field theories.
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7.11 Effective quantum field theories

The condition that microscopic physics should be describable by renormaliz-

able QFT’s has been one of the basic principles that have led to the Standard

Model of microscopic interactions.

From the success of the program, one might have concluded that renor-

malizability was a new law of nature. The implication would have been that

all interactions including gravity should be describable by renormalizable

QFT.

The failure to exhibit a renormalizable version of quantum gravity has

shed some doubt on such a viewpoint.

Indeed, if the Standard Model and its thinkable extensions are only low

energy approximations, it becomes difficult to understand why they should

obey such an abstract principle.
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By contrast, the theory of critical phenomena shows that a dynamical gen-

eration of a large scale may generate a non-trivial large distance physics,

which can be described by a renormalizable QFT.

This provides a simpler and more natural explanation for the appearance

of renormalizable QFT’s in physics.

One can then speculate that fundamental interactions are described at

some more microscopic scale (like the Planck length) by a finite theory that

has no longer the nature of a local quantum field theory.

Although such a theory should involve only some short microscopic scale,

for reasons that can only be a matter of speculation, it generates strong cor-

relations between a large number of degrees of freedom and a large distance

physics with very light particles.
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This line of thought has changed considerably our viewpoint on the renor-

malization process. In the traditional presentation, one introduces a large

momentum cut-off to render the perturbative expansions finite, one calcu-

lates physical observables as functions of the parameters of the Lagrangian

and the cut-off, in particular, physical masses and coupling constants, one

eliminates the parameters of the Lagrangian in favour of direct relations

between physical observables and takes the infinite cut-off limit.

When the quantum field theory is renormalizable, the infinite limit exists

and defines a cut-off independent renormalized field theory.

However, this process relies on tuning all initial parameters of the La-

grangian as functions of the cut-off, which then in the infinite cut-off limit

diverge. This tuning is so difficult to justify that, at some point, it led to

the claim that the initial Lagrangian itself was unphysical.
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Moreover, through this programme was met with considerable success, it did

not provide any rationale for eliminating non-renormalizable interactions.

By contrast, we take the point of view of effective field theory; we assume

that a true cut-off exists, which is provided by a more fundamental theory,

which could be another quantum field theory or, eventually, the fundamental

necessarily non-local theory. Of course, since this theory is unknown, the

cut-off regularization is an ad hoc procedure and it is necessary to show

that physical results are largely independent of the specific regularization.

Moreover, one wants to avoid tuning as much as possible and one assumes

the parameters of the Lagrangian are fixed and expected to be of order unity

(the naturalness assumption). In particular, the fine tuning of the Higgs bare

mass is an important physical issue.
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In this framework, renormalization group (RG) plays an essential role. It

allows to evaluate the effective parameters at the physical scale and to show

that physics at an energy of mass scale much lower than the cut-off is indeed

independent, to a good approximation, of the cut-off procedure.

The success of this programme, in particular, initiated by Wilson, in the

study of continuous phase transitions in macroscopic physics gives confi-

dence that it should also apply to particle physics.

Moreover, additional, weak non-renormalizable interactions should be ex-

pected (the irrelevant interactions of renormalization group), suppressed

by powers of the short-distance scale. Non-renormalizable quantum gravity

could be an example of such an (RG) irrelevant interaction.
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To summarize, renormalizable quantum field theories are only effective large

distance theories in which all non-renormalizable interactions have been

neglected.

They come endowed with a natural cut-off reflection of the existence of a

more fundamental theory, but are somewhat short-distance insensitive, due

to specific Renormalization Group properties.

They are not necessarily consistent on all scales, (like QED), since they

have only a limited energy range of validity.
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