
Lecture 8: THE SCALAR FIELD: RENORMALIZATION

AND RENORMALIZATION GROUP



We now proceed with the study of local quantum field theories (QFT). A

local QFT is defined by the property that the action is a space integral

of a local function of the field and its derivatives, as a consequence of an

assumption that the initial microscopic model is characterized by a scale

much smaller than the physical scale one investigates. In statistical physics

this is an assumption of short-range interactions.

We immediately emphasize the notion of effective field theory, even though

every quantum field theory is an effective field theory. The main reason is

that initially it was thought by many physicists that in particle physics

quantum field theory, in some form, would become a truly fundamental

theory. For reasons we have explained this is no longer the case.

Note that often the denomination of effective field theory (EFT) is re-

stricted to a context in which a field theory is a low energy approximation

to another, more fundamental, known theory. An toy example is discussed

in section 8.1.



In a naive interpretation of local quantum field theory, divergences are met

in the perturbative expansion.

The problem of divergences is then dealt with renormalization theory. We

will use its results without giving technical details.

However, we describe the modern point of view on the renormalization

process, which is at strong variance with the more traditional point of view.

In the traditional presentation, one introduces a large momentum cut-off

to render the perturbative expansions finite, one calculates physical observ-

ables as functions of the parameters of the Lagrangian and the cut-off, in

particular, physical masses and coupling constants.

One then eliminates the parameters of the Lagrangian in favour of di-

rect relations between physical observables and takes the infinite cut-off

limit. When the quantum field theory is renormalizable, a form of short dis-

tance insensitivity, the infinite cut-off limit exists and defines a perturbative

renormalized field theory independent of the specific cut-off procedure.



This programme, based on focusing on renormalizable theories, was met

with considerable success, leading to the construction of the Standard Model

of particle physics.

However, this process relies on tuning the initial parameters of the La-

grangian as functions of the cut-off. This tuning is hard to justify. Moreover,

since the initial parameters diverge in the infinite cut-off limit, this led, at

some point, led to the claim that the initial Lagrangian itself was unphysical.

Also the process provides only a technical and not a physical rationale

for disregarding non-renormalizable interactions.

By contrast, we take the point of view of effective field theory. We assume

that a true cut-off exists, provided by a, as yet unknown, more fundamen-

tal theory, which could be another quantum field theory or, eventually, a

fundamental necessarily non-local theory.

This viewpoint is supported by the study of continuous phase transitions

in statistical physics.



There, large momentum divergences are not present in the initial micro-

scopic model due to the inherent short distance structure (like in lattice

models), but this structure may be complicate to deal with.

One thus replace it by an ad hoc cut-off regularization. The results ob-

tained by the method of regularization can then be physical only if they are

largely independent of the specific regularization. The proof relies on per-

turbative renormalization group and, technically, renormalization theory.

Moreover, tuning should be avoided as much as possible: the parameters in

the Lagrangian are fixed and expected to be of order unity (the naturalness

assumption) at the cut-off scale.

In the more general context of local field theories, the issue of short

distance insensitivity relies on a renormalization group (RG) analysis. RG

methods allow evaluating the effective parameters at the physical scale and

to show that physics at an energy or mass scale much lower than the cut-off

is indeed independent, asymptotically, of the cut-off procedure.



In this framework, renormalization theory remains an important tool be-

cause it allows proving RG equations for renormalizable field theories.

Finally, the success of this programme initiated, in particular, by Wilson

in the study of continuous phase transitions in macroscopic physics, gives

confidence that it should also apply to particle physics.

Therefore, in this framework, the fine-tuning of the Higgs particle mass in

the Standard Model remains a troubling issue, while in the corresponding

example of macroscopic phase transitions, the experimentalist tunes the

temperature to bring it close to the critical temperature.

We analyse more thoroughly the example of a theory involving a scalar

field φ with a Z2 reflection symmetry φ 7→ −φ in dimension d = 4.

There, a problem will be discovered and discussed, the triviality of the

renormalized φ4 theory if one insists to take the truly infinite cut-off limit.



Finally, we briefly mention the properties of the φ4 theory in dimension d =

4− ε, a situation directly relevant for the study of macroscopic continuous

phase transitions.

In the Z2 symmetric φ4 theory considered in this lecture, as well as in

the more general O(N) symmetric (φ2)2, theory symmetry may be spon-

taneously broken. We postpone the discussion of spontaneously symmetry

breaking of continuous symmetries to lecture 12 but we show how a combina-

tion of spontaneous symmetry breaking and renormalization group provided

an early bound on the Higgs particle mass.



8.1 The notion of effective field theory

The basic idea behind the notion of effective field theory is the following:

one starts from a microscopic model involving an infinite number of de-

grees of freedom whose dynamics is characterized by a microscopic scale

and in which, as a result of the interaction between these degrees of free-

dom a length (called correlation length in statistical physics) much larger

than the microscopic scale or, equivalently, a mass much smaller than the

characteristic mass scale of the initial model are generated.

In this situation, the model exhibits a non-trivial large distance and, in a

number of examples, universal physics.

Even if the initial model has a non-local dynamics, because the non-

locality is confined to the microscopic scale, the large scale physics may be

describable by a general local field theory, called effective field theory.
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Though we will eventually concentrate on the four-dimensional example, it

is convenient to first discuss arbitrary dimensions d.

A general even effective action for a scalar field can be written as (equation

(6.14)),

S(φ) = SG(φ) + VI(φ), (8.1)

where

SG(φ) =
1
2

∫

ddx
[

(

∇xφ(x)
)2

+ u0φ
2(x)

]

+ 1
2

∑

k=1

uk+1

∫

ddx
[

∇xφ(x)(−∇2
x)

k∇xφ(x)
]

and VI(φ) is the space integral of a general, expandable, even function of

the field and its derivatives:

VI(φ) =

∫

ddxVI[φ(x), ∂µφ(x), . . .]

with terms at least of degree 4 in φ.
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The action has been split into the sum of the action of a free massless

field, a φ2 contribution, a number of terms quadratic in the field with a

sufficient number of derivatives, in order to regularize all large-momentum

(or short-distance) divergences and general even local interactions.

One calls such a field theory an effective field theory to emphasize that

it is not a microscopic model, but only a model that reproduces correctly

the asymptotic behaviour at large distance (this denomination has nowadays

become almost a pleonasm in the sense that almost all quantum or statistical

field theories that are encountered in physics have such an interpretation).

8.1.1 An illustrative example

Effective field theory is a notion that depends on the context. It can apply

to the fundamental field theory of particle physics but it can also apply to

an approximation to another quantum field theory when one mass is much

larger than all other ones or in the high temperature regime.
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We illustrate this notion with a simple example. We consider a model in-

volving two scalar fields, φ and χ, and a renormalizable action of the form

S(φ, χ) = S1(φ) + S2(χ, φ)

where S1(φ) contains a φ4 interaction and

S2(χ, φ) =
1
2

∫

d4x
[

(

∇xχ(x)
)2

+M2χ2(x) + gχ2(x)φ2(x) + g′χ4(x)
]

.

An unspecified regularization with a large momentum cut-off Λ is assumed.

For simplicity, we neglect the χ4 interaction in what follows.

We assume that the physical mass M of the field χ is much larger than

the physical mass of the field φ and the energies one is probing.

Since the particle associated to the field χ is not observed, one can inte-

grate out the field χ. We set

e−V(φ) =
1

N

∫

[dχ] e−S2(χ,φ), N =

∫

[dχ] e−S2(χ,0) .
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The integral over χ is Gaussian and yields (ln det = tr ln)

V(φ) = 1
2 tr ln

[

−∇2
x +M2 + gφ2(x)

] [

−∇2
x +M2

]−1
,

leading to a non-local addition to the action S1(φ) for the φ field.

However, after expanding V(φ) in powers of φ2, for M large we can make

a local expansion of each term.

The coefficient of gφ2(x), in Fourier representation

1

(2π)4

∫

d4p

p2 +M2
,

is a divergent constant that renormalizes the φ mass term.
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The coefficient of the term of order g2 in the Fourier representation is pro-

portional to

g2
∫

d4x d4y φ2(x)φ2(y)∆2(x− y),

where ∆(x) is the χ-field propagator. Then,

∆2(x) =
1

(2π)4

∫

d4k eikx B(k) (8.2)

with

B(k) =
1

(2π)4

∫

d4p

(p2 +M2)
(

(p+ k)2 +M2
) .

We rewrite the integral by using an example of Feynman’s parametrization,

which takes the form of the identity

1

αβ
=

∫ 1

0

ds

[αs+ β(1− s)]2
.
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We apply it to α = (p+k)2+M2, β = p2+M2 and, after shifting p+sk 7→ p,

the integral can be rewritten as

B(k) =
1

(2π)4

∫ 1

0

ds

∫

d4p

[p2 +M2 + s(1− s)k2]2
.

The integrand can be expanded in powers of (p2 +M2),

1

[p2 +M2 + k2s(1− s)]2
=

1

(p2 +M2)2
− 2k2s(1− s)

(p2 +M2)3
+
3k4s2(1− s)2

(p2 +M2)4
+· · · .
(8.3)

The first term gives a divergent constant, which after integration over k

yields a local contribution renormalizing the coefficient of φ4(x).

The second term is finite and proportional to k2/M2. It yields a local,

non renormalizable interaction proportional to φ2(x)∇2
xφ

2(x)/M2.

More generally, the higher order terms yield finite local, non renormaliz-

able interactions proportional to φ2(x)(∇2
x)

nφ2(x)/M2n.
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The term of order φ6 is finite and, at leading order, yields a contribution

proportional to φ6(x)/M2. The next term has two additional derivatives

and a factor 1/M4. Quite generally, all contributions are local and their

M dependence can be inferred from dimensional analysis: all contributions

have mass dimension 4 and φ and ∇x have mass dimension 1.

Therefore, the large M expansion generates a set of local interactions,

two which do not vanish for M large but simply renormalize terms al-

ready present in the action S1(φ) and all others that correspond to non-

renormalizable interactions and are suppressed by powers of M .

In an effective field theory, small non-renormalizable interactions are the

observable remnants of a new massive particle or a new energy scale, as the

history of the theory of weak interactions illustrates.

Successive perturbative contributions of these new interactions, which

come endowed with a natural cut-off of order M , again renormalize the

effective action and yield new contributions that vanish faster for M large.
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8.2 Rescaling, Gaussian renormalization and power counting

Quite generally, one assumes that the physical mass is small with respect

to the mass or energy scale of the microscopic theory and that the devia-

tions from a free massless theory are in some sense small, justifying a local

expansion of the initial microscopic model in the form of the action (8.1).

Initially, distances are measured in microscopic units and, generically, one

expects the coefficients of the local expansion to be numbers of order 1. To

describe only large distance physics, it is convenient to rescale distances to

take as a reference scale the macroscopic scale relevant to large-distance

physics, rather than the initial microscopic scale.

The ratio of scales Λ, which has a momentum dimension, becomes also

the cut-off scale in the QFT terminology because the local expansion now

breaks down at scale 1/Λ where non-localities that render the field theory

finite appear and, thus, momentum integrals have to be cut at scale Λ.
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8.2.1 Gaussian renormalization

We thus introduce a large parameter Λ that has a momentum dimension

and rescale distances in the form

x = Λx′, (8.4)

The initial microscopic scale is now characterized by the parameter 1/Λ

(related, for example, to the spacing of an initial lattice model).

Instead of studying the large-distance or small momentum limit, one then

studies the limit Λ → ∞.

After this rescaling, the leading terms in the effective action are those

with the smallest number of derivatives. For φ(x) small, the leading term

then is φ2(x), which implies generically a mass scale of order Λ. To generate

a small mass, we must tune the coefficient of φ2 in the action in such a

way that the kinetic (∇xφ(x))
2 term, which alone leads to a massless free

theory, becomes a leading term.
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We thus renormalize the field, φ 7→ φ′, to cancel its Λ dependence,
∫

ddx
(

∇xφ(x)
)2 7→ Λd−2

∫

ddx
(

∇xφ(x)
)2

=

∫

ddx
(

∇xφ
′(x)

)2

with

φ′(x) = Λ(d−2)/2φ(x). (8.5)

After this renormalization, the field has mass dimension 1
2 (d− 2).

In these new variables, in the action

S(φ) = SG(φ) + VI(φ), (8.6)

the quadratic part becomes (now omitting primes)

SG(φ) =
1
2

∫

ddx (∇xφ(x))
2
+ 1

2Λ
2u0

∫

ddxφ2(x)

+ 1
2

∫

ddx
∑

k=1

uk+1Λ
−2k∇xφ(x)(−∇2)k∇xφ(x) . (8.7)
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More generally, a monomial Vn,k contributing to V (φ), which involves n

powers of φ and 2k derivatives acting in an unspecified way on the fields φ,

is transformed into

Vn,k(φ) 7→ Λd−2k−n(d−2)/2Vn,k(φ). (8.8)

One recognizes in the power of Λ the opposite of the dimension (6.36) of

the vertex in the power counting analysis.

8.2.2 Summary and consequences

Quantities have now dimensions characterized by powers of the parameter

Λ. Momenta acquire a dimension 1, position coordinates dimension −1, the

field φ has dimension 1
2 (d − 2) and all local monomials in the action get

a dimension in units of Λ. In particular, interaction vertices acquire the

dimension [V ] assigned to them by the power counting analysis and are

multiplied by Λ−[V ].
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This has several consequences on the interpretation of the terms in the

action, which can also be rephrased in terms of a stability of the massless

theory (the critical theory in the terminology of phase transitions, also a

Gaussian fixed point) from the point of view of renormalization group, with

respect to local perturbations.

In particular, we observe that the contributions in the action which are

the most innocuous from the viewpoint of power counting now grow when Λ

increases, while the ‘dangerous ones’, corresponding to non-renormalizable

interactions, are the most suppressed.

The marginal situation corresponds to strictly renormalizable interac-

tions, which are dimensionless, and whose RG flow with Λ, even close to

the free field theory, cannot be predicted by this leading order analysis but

requires studying renormalization group equations.
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8.2.3 Mass term and fine tuning problem

The coefficient of φ2 (in a free theory the mass term) is multiplied by Λ2.

This indicates that, generically, no small scale is generated and a scalar

particle, if it exists, has a mass of the order of Λ. A physical mass m ≪ Λ

requires a fine-tuning of the coefficient u0 of φ2 of the order of (m/Λ)2.

We denote by u0c the value of u0 (negative for a φ4 field theory) for which

the theory is massless (or critical because the correlation length diverges)

in the full theory,

u0 = u0c ⇔ Γ̃(2)(p = 0) = 0 .

If we set

Λ2u0 = Λ2u0c + r , (8.9)

where r characterizes the deviation from the massless theory, we note that

since u0−u0c 7→ r/Λ2, the factor 1/Λ2 cancels the Gaussian renormalization.
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8.2.4 Interactions

Super-renormalizable interactions. In d = 3 dimensions, the φ4 interaction is

super-renormalizable and the coefficient of φ4 is proportional to Λ. If only

the φ2 coefficient can be tuned, the interaction diverges with the cut-off.

This is the theory one has to investigate to describe critical phenomena in

continuous phase transitions if only the temperature can be adjusted.

Renormalizable interactions. This is the situation of the φ4 interaction in

dimension 4. In this situation, the φ4 coefficient has no cut-off dependence

in this leading order analysis. The same applies to the φ3 interaction in six

dimensions and to the φ6 interaction in three dimensions.

A more detailed study based on renormalization group equations shows

that, beyond leading order, the effective interaction strength then has a slow

logarithmic behaviour when the ratio between the cut-off and the physical

momentum scale increases. A one-loop calculation determines whether the

effective coupling increases or decreases.
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Non-renormalizable interactions. Non-renormalizable interactions, like the

φ6 interaction in six dimensions, which are obstacles in renormalization the-

ory, appear in the effective field theory framework quite innocuous because

they are suppressed by powers of the cut-off. They lead to very weak inter-

actions. Moreover, when iterated in perturbation theory, though they lead

to increasing divergences, these divergences are cancelled by the cut-off fac-

tors. Actually one can show, as indicated in the preceding example, that

the contributions that do not vanish for infinite cut-off simply renormalize

the parameters of the renormalizable part of the action and the other ones

give small additional perturbative contributions, which vanish for infinite

cut-off.

These results can be proved by studying the renormalization of local

polynomials of the fields, also called composite operators.
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Warning. This analysis is based on perturbation theory. Its validity beyond

perturbation theory relies on the assumption that the perturbative effects

do not modify qualitatively power counting. This issue will be discussed

when we describe renormalization group (RG) properties.
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8.3 Renormalization group and Gaussian fixed point

The preceding analysis can be reformulated in the RG terminology. The

scale transformation, analogous to the scale transformation (8.5),

φ(x) 7→ λ(2−d)/2φ(x/λ) (8.10)

where λ > 0 is a scale factor, can be considered as an RG transformation.

The action of the free massless scalar field is invariant under the transfor-

mation and is thus a fixed point, the Gaussian fixed point.

The scaling behaviour of all other local terms in the action, dictated by

power counting, determines the local stability of the Gaussian fixed point

for λ → ∞, that is, at large distance.
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8.3.1 Quadratic terms

In d dimensions, the mass dimension of the monomial

∫

ddxφ(x)(∇x)
2kφ(x)

is −d+(d−2)+2k = 2k−2 and, thus, the monomial is multiplied by a factor

λ2−2k. The term φ2(x) (k = 0) corresponds to a direction of instability, as

we have already seen in expression (8.7). It is called a relevant operator.

The term with k = 1 only renormalizes the field and has no effect. It is

called redundant.

All terms with k > 1 correspond to directions of stability and are called

irrelevant. This analysis indicates the origin of the insensitivity of the large

distance physics to the explicit form of the regularization.
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8.3.2 Interactions

We specialize here to theories that have a φ 7→ −φ reflection symmetry.

Quartic terms. The interactions of the smallest degree in φ are thus quar-

tic. Power counting is given by equation (8.8) and yields a factor λ4−d−2k.

To k = 0 corresponds the φ4 interaction and a power λ4−d. The scaling

properties of the φ4 thus depend on space dimensions. For d > 4, it is

irrelevant. For d < 4, it is relevant (a situation encountered in the theory of

macroscopic phase transitions).

For d = 4, the situation of interest for particle physics it is marginal.

Whether the Gaussian fixed point is then marginally stable or marginally

unstable, requires an analysis that takes into account the φ4 interaction

beyond leading order, even for weak coupling.

For k = 1, one finds λ2−d and the interactions are irrelevant for d > 2

and marginal for d = 2. More derivatives lead to irrelevant operators.

542



Higher degree in φ. The φ6 interaction is irrelevant for d > 3, marginal at

d = 3 (a situation met in phase transitions at tricritical points where the

φ4 interaction is suppressed) and relevant for d = 2.

All interactions with two derivatives are irrelevant except for d = 2 where

they are marginal. Higher powers of φ lead to interactions that are irrelevant

in all dimensions except for d = 2 where they are relevant.

8.3.3 Example: the φ4 interaction in d > 4

We have stated that interactions that are multiplied by negative powers of

the cut-off, at higher orders generate corrections non-vanishing with the cut-

off that renormalize the relevant or marginal terms in the action together

with additional corrections that again vanish with the cut-off. To illustrate

this properties we consider the φ4 interaction in d > 4.
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The action reads

S(φ) =
∫

ddx
[

1
2

(

∇xφ(x)
)2

+ 1
2 (Λ

2u0c(g) + r)φ2(x) + 1
4!gΛ

4−dφ4(x)
]

+ regularization , (8.11)

where u0c is defined by the condition that the theory is massless for r = 0.

The two-point vertex function. In the momentum representation,

Γ̃(2)(p) = p2 + r + 1
2gΛ

4−d [Ωd(r)− Ωd(0)] +O(g2),

where Ωd(r) is given by the diagram of figure 8.1,

Ωd(r) =
1

(2π)d

∫ Λ ddp

p2 + r
.

(The cut-off regularization is indicated symbolically by an upper-bound on

the momentum integral.)
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Fig. 8.1 – One-loop φ4 contribution to the two-point function.

Then,

Ωd(r)− Ωd(0) = − r

(2π)d

∫ Λ ddp

p2(p2 + r)
.

For d > 4, the integral is dominated by large momenta and the leading

contribution is proportional to Λd−4. For example, for 4 < d < 6,

Ωd(r)− Ωd(0) = C(d)rΛd−4 +K(d)rd/2−1 + · · · ,

where C(d) is regularization dependent and K(d) universal. Then,

Γ̃(2)(p) = p2 + r + 1
2gr

[

C(d) +K(d)(r/Λ2)d/2−2
]

+ · · · .
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Fig. 8.2 – One-loop contribution to the four-point function.

The first term is simply a renormalization of the parameter r while the

second term is a new singular contribution but which is suppressed by a

factor Λ4−d.

Similarly, one verifies that the leading contribution of order g2 (figure 8.2)

to the four-point function is proportional to

g2Λ8−2d

∫ Λ ddp

(p2 + r)
(

(p+ k)2 + r
) = g2Λ4−d

∫ 1 dp

p4
+O

(

g2Λ8−2d
)

.

The first term yield a finite, regularization-dependent renormalization of

the quartic interaction, while the second one vanishes faster with Λ.
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For d > 4, we verify that, after tuning of the coefficient of φ2(x), the

free theory is stable and that the effect of the quartic interaction is to

modify (renormalize) the parameters of the initial action and to generate

new corrections that are suppressed at least by a factor Λ4−d.

By contrast, for d < 4, the two momentum integrals converge but the

diagrams are multiplied by powers of the divergent factors gΛ4−d. This is

a reflection of the instability of the Gaussian fixed point in presence of the

relevant φ4 interaction. We will indicate later that large distance physics is

then governed by another non-Gaussian IR fixed point.

In the critical dimension four, the cut-off dependence is no longer gener-

ated by the coupling constant but, instead, is generated by the divergences

of Feynman diagrams and takes the form of powers of lnΛ, the degree in-

creasing with the order in g. This marginal situation is examined separately

in the next section.
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8.4 Renormalization theorem and renormalization group

We do not describe here how the results of renormalization theory can be

derived but only borrow them.

8.4.1 Renormalization theorem

One considers a quantum field theory renormalizable by power counting.

One assumes that the action includes all local monomials allowed by power

counting and possible symmetries.

Then, one can prove that, in presence of a suitable regularization, the

parameters of the Lagrangian (this includes a field renormalization) can be

adjusted order by order in a loop expansion in such a way that all correlation

functions (called renormalized) have an infinite cut-off limit. Moreover, the

limit is independent of the regularization scheme.
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In the example of the initial action (8.11) in d = 4,

S(φ) =
∫

d4x
[

1
2

(

∇xφ(x)
)2

+ 1
2 (Λ

2uoc(g) + r)φ2(x) + 1
4!gφ

4(x)
]

+ reg. ,

(8.12)

the renormalized action takes the form

Sr(φ) =

∫

d4x
[

1
2Z(Λ)

(

∇xφ(x)
)2

+ 1
2

(

Λ2uoc(g) + r(Λ)
)

Z(Λ)φ2(x)

+ 1
4!Z

2(Λ)g(Λ)φ4(x)
]

+ regularization .

It involves three, cut-off dependent, renormalization constants multiplying

the three independent monomials in the action. They have to be adjusted

order by order in a loop expansion to generate finite correlation or vertex

functions (denoted below by Γ
(n)
r ) that are finite in the infinite cut-off limit.

549



The algebraic part of the proof is based on a recursion on the number of

loops and the properties of the generating functional Γ(ϕ) of vertex (one-line

or one-particle irreducible) functions.

The renormalized action is determined in the following way: one assumes

that all divergences have been cancelled up to loop order (L− 1) by adding

the proper counter-terms to the action. One then evaluates the remaining

divergences of vertex functions at loop order L. We denote by Γdiv
L (ϕ) the

generating functional of the L loop divergent contributions (Γdiv
L (ϕ) is de-

fined up a finite part).

One proves that it involves, in general, all local monomials consistent with

power counting and symmetries. One adds to the (L− 1) loop renormalized

action −Γdiv
L (φ). The action remains local. Using the relation between Γ(ϕ)

and the action at leading order, one verifies that vertex functions are then

finite at L loop order and, moreover, that Γdiv
L+1(ϕ) is again local.
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8.4.2 One-loop calculations: the massless theory

At one-loop order, the two-point function (Fig. 8.1) is given by

Γ̃(2)(p) = p2 + 1
2Ω4(0)g +O(g2)

with

Ω4(0) =
1

(2π)4

∫

d4p ∆̃(p)

and

∆̃(p) =
1

p2 +O(p4/Λ2)
.

The one-loop correction is a constant, which implies Z = 1 + O(g2). The

counter-term is determined by imposing the massless condition Γ̃
(2)
r (0) = 0

and yields a contribution to u0c(g),

Λ2u0c(g) = − 1
2Ω4(0)g +O(g2).
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The four-point function at one-loop is given by (see Fig. 8.2)

Γ̃(4)(p1, p2, p3, p4) = g − 1
2g

2 [B(p1 + p2) +B(p1 + p3) +B(p1 + p4)]

with

B(p) =
1

(2π)4

∫

d4q ∆̃(q)∆̃(p− q).

For Λ → ∞, at leading order the momentum p can be neglected and

B(p) ∼ 1

(2π)4

∫ Λ d4q

q4
∼ 1

8π2
ln Λ .

One infers

Γ̃(4)(p1, p2, p3, p4) =
Λ→∞

g − 3g2

16π2
ln Λ +O(g2 × 1) +O(g3). (8.13)

This divergent contribution determines the coefficient of φ4 at one-loop

order, up to a finite part, as

g(Λ) = g +
3

16π2
g2 ln Λ .
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8.4.3 Renormalization: the massless or critical theory

We consider the action (8.12). The renormalization theorem can be refor-

mulated most conveniently in terms of vertex functions. We first restrict the

discussion to the massless (critical) theory r = 0.

We introduce a momentum scale µ ≪ Λ, called the renormalization scale

and a parameter gr characterizing the effective interaction at scale µ, called

the renormalized interaction.

One can then find two functions Z(Λ/µ, gr) and Zg(Λ/µ, gr), which satisfy

g = Zg(Λ/µ, gr)gr = gr +O(g2r ), Z(Λ/µ, gr) = 1 +O(gr), (8.14)

calculable order by order in an expansion in powers of gr, such that, order

by order, all renormalized vertex functions

Γ̃(n)
r (pi; gr, µ,Λ) = Zn/2(gr,Λ/µ)Γ̃

(n)(pi; g,Λ), (8.15)

have finite limits Γ̃
(n)
r (pi; gr, µ) when Λ → ∞ at pi, µ, gr fixed.
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Remarks

(i) There is some arbitrariness in the choice of the renormalization con-

stants Z and Zg since they can be multiplied by arbitrary finite functions of

gr. The constants can be completely determined, for example, by renormal-

ization conditions. One can, for example, impose the three conditions (the

first one being the criticality or massless condition),

Γ̃(2)
r (p = 0, µ, gr) = 0 ,

d

dp2
Γ̃(2)
r (p = µ, µ, gr) = 1 ,

Γ̃(4)
r (pi = µθi, µ, gr) = gr with

∑

i

θi = 0 , θi · θj = 4
3δij − 1

3 . (8.16)

One verifies that Γ̃
(n)
r has dimension 4−n (equation (8.21)). Thus, Γ̃

(2)
r has

dimension 2 and Γ̃
(4)
r is dimensionless in such a way that gr is dimensionless.

Then, one proves, order by order in an expansion in powers of gr, that the

functions Γ̃
(n)
r are unique, that is, independent of the specific regularization

scheme.
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(ii) In the traditional terminology of quantum field theory, the parameters

or correlation functions of the initial theory are called bare parameters or

bare correlation functions.

(iii) The renormalization momentum scale µ is chosen to correspond to

the momentum or energy scale at which phenomena are measured and the

parameter gr plays the role of the effective quartic interaction g(Λ/µ), where

Λ/µ is the ratio between the momentum scale of the initial microscopic

model and the physical momentum scale.

(iv) Beyond perturbation theory, the interpretation of renormalized corre-

lation functions is subtle. In formal renormalization theory, the parameters

of the renormalized theory are fixed, and the initial parameters, which are

the coefficients of all operators relevant or marginal with respect to the

Gaussian fixed point, are adjustable parameters and thus vary when the

scale factor Λ/µ varies. This corresponds to a generalized fine-tuning, gen-

eralizing the required fine-tuning of the coefficient of φ2.
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However, the possibility of such a systematic fine-tuning and its physi-

cal relevance have to be investigated. The study of the RG equations will

provide some information about this question.

Finally, of course, the renormalization theorem has implications for the

large-distance behaviour of statistical models only if the property of renor-

malizability remains true at fixed dimension d < 4, without fine-tuning of

the quartic interaction.

8.5 Renormalization group equations for the massless theory

In the framework of perturbation theory, that is, in an expansion in powers

of the parameter g, the large distance behaviour of correlation functions

differs from the tree level behaviour only by powers of logarithms. These

logarithms are organized by the RG equations.
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8.5.1 RG equations

From equation (8.15) and the existence of a limit Λ → ∞, a new equation

obtained by differentiation of the equation with respect to Λ at µ, gr fixed,

follows:

Λ
∂

∂Λ

∣

∣

∣

∣

gr,µ fixed

Zn/2(g,Λ/µ)Γ̃(n)(pi; g,Λ) = o(Λ−2+υ), 0 < υ ≪ 1 ,

(8.17)

where the renormalization factor Z has been expressed in terms of g instead

of gr.

In agreement with the perturbative philosophy, one first neglects all con-

tributions that, order by order, decay as powers of Λ. Thus, we define asymp-

totic functions Γ̃
(n)
as. (pi; g,Λ) and Zas.(g,Λ/µ) as sums of the perturbative

contributions to the functions Γ̃(n)(pi; g,Λ) and Z(g,Λ/µ), respectively, that

do not go to zero when Λ → ∞.
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One can show that such correlation functions can also be obtained by adding

to the action all possible irrelevant terms and adjusting order by order

their amplitudes as functions of g in order to eliminate systematically the

contributions that go to zero.

The asymptotic functions then satisfy equation (8.17) with a right-hand

side that vanishes exactly. Using the chain rule, one derives from equation

(8.17)

[

Λ
∂

∂Λ
+ β(g,Λ/µ)

∂

∂g
− n

2
η(g,Λ/µ)

]

Γ̃(n)
as. (pi; g,Λ) = 0 , (8.18)

where the functions β and η are defined by

β(g,Λ/µ) = Λ
∂

∂Λ

∣

∣

∣

∣

gr,µ

g , (8.19a)

η(g,Λ/µ) = −Λ
∂

∂Λ

∣

∣

∣

∣

gr,µ

lnZas.(g,Λ/µ). (8.19b)

558



Since the two functions are dimensionless, they can depend on g,Λ, µ only

through the dimensionless combinations g and Λ/µ. Moreover, the functions

β and η can be calculated directly, by using equation (8.18), in terms of the

initial vertex functions, which do not depend on µ. Thus, the functions β

and η cannot depend on Λ/µ.

Equation (8.18) then takes the simpler form (Zinn-Justin 1973)

(

Λ
∂

∂Λ
+ β(g)

∂

∂g
− n

2
η(g)

)

Γ̃(n)
as. (pi; g,Λ) = 0 . (8.20)

Formulated in terms of the cut-off Λ, the fundamental idea of the RG be-

comes: it is possible to modify the cut-off Λ and in a correlated way the

normalization of the field φ and the coefficients of all interactions in a way

that leaves all correlation functions invariant.
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Equation (8.20) is satisfied by the functions Γ̃(n) asymptotically in the limit

|pi| ≪ Λ. At all orders in the expansion in g the neglected terms are of the

form (lnΛ)L/Λ2, where the degree L increases with the order.

Notation. In what follows, the vertex functions are implicitly the functions

Γ̃
(n)
as. without corrections, which satisfy the RG equations exactly and we

omit the subscript ’as.’.

8.5.2 Dimension of vertex functions

We have stated that it is convenient to discuss renormalization and renor-

malization group equations in terms of vertex functions. To solve the RG

equations, we need the mass dimensions of the Fourier components of vertex

functions.

In generic space dimension d, the dimension [φ̃] of the Fourier components

φ̃ of the field can be inferred from the relation

φ(x) =

∫

ddp eipx φ̃(p) ⇒ [φ̃] = −(d+ 2)/2 .

560



The vertex functions Γ̃(n) are obtained by expanding the generating func-

tional in powers of the field Fourier components ϕ̃(p) = 〈φ̃(p)〉:

Γ(ϕ) =
∑

n

1

n!

∫

ddp1 . . . d
dpn δ

(d)
(

∑

i

pi

)

ϕ̃(p1) . . . ϕ̃(pn)Γ̃
(n)(p1, . . . , pn).

One infers the dimension

[Γ̃(n)] = −nd+ n(d+ 2)/2 + d = d− n(d− 2)/2 . (8.21)

Equation (8.20) can then be written in a different form. Indeed, the dimen-

sional relation (8.21) implies

Λ
∂

∂Λ
+
∑

i

pi
∂

∂pi
= d− n

2
(d− 2)

and, thus,
(

d−
∑

i

pi
∂

∂pi
+ β(g)

∂

∂g
− n

2
[d− 2 + η(g)]

)

Γ̃(n)(pi; g,Λ) = 0 .
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8.6 Renormalized correlation functions and RG

The renormalized vertex functions (8.15) and the initial vertex functions

are by definition proportional and, thus, have the same small momentum

behaviour.

The renormalized functions also satisfy RG equations that are derived

from equation (8.15) (in which the initial correlation functions and the

renormalized functions play almost a symmetric role) by differentiating with

respect to µ at Λ and g fixed.

Moreover, the calculation of renormalized functions, within the framework

of dimensional regularization and minimal subtraction scheme, is easier.

However, studying only renormalized functions does not allow determin-

ing the behaviour and the range of the parameters of the renormalized

theory as functions of the initial parameters for large cut-off or the nature

of all corrections to the asymptotic behaviour.
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8.6.1 RG equations for renormalized vertex functions

One rewrites equation (8.15) as

Z−n/2(gr,Λ/µ)Γ̃
(n)
r (pi; gr, µ,Λ) = Γ̃(n)(pi; g,Λ), (8.22)

and expresses that the right hand side does not depend on the renormaliza-

tion scale µ:

µ
d

dµ

∣

∣

∣

∣

g,Λfixed

Γ̃(n)(pi; g,Λ) = 0 .

The roles of g,Λ and gr, µ are thus formally interchanged and the algebraic

transformations of section 8.5, in the large Λ limit, lead to an equation of

the form
(

µ
∂

∂µ
+ βr(gr)

∂

∂gr
− n

2
ηr(gr)

)

Γ̃(n)
r (pi; gr, µ) = 0 . (8.23)

After the limit Λ → ∞ has been taken, the equation is exact. However,

this assumes that the limit exists beyond perturbation theory, a non-trivial

issue.
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Note that the functions βr and ηr differ from the functions β and η defined

in (8.19) but cöıncide at leading order for g → 0.

In the renormalized scheme, functions can be calculated using dimen-

sional regularization (see lecture 9) and the renormalized theory can also be

precisely defined by minimal subtraction (or modified minimal subtraction)

by subtracting from perturbative contributions the simple or multiple poles

in 1/(d− 4), without introducing renormalization conditions.
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8.7 Solution of RG equations

The solution of equation (8.20), combined with perturbative calculations,

allows determining the large distance behaviour of the effective interaction

strength and of correlation functions.

Equation (8.20) can be solved, for example, by the method of charac-

teristics. One introduces a dilatation parameter λ and one looks for two

functions g(λ) and Z(λ) such that

λ
d

dλ

[

Z−n/2(λ)Γ̃(n)
(

pi; g(λ),Λ/λ
)

]

= 0 . (8.24)

By differentiating explicitly with respect to λ, one finds that equation (8.24)

is consistent with equation (8.20) if

λ
d

dλ
g(λ) = −β

(

g(λ)
)

, g(1) = g ; (8.25a)

λ
d

dλ
lnZ(λ) = −η

(

g(λ)
)

, Z(1) = 1 . (8.25b)
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Equations (8.24) and (8.25) then imply

Γ̃(n)(pi; g,Λ) = Z−n/2(λ)Γ̃(n)
(

pi; g(λ),Λ/λ
)

. (8.26)

Remark. The equation becomes analogous to equation (8.15) if one chooses

λ = Λ/µ and if one identifies gr with g(Λ/µ), the effective interaction at

scale µ, and Z(Λ/µ) with the renormalization of the field. One may then

wonder why it was necessary to introduce the partial differential equations.

The main reason is the following: it allows showing that the coefficients

of the RG equations do not depend on the ratio µ/Λ, in contrast with

the renormalization constants. This implies properties of renormalization

constants that are contained in equation (8.15) only implicitly. This also

proves that the flow equations (8.25) are independent of λ, a property that

is important to allow for fixed points.
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Other forms. First, it is convenient to multiply Λ by a factor λ in equation

(8.26):

Γ̃(n)(pi; g, λΛ) = Z−n/2(λ)Γ̃(n)
(

pi; g(λ),Λ
)

. (8.27)

The dimensional considerations of section 8.5.2, in particular the relation

(8.21), imply

Γ̃(n)(pi; g,Λλ) = λ4−nΓ̃(n)(pi/λ; g,Λ).

Then, equation (8.27) can be rewritten as

Γ̃(n)(pi/λ; g,Λ) = λn−4Z−n/2(λ)Γ̃(n)
(

pi; g(λ),Λ
)

. (8.28)

The appearance of the scale factor Z1/2(λ)/λ reflects the meaning of Z1/2(λ),

which is the ratio between the complete scaling and the Gaussian scaling

transformation (8.10). It also corresponds to the initial renormalization of

the field φ performed in section 8.2, which has the form of the field RG

transformation adapted to the Gaussian fixed point.
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Equations (8.25) and (8.28) realize asymptotically (because terms sub-leading

by powers of Λ have been neglected) the general ideas of the RG.

The parameter g(λ) characterizes the effective action Sλ at scale λ and,

therefore, equation (8.25a) governs the flow of interactions.

8.7.1 Integrated RG flow equations

Integrating equations (8.25), one finds
∫ g(λ)

g

dg′

β(g′)
= − lnλ , (8.29a)

∫ λ

1

ds

s
η
(

g(s)
)

= − lnZ(λ). (8.29b)

Equation (8.20) is the RG equation in differential form. Equations (8.28)

and (8.29) are the integrated RG equations. In what follows, we assume

explicitly that the RG functions, β(g) and η(g), are regular functions of g,

for g > 0.
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In equation (8.27), one notes that it is equivalent to increase Λ or λ. To

study the limit Λ → ∞, one must thus determine the behaviour of the

amplitude g(λ) of the effective interaction for λ → ∞. Equation (8.29a)

shows that g(λ) increases if the β-function is negative, or decreases in the

opposite case. Fixed points correspond to zeros g∗ of the β-function which,

therefore, play an essential role in the study of the large distance behaviour.

Those for which the function β has a negative slope are repulsive fixed points

in the IR: g(λ) moves away from such zeros, except if initially g(1) = g∗.

On the contrary, those for which the slope is positive are attractive fixed

points from the viewpoint of the large-distance behaviour.
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8.8 RG functions at one-loop order and triviality of φ4
4

The RG functions β and η can be calculated perturbatively by expressing

that the two- and four-point functions satisfy the RG equations (8.20). For

the two- and four point functions, they respectively read

(

Λ
∂

∂Λ
+ β(g)

∂

∂g
− η(g)

)

Γ̃(2)
as. (p; g,Λ) = 0 ,

(

Λ
∂

∂Λ
+ β(g)

∂

∂g
− 2η(g)

)

Γ̃(4)
as. (pi; g,Λ) = 0 .

8.8.1 One-loop calculations

The one-loop correction to the two-point function (Fig. 8.1) is a constant

and induces only a modification of the critical parameter u0c in such a way

that

Γ̃(2)(p) = p2 +O(g2).
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The four-point function at one-loop given by (see Fig. 8.2)

Γ̃(4)(p1, p2, p3, p4) = g − 1
2g

2 [B(p1 + p2) +B(p1 + p3) +B(p1 + p4)]

+O(g3)

for Λ → ∞ is given by equation (8.13):

Γ̃(4)(p1, p2, p3, p4) =
Λ→∞

g − 3g2

16π2
ln Λ +O(g2 × 1) +O(g3).

Inserting the two expansions in the respective RG equations, one first con-

cludes η(g) = O(g2), then

− 3g2

16π2
+ β(g)

(

1 +O(g)
)

+O(g3) = 0

and, thus,

β(g) =
3g2

16π2
+O(g3).
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8.8.2 The problem of triviality

Assuming that initially the constant g is small enough, we can integrate the

flow equation (8.29a) and find

g(λ) =
g

1 + (3g/16π2)g lnλ

and thus, for λ → +∞,

g(λ) ∼ 16π2

3 lnλ
.

Therefore, because the leading term of the β-function is positive, the Gaus-

sian fixed point is marginally stable. More generally, if the β-function re-

mains positive for g > 0, g(λ) is a decreasing function of λ and g(λ) con-

verges toward zero for λ → ∞, indicating a screening effect.

Although such a result has not been established rigorously yet, there is

much numerical evidence that this is the right scenario.
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If this situation is realized, for any initial value of the interaction parameter

g, the effective interaction when Λ/µ → ∞ vanishes and the infinite cut-

off limit is a free field theory. This is the so-called triviality problem. As

a consequence, a renormalized quantum field theory with a φ4 interaction,

which would be a field theory consistent for all scales, does not exist.

However, from the viewpoint of effective field theories, this is an accept-

able scenario. Indeed, the cut-off scale, insofar it represents the scale of some

new microscopic physics, is not infinite and the field theory is not required

to remain consistent up to the cut-off scale.

The main prediction of this analysis is that for a cut-off large but finite,

one expects the effective interaction to be small, but since the decrease is

only logarithmic, it will remain much larger than the interactions due to

non-renormalizable (irrelevant) interactions.
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For example, under the extreme assumption that Λ is Planck’s scale and

µ = 100 GeV, one finds

g(Λ/µ)

8π2
∼ 2

3 ln(Λ/µ)
≈ 0.017 ,

where, to give a better appreciation of the magnitude of the parameter g,

we have divided the coupling constant by the loop factor 8π2 = S4/(2π)
4,

S4 being the area of the sphere in four dimensions.

From the point of view of effective field theories, the existence of a consis-

tent renormalized quantum field theory on all scales may be an interesting

mathematical problem but with little physics relevance.

574



Fig. 8.3 – Two-loop contribution to the two-point function

8.8.3 The function η(g) at two loops

A somewhat longer calculation of the two-loop diagram displayed in Fig. 8.3

yields the leading contribution of order g2 to η(g). The diagram contributing

to Γ̃(2)(p) is given by (Some elements of the calculation can be found in

section 9.2.2.)

Γ̃
(2)
2 (p) = − 1

6(2π)8

∫

d4q1 d
4q2 ∆̃(q1)∆̃(q2)∆̃(p− q1 − q2).

The Feynman diagram can be calculated more easily by using the propaga-

tor in position variables.
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It then takes the form

Γ̃
(2)
2 (p) = − 1

6

∫

eipx ∆3(x)d4x .

As a function of position variables, the propagator with a cut-off can be

parametrized as

∆(x) =
ϑ(Λx)

4π2x2
, (8.30)

where the large-distance behaviour is determined by the massless free prop-

agator and the cut-off ensures regularity at short distance:

lim
x→∞

ϑ(x) = 1 , ϑ(x) ∝
x→0

x2.

The condition Γ̃(2)(0) = 0 determines u0c at order g2. The vertex function

then takes the form

Γ̃(2)(p) = p2 − g2

6
Kp2 ln(Λ/p) +O(g2 × 1 +O(g3)).
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The coefficient K is given by

K =
∂

∂p2
Λ

∂

∂Λ

∫

eipx ∆3(x)d4x

∣

∣

∣

∣

p=0

.

Notice the identity

4
∑

µ=1

(

∂

∂pµ

)2

Φ(p2) = 8Φ′(p2) + 4p2Φ′′(p2).

Thus,

K = − 1

8(4π2)3

∫

d4x

x4
Λ

∂

∂Λ
ϑ3(Λx) = − 1

(4π)4

∫ ∞

0

dx
∂

∂x
ϑ3(Λx).

The integrand is an explicit derivative. Only x = ∞ contributes and the

result thus is independent of the cut-off function ϑ. One finds

K = − 1

(4π)4
.
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One infers

Γ̃(2)(p) = p2 +
1

24

g2

(8π2)2
p2 ln(Λ/p) +O(g2 × 1, g3).

The RG equation (8.20) then implies

g2

6(4π)4
p2 − η(g)p2 = 0 ⇒ η(g) =

1

6(4π)4
g2 +O(g3). (8.31)

Solving equation (8.29b), rewritten in the form

lnZ(λ) =

∫ g(λ)

g

dg′
η(g′)

β(g′)
,

we see that lnZ(λ) has the limit for λ → ∞, which due to the signs of β

and η, is consistent with the general result Z < 1:

lim
λ→∞

Z(λ) = exp

[

−
∫ g

0

dg′
η(g′)

β(g′)

]

< 1 . (8.32)
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8.9 The massive φ4 theory in the symmetric phase

We now study the massive phase r > 0. We thus modify the action:

S(φ) 7→ S(φ) + r

2

∫

d4xφ2(x),

where r, the coefficient of φ2, characterizes in statistical physics the devia-

tion from the critical temperature: r ∝ T − Tc.

8.9.1 RG equations

The renormalization theorem generalizes to correlation functions of φ(x)

and φ2(x), and leads to the appearance of a new renormalization factor

Z2(Λ/µ, gr) associated with the parameter r. By the same arguments as in

the massless situation, one derives a more general RG equation of the form
[

Λ
∂

∂Λ
+ β(g)

∂

∂g
− n

2
η(g)− η2(g)r

∂

∂r

]

Γ̃(n)(pi; r, g,Λ) = 0 , (8.33)

where a new function η2(g) appears.
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The additional term is proportional to r since it must vanish for r = 0. The

dimensionless function η2 may still have a regular dependence in the ratio

r/Λ2, but we have neglected such a possible dependence for the same reason

that we have already neglected all other contributions of the same order.

To determine η2(g), one can calculate the two-point function and apply

the RG equations. At order g, one finds

Γ̃(2)(p) = p2 + r +
g

32π4

∫ Λ

d4q

(

1

q2 + r
− 1

q2

)

+ · · · .

Using
1

32π2

∫ Λ

d4q

(

1

q2 + r
− 1

q2

)

∼ − r

16π2
ln(Λ/

√
r), (8.34)

and applying the RG equations, one finds

− gr

16π2
− η2(g)r = 0 ⇒ η2(g) = − g

16π2
+O(g2) . (8.35)
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8.9.2 Renormalized RG equations

Again a renormalized deviation rr from the massless theory can be intro-

duced and the analogue of equation (8.33) is obtained:

[

µ
∂

∂µ
+ βr(gr)

∂

∂gr
− n

2
ηr(gr)− η2,r(gr)rr

∂

∂rr

]

Γ̃(n)
r (pi; rr, gr, µ) = 0 .

(8.36)

The solutions of these RG equations then follows immediately from the

corresponding solutions of equations (8.33).

8.9.3 Solution of RG equations

To study the behaviour of correlation functions of the massive theory in the

unbroken phase, we integrate equation (8.33) by the method of characteris-

tics, as we have done for previous RG equations. In addition to the functions

g(λ) and Z(λ) of equations (8.29), one must now introduce a function r(λ).
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It is determined by imposing that equation (8.33) is consistent with equation

λ
d

dλ

[

Z−n/2(λ)Γ̃(n)
(

pi; r(λ), g(λ),Λ/λ
)

]

= 0 . (8.37)

The consistency condition is equivalent to the set of equations

λ
d

dλ
g(λ) = −β

(

g(λ)
)

, g(1) = g , (8.38)

λ
d

dλ
ln r(λ) = η2

(

g(λ)
)

, r(1) = r , (8.39)

λ
d

dλ
lnZ(λ) = −η

(

g(λ)
)

, Z(1) = 1 . (8.40)

Dimensional analysis (see section 8.2.1), which reflects the action of the

Gaussian renormalization group, implies

Γ̃(n)
(

pi; r(λ), g(λ),Λ/λ
)

= (Λ/λ)4−nΓ̃(n)
(

λpi/Λ;λ
2r(λ)/Λ2, g(λ), 1

)

.
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We are only interested in the region in parameter space for which the phys-

ical mass is much smaller than the cut-off, which implies |r| ≪ Λ2 and this

is the source of the IR singular behaviour that is present in the perturbative

expansion. We now assume that the equation

r(λ) = Λ2/λ2, (8.41)

has a solution in λ. Then, after a dilatation of parameter λ, the physical mass

is of order unity. This also corresponds, by relating the dilatation parameter

λ and r, to choosing the initial value (for λ = 1) of the coefficient of the

relevant term φ2 in such a way that its value after dilatation is of order

unity.

Combining equations (8.37)–(8.41), one finds

Γ̃(n)(pi; r, g,Λ) = Z−n/2(λ)m4−nΓ̃(n)
(

pi/m; 1, g(λ), 1
)

, (8.42)

where we have introduced the notation

m = Λ/λ . (8.43)
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The constant Z(λ) goes to a limit (equation (8.32). The solution of equation

(8.39) using equation (8.25a) can be written as

ln r(λ) = ln r + exp

[

∫ λ

1

dσ

σ
η2
(

g(σ)
)

]

= ln r +

∫ g

g(λ)

dg′
η2(g

′)

β(g′)
.

From the expansions

β(g) =
3g2

16π2
+O(g3), η2(g) = − g

16π2
+O(g2),

since the integral is dominated by the lower-bound and the behaviour of the

integrand near zero, one infers

ln
(

r(λ)/r
)

=

∫ g

g(λ)

dg′
η2(g

′)

β(g′)
∼ 1

3 ln g(λ) ⇒ r(λ)

r
∝
(

g(λ)
)1/3 ∝ (lnλ)−1/3

and thus, using equations (8.41) and (8.43),

m =
Λ

λ
∝

√
r

(ln(Λ/
√
r))1/6

.
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8.9.4 Callan–Symanzik equations

Callan–Symanzik (CS) equations are useful, inhomogeneous, variants of the

renormalized RG equations (8.36). They apply only to a massive (non-

critical) theory but can thus be derived for dimensions d ≤ 4.

In d = 4− ε dimensions, the renormalized vertex functions are defined by

the conditions

Γ̃(2)
r (p,m, gr) = m2 + p2 +O(p4), Γ̃(4)

r (0, 0, 0, 0) = mεgr ,

where m ≪ Λ is proportional to the inverse of the correlation length and gr
is dimensionless.

One needs also the vertex (1PI) function Γ(1,n) associated to the correla-

tion function (see also section 8.9.1)

〈

1
2φ

2(y)φ(x1) . . . φ(xn)
〉

.
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Its renormalization is determined by the condition

Γ̃(1,2)
r (0; 0, 0; gr,m) = 1 .

Dimensional analysis then implies

Γ̃(n)
r (pi; gr,m) = md−n(d−2)/2F

(n)
+ (pi/m),

a form consistent for d = 4 with equation (8.42), since the missing factor Z

factor is provided by the field renormalization (8.22).

One then proves the RG equations in the CS form
(

m
∂

∂m
+ βr(gr)

∂

∂gr
− n

2
ηr(gr)

)

Γ̃(n)
r (pi; gr,m)

=
(

2− ηr(gr)
)

m2Γ̃(1,n)
r (0; pi; gr,m) , (8.44)

where the right hand side refers to the vertex function involving the expec-

tation value of n fields φ and 1
2

∫

ddxφ2(x).
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The advantage of the CS equations is that they can be derived even at

fixed dimension d < 4 because the theory is massive while the massless

theory suffers from perturbative IR divergences.

However, they are predictive only if the right hand side becomes negligible

for large momenta |pi| ≫ m (but still |pi| ≪ Λ), a property that can only

be explicitly verified in four dimensions or within the framework of the

ε-expansion.

With this assumption,

(

m
∂

∂m
+ βr(gr)

∂

∂gr
− n

2
ηr(gr)

)

Γ̃(n)
r (pi; gr,m) →

|pi|≫m
0 . (8.45)

This equation can then be solved in the same way as the homogeneous RG

equation (8.33).
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8.10 An early RG upper-bound on the Higgs particle mass

In the Standard Model, the Higgs field through its expectation value and its

various couplings gives masses to all particles. The observed masses deter-

mine the corresponding couplings. Before the LHC discovery, only the Higgs

mass and thus the Higgs self-coupling were unknown parameters. However,

it was likely that the renormalized (φ2)2 self-coupling g would be small

enough so that perturbation theory remained at least semi-quantitatively

applicable. Otherwise, the successes of the Standard Model would have been

difficult to understand.

In the perturbative regime, the Higgs mass increases with g. To obtain an

upper-bound on the Higgs mass, one has to examine what happens when g

increases. For g large enough, the Higgs mass is mostly determined by the

Higgs self-coupling. In the pure (φ2)2 field theory and in the perturbative

regime, simple RG arguments are applicable.
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8.10.1 The O(4) symmetric (φ2)2 field theory in the broken phase

We consider here a field theory that is more directly relevant to particle

physics, where φ is a four-component field and the action has an O(4)

symmetry, which is locally equivalent to the SU(2)×SU(2) chiral symmetry,

and a (φ2)2 interaction. The unregularized action reads

S(φ) =
∫

d4x
[

1
2

(

∇xφ(x)
)2

+ 1
2 (u0c + r)φ2(x) + 1

4!g0
(

φ2(x)
)2
]

.

The field expectation value v = 〈φ〉 is given by the minimum of the action

for constant fields. At leading order,

S(v)/volume = 1
2rv

2 + 1
4!g0(v

2)2.

Differentiating with respect to v, one obtains the equation

v
(

r + 1
6g0v

2
)

= 0 .
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For r < 0, the minimum of the potential is not reached for the O(4) sym-

metric extremum at φ = 0 but for the sphere

|v| =
√

−6r/g0 .

The choice of a specific point on the sphere, that is, the direction of the

vector v, breaks the O(4) symmetry. The region r < 0 corresponds to a

phase with spontaneous broken O(4) symmetry.

Setting then

φ = v + χ

and expanding the action up to second order in χ, one finds

S(χ) =
∫

d4x
[

1
2

(

∇xχ(x)
)2

+ 1
6g0
(

v · χ(x)
)2

+O(|χ|3
]

.

One verifies that the perturbative spectrum consists in one massive particle,

the component of χ along v with mass |v|
√

g0/3, which in this context

we identify with the Higgs particle, and 3 massless particles, the Nambu–

Goldstone modes (see lecture 12 for details).
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8.10.2 Beyond leading order: a bound on the mass of the Higgs particle

Any quantum field theory requires eventually a cut-off to cure the unavoid-

able problem of infinities. The cut-off Λ then corresponds to the onset of

some new physics beyond the Standard Model.

The renormalized coupling constant g is the effective coupling constant

g0(µ/Λ) at the renormalization scale µ, µ ≪ Λ. Then,

g ∼ g0(µ/Λ),

∫ g0(µ/Λ)

g0

dg′

β(g′)
= ln(µ/Λ).

For g0 small, the perturbative expansion of the β-function is

β(g0) = β2g
2
0 + β3g

3
0 +O

(

g40
)

, 8π2β2 = 2 , β3/β
2
2 = −13/24 .

For Λ/µ large, the effective coupling g at scale µ is small because β2 is

positive if the β-function remains positive for all values of g0.
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Then,

ln(Λ/µ) =
1

β2g
+

β3

β2
2

ln g +K(g0) +O(g),

where K(g0) = O(1) can only be determined by non-perturbative methods.

For g small, perturbation theory relates the Higgs field expectation value,

which is known from the Z mass (|v| ≡ 〈H〉 ∼ 250GeV), and the Higgs

mass. At leading order, one finds

m2
H = 1

3gv
2 +O

(

g2
)

.

To minimize higher order corrections, one chooses for g the renormalized

coupling constant at scale 〈φ〉. One can then eliminate g and finds

ln

(

Λ

|v|

)

=
1

3β2

v2

m2
H

+
2β3

β2
2

ln

(

mH

|v|

)

+ K̃(g0) +O(g) .

If one can neglect in the right hand side all terms but the two first ones,

one obtains a relation between the two ratios Λ/ 〈H〉 and mH/ 〈H〉.
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Moreover, if the Higgs is really associated to a physical particle, its mass

must be smaller than the cut-off. Taking for the two coefficients of the β-

function the values for O(4), 8π2β2 = 2, β3/β
2
2 = −13/24, one obtains the

upper-bound

mH < 2.6 〈φ〉 ⇒ mH < 640 GeV .

The value could be compared with computer simulation values, which vary

in the range 670–700GeV. Moreover, the corresponding value of g is such

that perturbation theory at leading order should still be semi-quantitatively

correct.

Conversely, from the value physical coupling constant at scale µ, one

can infer from the equation an upper-bound on the cut-off or scale of new

physics. Clearly, this bound is very sensitive to small corrections since the

equation determines ln(Λ/µ). Moreover, for smaller values of mH the cou-

pling to the quark top and vector bosons have to be taken into account.
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The conclusion at the time when the possible design of a new hadron collider

was discussed was that by exploring physics in the TeV range one would

either find the Higgs particle or discover some new physics, or both.

Later, the study of radiative corrections, even though they vary only

like lnmH , benefited from the precision of LEP measurements. Assuming a

Standard Model Higgs particle, they actually indicated that the Higgs mass

should lie between 114 and 200 GeV.
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8.10.3 Summary

In this lecture, we have shown that in the framework of effective field theory

(EFT), using scaling arguments, it is natural to focus on renormalizable

theories, but ‘small’ non-renormalizable interactions may eventually show

up.

We have argued that the momentum cut-off, required to give a meaning

to perturbation theory, should be considered as an ad hoc substitute to an

unknown or too complicate short distance structure.

However, it is then necessary to prove that the physical observables at a

momentum scale much smaller than the cut-off are insensitive to the cut-off

procedure and this is the purpose of renormalization theory.

In the traditional formulation, renormalization theory is based on fix-

ing parameters at a physical scale and fine-tuning the parameters of the

Lagrangian as functions of the cut-off.
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By contrast, in the framework of EFT one considers the parameters in the

Lagrangian as fixed since fine tuning has little physical justification. In a

theory with a scalar field, this leads to the important (and unsolved in the

Standard Model) problem of the fine tuning of the scalar mass term.

One has then to investigate, at fixed initial parameters, the behaviour of

the effective couplings or masses at physical scale, when typical momenta

or energies become much smaller than the cut-off.

This can be achieved by using renormalization group equations implied

by renormalization theory. We have used them to study the behaviour of

the effective φ4 coupling constant at physical scale when the cut-off is sent

to infinity. We have then uncovered the problem of triviality, consequence

of the positivity of corresponding RG β-function: in the infinite cut-off limit

the effective coupling vanishes.
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However, this is not lethal in the framework of EFT because one is not

required to sent the cut-off to infinity. Indeed, one does not insist that the

EFT should be consistent on all scales and the cut-off has just to be assumed

to be large enough in such a way that an effective large distance theory with

proper physical properties can be defined.

As an early application, we have recalled how renormalization arguments

have, long before discovery, provided bounds on the mass of the Higgs par-

ticle, indicating that a collider exploring the TeV range was bound either

to find the Higgs particle or some new physics.
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