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Properties of solar oscillations

eSmall amplitude; hence consider linear perturbations around an
equilibrium structure

ePeriods much shorter than thermal timescale in most of the star;
hence assume adiabatic oscillations.

eModes are likely damped, predominantly by convective flux and
turbulent pressure perturbations.
eModes are excited stochastically by convection
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Basic equations of (non-viscous)
hydrodynamics

Continuity:

dp ,
— 4+ d =0
5 iv (pv)

Motion:
ov

P§+pV°VV=—Vp+pg

Gravity:

g = —VCD , VQCD — 47TGp

Energy:

p@ _ 1 dp ~vipdp
dt  (y3—1) \dt p dt

> = pe—divF



Small perturbations around an
equilibrium
No motion: vog =20

Hydrostatic equilibrium: Vpg = pogo

G
Gravity: gg= — T;Loar
r
| 1d 5, 1 dLg
Energy: =divFg= —s—(r“Fp) =
gy- poco 0 r2dr(r 0) Anr? dr
Perturbations: p(r,t) = pgo(r) + p'(r,t), etc.
.
Velocity: Vv = o
ot

Eulerian (p’) and Lagrangian (dp) perturba-
tions:

ép =p' +8r - Vpg,



Basic linearized equations

Continuity equation

o'+ div(pgér) = 0.

Momentum equation

O28r ov

— s = Ty / ‘oo
PO 53 = PO, P+ pog + p'80

Poisson’s equation

V2! = 4nGy’ J =-ve'
Adiabaticity
5p = ¥Y1,0P0 5p = 035,0 |

PO
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Separation of (0, ¢)

Separate displacement

51' — grafr +£h .

Equations of motion

32@ op' oD’
052 = gy P90 P05
02¢

Po?zh = —Vhp' — poVn®'.

Continuity equation

10
pl = ———(por &) — poVn & -



Separation of (0, ¢)
Separation of scalar quantity
p'(r,6,,t) = Vanp' (r) Y™ (6, $) exp(—iwt) ,
Displacement vector

o = VarR{[6-(r)Y" (6, d)ar
+&n(r) <8Y ag ,1 o a )] exp(—iwt)} :

50 sing a¢ ¢
1 .
é:h (T) 2( p - P ) .
PO
Effect of horizontal Laplacian for any perturbation y’
1 1

l"‘2



Spherical harmonics

eBehave like spherical harmonics: P,"(cos 0) cos(m ¢ - w t)
ok, =21 /A, = [I(1+1)]¥%/r



Separated equations

Separation of time as exp(-i w t)

2
%:_G‘Fi%)é’""’ 1 (Sz _1)p,+l(l+1)¢/'

dr r  yipdr ch w2 Ww2r2
dp’ 1 dp do’
—— = p(w? = N + ——p —p——,
dr vy1pdr dr
11+ 1)c? 1 dp 1d
512:(+2)C — 122 2 =P N2 — (__P___l)).
r p yipdr  pdr

1d [ ,do’ A AL R
- = 4G | =+ —N b’ .
r2dr (T dr ) " (02 T g T r2
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Boundary conditions

At centre
Er 2 1Ep for r — 0.
At surface
do’ [+ 1
o = Ar—t—1 | ++ d' =0 atr=R.
T T

d
5p=p'—|—§7~d—f=O at r=R.

Equations and boundary conditions determine frequencies w,,



Frequency dependence on solar
structure

Frequencies depend on dynamical quantities:

p(r), p(r), g(r), m(r)

However, from hydrostatic equilibrium and Poisson’s
equation p and g can be determined from p
Hence adiabatic oscillations are fully characterized by

p(r),  71(r)

or, equivalently

p(r),  A(r)
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Separated equations

d 1 d 1 [S7 +1
dor R S L (g—l)p+ >
dr Y1p r
Cowling
d_ — p(w . N2)§r %ﬁﬁ approximation
dr
1 d >d P’ - I(l+1)
r<dr dr 02 g r

High radial order

2 2 52 2
d ffr ~ _w I _1q N_ _1q &_T
dr? 2 \ w2 w2
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Mode trapping
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Asymptotics of frequencies

Acoustic-wave dispersion relation

r

Hence

w2 i+ 1)
r=le T e




Turning point:

c(re) W

e \JIl+1)
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Rotational splitting

QU ™"

TR QLT

Wilm = Wnio + m(£2)




Kernels for rotational splitting

R
Wnlm = Wnio T m/O Kpim (r)$2(r)rdr
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Helioseismic inversion

Forward modeling

—_—

Model Observables
4+

Inversion

Aim of inversion: to make inferences about
(usually) localized properties of the solar
interior



Linear inversion methods

Many of the inversion methods used in
helioseismology are linear: the solution is
a linear function of the data.

In the rest of this lecture | shall introduce
some linear techniques and a framework for
understanding and comparing them.



Prototypical example:
1-D rotation law £2(r)

As already discussed, rotation raises the
degeneracy of global mode frequencies and
introduces a dependence on azimuthal order m.

The dependence is particularly simple if we
consider a rotation profile Q(r) depending
only on the radial coordinate:

Wplm = Wplo T m/Knl(r)Q(T) dr

The kernels K (r) are different for different
modes.



Kernels K.(r) for 1-D rotation
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Letd, = (w, - w,o)/m be our data. Then

dp) = /Knl(r)Q(T) dr =+ €y

where € are noise in the data, each with
with standard deviation (s.d.) o,,.

For simplicity, we shall use single subscript “i”
in place of “nl”.



Least-squares fitting

|dea of least-squares (LS) fitting:

Approximate the unknown function Q(r)
in terms of a chosen set of basis functions

b, (r): Q(r) = Q(r) = 3x, d,(r) .

Choose coefficients x, to minimize

d; — [ K;Qdr\?
()

; Oq




This can be written as a matrix equation:
minimize | Ax—b |?.

The solution of this is
x=(A'A)*ATDb .

Unfortunately, unless we choose a highly
restrictive representation for ), the matrix

A is usually ill-conditioned in helioseismic
inversions and so the LS solution x and hence
Q also are dominated by data noise and thus
useless.



Regularized Least-Squares (RLS)
fitting
We can get better-behaved solutions out of LS

by adding a “regularization term” to the
minimization: e.g. to minimize

dz' — KZQ dr
> (2
or 3 5 /
) (di_fKiQ dr) + A2 [(@2Q/dr?)2ar

g3

2
) + /\Q\Ls‘ﬂdr

trade-off parameter

This can again be written as a matrix equation:
minimize | Ax—Db |2+ A?| Lx |?. The solution
is x=(ATA+ AN L'L)*ATb.



Optimally Localized Averages (OLA)
method

d; = /Ki(r)Q('r)dr 46 i=1,..M

Idea: for each radial location r, try to find
a linear combination of the kernels that is
localized there. y
K(r,ro) = > ci(ro)K;i(r)

1=1
If successful, then the same linear combination
of the data is a localized average of the rotation
rate near r=ry:

Qrg) =) ¢id;

/(Z ¢ K)SUdr + ) cie;
= //Cer + Zciez-



How can the coefficients c; be found?

OLA Classic (Multiplicative OLA — MOLA)
Choose the coefficients c¢; so as to minimize

f(%Q JKC2dr 4+ tan6y 07;202-2

E.g. J=12(r-r,)?. This penalizes K for being large
except at r=r,. Parameter 6 trades off between
localizing K and keeping the error term small

Subtractive OLA (SOLA)
Choose the coefficients c¢; so as to minimize

fé%(/C — T)2dr + tané ZJZ-QC,L-Q
E.g. T=A exp(-(r-ry)%/ 62). This penalizes K for
deviating from the target function T. Trade-off
parameters: 0 and 6.




Error propagation

Assume the errors in the individual data d. are
independent (i.e. uncorrelated) and the
standard deviation of each d. is o, say.

If the solution is Q(r,) =2 c,d. then the
standard deviation o[a(,)] in the solution is
is given by

O[Q(ro)] = (Z Ciz Oiz )1/2



Error correlation

Consider the solution at two points r1 and r2:

Q(r,)=2c;d ,Q(r,)=2c,d
These are constructed from the same (noisy)
data and so in general their errors are
correlated, i.e.

covlair), ar,) ] = E[(ar,) -elar)) (afr,) -Ear))] # 0

If the data errors are independent:
covla(r),ar,) ] = Z ¢;; ¢, 02



A common framework for discussing
any linear inversion

LS, RLS, MOLA, SOLA techniques above are
all examples of linear methods: the solution

is a linear combination of the data.

For any linear method, we can find inversion
coefficients c(r,), look at averaging kernels
2c,(ro)Ki(r) and calculate error propagation,
using the same expressions as in OLA.



Examples of averaging kernels

50
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: OLA
Averaging kernels for 0 !
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Tnversion coefficients

Inversion coefficients
for solution at
r,=0.5R, for OLA and
RLS inversions and
(continuous curve)

cy(To)

for a linear Toaf .
. [ RLS .
asymptotic oF ]
inversion method. L | '
& 00pe-
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Size of error bar

Trade-off curves

At a point — for
any linear method

Averaging kernel width

| Lx |

L-curve

Global measures
for RLS method
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Linearized inversion for solar
structure

The dependence of the frequencies on solar
structure is inherently nonlinear.

But we can use linear inversion techniques if we
assume that the Sun’ s structure and frequencies
are small perturbations to those of a known
reference model.



No time to discuss it in detail now, but
frequencies can be written in terms of a

variational principle

w2 — <€7 f(£)>
&€
such that
|fF:fO+5F, FO(&O) :w%&o
then F(¢) = w’¢, w? = w(2)—|—5w2 L bW~ (&0, 0F (£0))
&o,&o)

This can describe differences between the Sun and a reference model.
In which case, 6F depends on differences in quantities p, p and I';.



Primary seismic variables

The model quantities that appear in the
equations governing the adiabatic oscillations
are p, p, I, (and combinations such as c).
These are therefore the

primary seismic variables.
Except for additional physics (e.g. rotation)
they are the ONLY quantities that can be
inferred from the frequencies unless we
introduce additional assumptions.

NB In this lecture | use both y, and I'; for the first adiabatic exponent @



Can write previous equation w? = (£, F(€))/(&,€)
as w? = K/I where (in Cowling approximation)

dl d

= (), K = (pAIVER+26 (VO L P T
Then

ow _ (0K — w?I) /210>

w
where

51 = (5p ) |
do do | dd
= (5(0?) [V €2 + 26:(VO L + 6270
r dr

For full details see Gough & Thompson (1991), in Solar Interior and
Atmosphere, eds Cox, Livingston & Matthews, p. 519-561 (Univ. of
Arizona Press)




Invoking hydrostatic equilibrium

There appear to be three independent
unknown functions: &p/p, 6p/p, and &I',/T;.
But the oscillations are presumed to

take place about an equilibrium background
in hydrostatic equilibrium:

dp Gmp
dr r2
Perturbing this gives
dop Gmdp Gom p
dr r2 r2

Likewise, using the mass equation, &m can be
written in terms of 6p . Hence 6p/p can finally
be expressed in terms of 6p/p, and the number
of unknown functions reduced from 3 to 2.



Kernels for sound speed and density

10k Kernel for c?2

~ Kernel for p
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Mass conservation - an additional
constraint

Density perturbations cannot be chosen arbitrarily, as the mass of the
Sun is known, i.e.

|
<

R 2
/O Anr<pdr

Hence

|
o

R 2
/O Arr<opdr

47



Introducing additional assumptions

E.g. assume the equation of state [ {= I',(p,p,Y) known, where Y is the
helium abundance. So one can express 6l in terms of other

perturbations
5& . (8In|‘1> op | <8Inl’1> 5_,0
[ dlnp oy P | dlnp by P
InT
| (6 N 1) 5V
oY  Jp,p

and hence (after some work) derive kernels for e.g. uand .



Kernels for density and helium
abundance

-5k Kernel for p i
0 ;]
o /\/\A
3 ¥ N
X
X
_5.
-5 O Kernel forY -
0.95 0:96 0.97 0'9.8 0.99 1.0 )
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Formulation of structure inversion

For each observed mean-multiplet frequency we
have a datum (or constraint) of the form e.g.

5wnl / I 57“C (7“) nl 57~,0(7“)
0Cnl — [ gl ()2 C R g 4 / (r) dr
W PR e2(r) P p(r)
G w slowly varying function of frequency
+ Sug( nl) _I_ €l -
nt — “mode mass”

e K. (r), K" (r) are known functions
G, s(w,) is a term from near-surface errors in the mode

g, are errors in the observations.
Also have in this case the mass-conservation constraint, which can be
written in the same form as the data constraints.

Problem: use these constraints to make inferences
about e.g. 6c? and 6p between Sun and model.



RLS inversion for structure

Perhaps the most obvious approach.

Adjust the unknown functions 6c?/c?, 6p/p
and G, to get the best fit to the data.

As for rotation, need to regularize, so include
terms in the minimization to penalize solutions
&c?/c?, 6p/p that have e.g. large second
derivative. Typically choose G, (w) to be a
low-order polynomial.



OLA inversion for structure

Try to choose inversion coefficients c,(r,) so that e.g.

Kep(ro,m) = cni(r0) Kiiy(7)
nl
is localized near r=r,. If successful, then

Swp . o1, < orc2(r) . e (ro) K™ 57~p(7“)
2= [ oK, P [ L eutro) K)o

G n
+> eni(ro) Sug(;ﬂ ) + > cn(ro)en -
nl n nl

is a localized estimate of the relative difference in
sound-speed squared between Sun and model near
r=ry.



OLA inversion for structure

Choose inversion coefficients ¢; to minimize

/OR [ICCQ,p(T& r) — 7 (ro, 7“)}2 dr—+p3 /Och,@("“o,?“)er

+1 ) E;jci(ro)ei(ro)
]
where ;
’Ccz’p(To, 7“) — Z C@'(TO)KCQ’p(T) averaging kernel
1
Cp’CQ (ro,r) = Z ci(ro)KZ’),cg(’r) cross-talk kernel
1
subject to the constraints
R
/O KCQ,p(TO’T)dT =1 unimodular constraint

Z Ci(TO)Qi_lw)\(wz') =0,A=0,...,A. surface constraints

7
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Thank youl



PHYSICS OF THE SOLAR INTERIOR

Basic equations:

dp __ Gmp
dr r2
dm 2
D | :
™ Trep
dT _ T dp
dr pdr’
dL d (u pdp
— = 4nre |pe — p— | — ——
dr dt \ p pdt
0X 1 0 0X
ot i o ()
ot et 2p0r nr P G

Composition characterized by abundances X, Y, Z of H, He and the rest



Energy equation, adiabatic

approximation
1 d
p_mpdp) _ pe—divF
(v3—1) \dt p dt
Radiative flux: F = ——~y74
3Kp
(What about convection???)
[dp/dt| N p/T1 N p/T1 — Trad > 1
ldivF|  |F|/¢  (ac/3kp)(T4/42) [
3k ppl?
where = —
frad acl4
: : : : dp ~vipdp
Adiabatic approximation:. — — ——~0
dt p dt

57



Sound waves in a homogeneous
medium

po ~ constant go ~ 0 g ~0 Vpo ~ 0

PO 8t2 — _Vp/ )
: Y1,0P0 , _
o' = podivér p = o o= cgp/
82,0/

— v2p/ — C%vzpl

ot2

Wave equation: Solution p’ o« exp[i(k-r—wt)]

it w® = cplk|®



Internal gravity waves

Buoyancy force:
Py, pg dQA
T

P a2 = fouoy = —g(p2 — p2)
A
" 1dinp dlinp
— 9P dr  dr Ar
_ 2
— —pN Ar

Oscillation with frequency w = N if

1dIn dlIn
p> p

N2 >0 or i.e., for convective stability.

vy dr dr

In reality increased inertia owing to horizontal motion

If perturbation «explik-r] k= kra,r+ky,

k2 —2 )\2 —2
2= (1hgm) ¥=(1+3) ¥
h

59



Characteristic frequencies

Acoustic frequency
11+ 1)c?
r2

Buoyancy frequency:

1dlnp dlnp g2p

S7 =

V—dInT v o _dinp
~ dinp 2™ \oInp )y P dinp




Asymptotics of frequencies

Acoustic-wave dispersion relation

r

Hence
o[« _w+1) 1/2

N ! r2

Standing-wave condition, with surface-induced phase shift a

R c(r W

krdr = (n 4+ a)m, ( t)z
rt ry VI +1)

Hence Duvall law

/R <1 B L202>1/2dr _ [n + a(w)]r

w2’l”2 C w

, L=14+1/2
t



Functional analysis

w?8r = F(8r)
1 /
F@r)=—vp —g — gy,
PO PO

since p/ = —div (pgdr) 5p = c8dp g = -V’

p' (', t)
V |r —r/|

' = -G dVv

Domain D: dr such that ép(R) =0

Inner product: &m / po&mdV &EnceD

Symmetry: & F(m)) = (F(&),m)



Consequences

If F(&) = wiko

Then wg — Z(ﬁO) — <£Oaf(60)>

is real
&)
If F(&) = w1,  F&) =wik;,  wiFws,
Then €1,£2) =0.
Iff:f0+5f, FO(&O) :w%&o
Then F(€) = w2,  w?=w2+dw?, w (€0, 07 (£0))

<€Oa £O>

63



Linearized numerical differences

Linearizing around a reference model, d w,, = w, ) - @ (mod)

) dro. 5. F (& e
Yo (Oro, 07 (8r0)) 5F determined by 2-
w 2w2(8rg, dr() c?
&")nl / nl 57“02(T) / nl 5r,0(7“)
— | K dr K
Cap(/r.) CQ(T) —I_ p,C (T)
_|_Gsurf(wnl) +e .
in "

. K”'C,p(r), K”'p'c(r) are known functions
G, s(w,) is a term from near-surface errors in the mode
g, are errors in the observations.

Orp

P



Linearized structure inversion

Choose coefficients c(r,) to obtain solution atr=r,

5TC (r)

> (o) 2 = [ S ewto ) g Dart [ S et Dar
)

p(r)

F n
+> cn(ro) Sug(j 2 + > cnu(ro)ey -
nl n nl

Kep(ro,m) = cni(ro) KM (r)
nl

is localized near r = ry, and other terms are small.
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Linearized structure inversion

/OR [ICCQ,p(T07 r) — 7 (ro, 7“)}2 dr403 /OR Cp,(32 (ro, T)er

+1 ) Ejjci(ro)ei(ro)

]
R
/O ch’p(ro,r)dr =1

Y ci(ro)Q; Toa(w) =0,A=0,...,A.

7

Ke2 ,(ro,7) = ZC@(?‘O)KZ;Q,/)(T)
1

C,2(ro,m) = Z Cz'(?“o)Kf),cz(T)

(



Inverse problem for EOS

From equation of state v1 =v1(p,p, Y, Z)

Hence

57~71 8“’1%) orp (3”\71) drp
dlnyp oy P dlnp by P

dIn~1 0v1
+( oY >pp5ry+<71> nt

Using ? = yiu, u=p/p

5wnl — /Knly( )5;’11/(7")(:1 _I_/K (T)érY(T‘)d’f‘

+ / KM (r) <5ﬂ> dr + Sug(‘l’””l) +e.
int n
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Kernels
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SVD analysis to understand what's
happening in (R)LS

Can make singular value decomposition (SVD) of
matrix A :

A=UzV'

where U and V are orthogonal matrices

(i.e. UTU=I and V'V=I) with column vectors
uand vl say, and Z = diag(s,,s,,...,Sz) is a
diagonal matrix whose elements are the
singular values of s, 2's, > ... 2 s, of matrix A



Least-squares solution:
= (ATA)1A™b = VI 1Ub.
Hence

. R u(]) b

Small singular values cause any errorsin b to
“blow up” in the solution. This is why
unregularized least-squares hits a problem.

Note the roles of U and V: the data are
projected onto the u”, while the v’ form a
basis for the solution vector x.

Qr) = Saxsp(r) = S LT (o)




Truncated SVD inversion

Since small singular values cause a problem,
one egularization method is just to truncate
the summation at j=K, say, when the singular
values go below some threshold value:

u@.b (.
XTSVD = 2j=1" 5, =y ()




It turns out that the solution of the RLS
problem with regularization in standard form

) 5 _u9b ()
XRLS—Z] 1)\2—|—3 5 Vv

This is like the unregularized solution but
each term is multiplied by a “filter”

f. =52/ (A+s:2).

Whens » A, f.=1; when s « A, f. = 0.

This is like truncated SVD but with a
smoother cut-off.



This can be generalized to the RLS solution
with a general smoothing matrix L. One needs
the generalized singular value decomposition
(GSVD) of the matrix pair (A,L):
A = U diag(a) W, L=V diag(B:) W1;
Then

ARLS = Z —1J; u’’. bW(J)

Q

where (roughly) f. = y.2/(A*+ y.2) with
= ai/ Bi :

See Christensen-Dalsgaard et al. (1993), MNRAS 264, 541 for the details.



Singular values for 1-D rotation problem
with 834 p-modes and 100-point radial mesh

100 B ‘\—N
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2-D rotation inversion

The 1-D rotation example developed in the
last lecture is straightforwardy generalized
to the case of Q = Q (r, 8).

Wpim = Wnlo T m//Knlm(ra 0)rdrdf

e.g. Schou et al. (1994) ApJ 433, 389



a-coefficients

Commonly the results of the analysis of the
observations are not individual nlm frequencies.

Rather, the frequencies in each nl multiplet are
fitted as a polynomial in m:

vnim = Vi + Y a;(n, )P (m)

where the P’ s are even or odd polynomiﬂls inm
of degree |j.

The odd coefficients a; can be used as the
data for rotation inversions.



RLS OLA 2-D Rotational Averaging Kernels

Close-Up
\
\\
i RLS
OLA

(1 s.d. uncertainties on inversion are indicated in

nHz, for a typical MDI dataset)
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Inferred rotation inside the Sun

from MDI data (Schou et al. 1998, ApJ 505, 390)

78



Transforming between variable pairs

A key to computing kernels
for other variable pairs is
how to use hydrostatic
equilibrium to transform
between 6p/p and 6u/u,
where u=p/6 .

Let /() be a solution of

() v (3
oy B 2
< p "< p
with =0 at r=0 and r=R.

Then

dnGpy
2p

),

Ap o, 0u
<FU%L> = <—phﬁﬁyf—>
P u
integration
from O to R logarithmic

derivatives

(C:)v /)A) — (“‘a ’\."1)
K,.=Ka,

Kuyy =Ko p—p (
with F' = K, c2:

(v,p) = (w,Y)
I{Y,u =7y I\"‘yl,p

AwY57mwa—P(
with F' = (v,p +7.p Ky, p + Kp 5y 5 and

() — (0,Y)

with F' = (v,p +7.p MK, u-

//

i\ !
)
)

0

p

5

I&}/’u E A‘I',)’ I\-\’1~u

I\u‘y = Y.p I\%u -+ I\'u‘., —-p (

¥
p
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Further reading:
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