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Proper.es	of	solar	oscilla.ons	
• Small	amplitude;	hence	consider	linear	perturba.ons	around	an	
equilibrium	structure	
• Periods	much	shorter	than	thermal	.mescale	in	most	of	the	star;	
hence	assume	adiaba.c	oscilla.ons.	

• Modes	are	likely	damped,	predominantly	by	convec.ve	flux	and	
turbulent	pressure	perturba.ons.	
• Modes	are	excited	stochas3cally	by	convec3on	
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Overview	
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Basic	equa.ons	of	(non-viscous)	
hydrodynamics	
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Small	perturba.ons	around	an	
equilibrium	
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Basic	linearized	equa.ons	
Con.nuity	equa.on	

Momentum	equa.on	

Poisson’s	equa.on	

Adiaba.city	
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Basic	linearized	equa.ons	
Con.nuity	equa.on	

Momentum	equa.on	

Poisson’s	equa.on	

Adiaba.city	
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Separa.on	of	(θ,	φ)	
Separate	displacement	

Equa.ons	of	mo.on	

Con.nuity	equa.on	
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Separa.on	of	(θ,	φ)	
Separa.on	of	scalar	quan.ty	

Displacement	vector	

Effect	of	horizontal	Laplacian	for	any	perturba.on	ψ’	
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Spherical	harmonics	

• Behave	like	spherical	harmonics:	Plm(cos	θ)	cos(m	φ	-	ω	t)	
• kh	=	2	π	/	λh	=	[l(l+1)]1/2/r	
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Separated	equa.ons	
Separa.on	of	.me	as	exp(-	i	ω	t)	
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Boundary	condi.ons	
At	centre	

At	surface	

Equa.ons	and	boundary	condi.ons	determine	frequencies	ωnl	
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Frequency	dependence	on	solar	
structure	

Frequencies	depend	on	dynamical	quan..es:	

However,	from	hydrosta.c	equilibrium	and	Poisson’s	
equa.on	p	and	g	can	be	determined	from		ρ	
Hence	adiaba.c	oscilla.ons	are	fully	characterized	by	

or,	equivalently	
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Frequencies	of	
Model	S	

ν	=	ω	/	2	π	
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Data	on	solar	oscilla.ons	

Virgo	
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Separated	equa.ons	

Cowling	
approxima.on	

High	radial	order	
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Mode	trapping	

Eigenfunc.on	oscillates	as	func.on	of	r	when	
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Asympto.cs	of	frequencies	
Acous.c-wave	dispersion	rela.on	

Hence	
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Rays	
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Loca.on	of	
turning	point	
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Effect	on	
eigen-

func.ons	

rt	

rt	
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Rota.onal	splifng	
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Kernels	for	rota.onal	splifng	
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Helioseismic inversion 

Model	 Observables	

Forward	modeling	

Inversion	

Aim	of	inversion:	to	make	inferences	about	
(usually)	localized	proper.es	of	the	solar	
interior	



Linear inversion methods 
Many	of	the	inversion	methods	used	in		
helioseismology	are	linear:	the	solu.on	is	
a	linear	func.on	of	the	data.		
	
In	the	rest	of	this	lecture	I	shall	introduce	
some	linear	techniques	and	a	framework	for	
understanding	and	comparing	them.	



Prototypical example: 
1-D rotation law Ω(r) 

As	already	discussed,	rota.on	raises	the	
degeneracy	of	global	mode	frequencies	and	
introduces	a	dependence	on	azimuthal	order	m.	
	
The	dependence	is	par.cularly	simple	if	we	
consider	a	rota.on	profile	Ω(r)	depending		
only	on	the	radial	coordinate:	

The	kernels	Knl(r)	are	different	for	different	
modes.	



Kernels Knl(r) for 1-D rotation 
Low-degree	mode	 Medium-degree	mode	



Let	dnl	=	(ωnlm-	ωnl0)/m	be	our	data.	Then	

where	εnl	are	noise	in	the	data,	each	with		
with	standard	devia.on	(s.d.)	σnl.	
	
For	simplicity,	we	shall	use	single	subscript	“i”	
in	place	of	“nl”.		



Least-squares fitting 
Idea	of	least-squares	(LS)	fifng:	
	
Approximate	the	unknown	func.on	Ω(r)		
in	terms	of	a		chosen	set	of	basis	func.ons		
φk(r):	Ω(r)	≈	Ω(r)	=	Σxk	φk(r)	.		
	
Choose	coefficients	xk	to	minimize		



This	can	be	wrisen	as	a	matrix	equa.on:	
minimize				|	Ax	–	b	|2	.	
	
The	solu.on	of	this	is		
																		x	=	(	ATA)-1AT	b	.	

Unfortunately,	unless	we	choose	a	highly	
restric.ve	representa.on	for	Ω,	the	matrix	
A	is	usually	ill-condi.oned	in	helioseismic		
inversions	and	so	the	LS	solu.on	x	and	hence		
Ω	also	are	dominated	by	data	noise	and	thus	
useless.	



Regularized Least-Squares (RLS) 
fitting 

We	can	get	beser-behaved	solu.ons	out	of	LS	
by	adding	a	“regulariza.on	term”	to	the		
minimiza.on:	e.g.	to	minimize	

or	 trade-off	parameter	

This	can	again	be	wrisen	as	a	matrix	equa.on:	
minimize				|	Ax	–	b	|2		+		λ2|	Lx	|2	.		The	solu.on	
is 	 		x	=	(	ATA	+	λ2	LTL)-1AT	b	.	



Optimally Localized Averages (OLA) 
method 

Idea:	for	each	radial	loca.on	r0,	try	to	find		
a	linear	combina.on	of	the	kernels	that	is		
localized	there.	

If	successful,	then	the	same	linear	combina.on		
of	the	data	is	a	localized	average	of	the	rota.on	
rate	near	r=r0:	



How	can	the	coefficients	ci	be	found?		

OLA	Classic	(Mul.plica.ve	OLA	–	MOLA)	
Choose	the	coefficients	ci	so	as	to	minimize	
	

E.g.	J=12(r-r0)2.	This	penalizes	K	for	being	large		
except	at	r=r0.	Parameter	θ	trades	off	between		
localizing	K	and	keeping	the	error	term	small	

Subtrac.ve	OLA	(SOLA)	
Choose	the	coefficients	ci	so	as	to	minimize	
	

E.g.	T=A	exp(-(r-r0)2/	δ2).	This	penalizes	K	for		
devia.ng	from	the	target	func.on	T.	Trade-off	
parameters:	θ	and	δ.	



Error propagation 
Assume	the	errors	in	the	individual	data	di	are		
independent	(i.e.	uncorrelated)	and	the		
standard	devia.on	of	each	di	is	σi,	say.	

If	the	solu.on	is	Ω(r0)	=	Σ	ci	di		then	the		
standard	devia.on	σ[Ω(r0)]	in	the	solu.on	is		
is	given	by	

	σ[Ω(r0)]		=		(Σ	ci2	σi2	)1/2	



Error correlation 
Consider	the	solu.on	at	two	points	r1	and	r2:	
												Ω(r1)	=	Σ	c1i	di		,	Ω(r2)	=	Σ	c2i	di		

These	are	constructed	from	the	same	(noisy)		
data	and	so	in	general	their	errors	are		
correlated,	i.e.		
cov[Ω(r1)	,	Ω(r2)	]	=	E[(Ω(r1)	–E[Ω(r1)])	(Ω(r2)	–E[Ω(r2)])]	≠	0	
	
If	the	data	errors	are	independent:	
												cov[Ω(r1)	,	Ω(r2)	]	=	Σ	c1i	c2i	σi2	



A common framework for discussing 
any linear inversion 

LS,	RLS,	MOLA,	SOLA	techniques	above	are		
all	examples	of	linear	methods:	the	solu.on	
is	a	linear	combina.on	of	the	data.	
	
For	any	linear	method,	we	can	find	inversion	
coefficients	ci(r0),	look	at	averaging	kernels	
Σci(r0)Ki(r)	and	calculate	error	propaga.on,	
using	the	same	expressions	as	in	OLA.	



Examples of averaging kernels 
OLA	

RLS	

Averaging	kernels	for	
Ω(r)	constructed	with		
834	p-modes	with		
1	≤	l	≤	200		
	
Note	that	the	RLS		
kernels	have	nega.ve	
sidelobes	and	near-	
surface	structure.		



Inversion coefficients 
Inversion	coefficients		
for	solu.on	at		
r0=0.5R,	for	OLA	and		
RLS	inversions	and		
(con.nuous	curve)		
for	a	linear		
asympto.c		
inversion	method.	

OLA	

RLS	
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Trade-off curves 

Averaging	kernel	width	

Si
ze
	o
f	e
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	b
ar
	

At	a	point	–	for		
any	linear	method	

|	Ax	–	b	|	

|	Lx	|	

L-curve	
Global	measures	
for	RLS	method	
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OLA	

RLS	
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Linearized inversion for solar 
structure 

The	dependence	of	the	frequencies	on	solar		
structure	is	inherently	nonlinear.		
	
But	we	can	use	linear	inversion	techniques	if	we		
assume	that	the	Sun’s	structure	and	frequencies		
are	small	perturba.ons	to	those	of	a	known	
reference	model.	



No	.me	to	discuss	it	in	detail	now,	but		
frequencies	can	be	wrisen	in	terms	of	a		
varia.onal	principle	

such	that	

This	can	describe	differences	between	the	Sun	and	a	reference	model.		
In	which	case,	δF	depends	on	differences	in	quan..es	p,	ρ	and	Γ1.	



Primary seismic variables 
The	model	quan..es	that	appear	in	the		
equa.ons	governing	the	adiaba.c	oscilla.ons	
are	p,	ρ,	Γ1	(and	combina.ons	such	as	c).		
These	are	therefore	the		
											primary	seismic	variables.		
Except	for	addi.onal	physics	(e.g.	rota.on)		
they	are	the	ONLY	quan..es	that	can	be		
inferred	from	the	frequencies	unless	we		
introduce	addi.onal	assump.ons.	
	
		
NB	In	this	lecture	I	use	both	γ1	and	Γ1	for	the	first	adiaba.c	exponent		



For	full	details	see	Gough	&	Thompson	(1991),	in	Solar	Interior	and		
Atmosphere,	eds	Cox,	Livingston	&	Mashews,	p.	519-561	(Univ.	of		
Arizona	Press)	



Invoking hydrostatic equilibrium 
There	appear	to	be	three	independent		
unknown	func.ons:	δp/p,	δρ/ρ,	and	δΓ1/Γ1.	
But	the	oscilla.ons	are	presumed	to		
take	place	about	an	equilibrium	background	
in	hydrosta.c	equilibrium:	

Perturbing	this	gives	

Likewise,	using	the	mass	equa.on,	δm	can	be		
wrisen	in	terms	of	δρ	.	Hence	δp/p	can	finally		
be	expressed	in	terms	of	δρ/ρ,	and	the	number		
of	unknown	func.ons	reduced	from	3	to	2.	



Kernel	for	c2	

Kernel	for	ρ	

Kernels	for	sound	speed	and	density	



Mass conservation  - an additional 
constraint 

Density	perturba.ons	cannot	be	chosen	arbitrarily,	as	the	mass	of	the	
Sun	is	known,	i.e.	

Hence	
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Introducing additional assumptions 
E.g.	assume	the	equa.on	of	state	Γ1= Γ1(p,ρ,Y)	known,	where	Y	is	the	
helium	abundance.			So	one	can	express	δΓ	in	terms	of	other	
perturba.ons	

and	hence	(a�er	some	work)	derive	kernels	for	e.g.	u	and	Y.	



Kernel	for	Y	

Kernels	for	density	and	helium	
abundance		

Kernel	for	ρ	



Formulation of structure inversion 

• 	Knlc,ρ(r),		Knlρ,c(r)	are	known	func.ons	
• 	Gsurf(ωnl)	is	a	term	from	near-surface	errors	in	the	mode	
					εnl	are	errors	in	the	observa.ons.	
Also	have	in	this	case	the	mass-conserva.on	constraint,	which	can	be		
wrisen	in	the	same	form	as	the	data	constraints.	

For	each	observed	mean-mul.plet	frequency	we	
have	a	datum	(or	constraint)	of	the	form	e.g.	

Problem:	use	these	constraints	to	make	inferences	
about	e.g.	δc2	and	δρ	between	Sun	and	model.	

slowly	varying	func.on	of	frequency	

“mode	mass”	



RLS inversion for structure 
Perhaps	the	most	obvious	approach.	
	
Adjust	the	unknown	func.ons	δc2/c2,	δρ/ρ		
and	Gsurf	to	get	the	best	fit	to	the	data.		
	
As	for	rota.on,	need	to	regularize,	so	include	
terms	in	the	minimiza.on	to	penalize	solu.ons	
δc2/c2,	δρ/ρ	that	have	e.g.	large	second		
deriva.ve.	Typically	choose	Gsurf(ω)	to	be	a		
low-order	polynomial.	



OLA inversion for structure 
Try	to	choose	inversion	coefficients	ci(r0)	so	that	e.g.		

is	localized	near	r=r0.			If	successful,	then		

is	a	localized	es.mate	of	the	rela.ve	difference	in	
sound-speed	squared	between	Sun	and	model	near		
r=r0.	



OLA inversion for structure 
Choose	inversion	coefficients	ci	to	minimize	

where	

subject	to	the	constraints	

unimodular	constraint	

surface	constraints	

averaging	kernel	

cross-talk	kernel	
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Thank you! 



PHYSICS	OF	THE	SOLAR	INTERIOR	
Basic	equa.ons:	

Composi.on	characterized	by	abundances	X,	Y,	Z	of	H,	He	and	the	rest	
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Energy	equa.on,	adiaba.c	
approxima.on	

(What	about	convec3on???)	
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Sound	waves	in	a	homogeneous	
medium	
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Internal	gravity	waves	

In	reality	increased	iner3a	owing	to	horizontal	mo3on	
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Characteris.c	frequencies	

	
	
	
	
	

	
	

Buoyancy	frequency:	

Acous.c	frequency	
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Asympto.cs	of	frequencies	
Acous.c-wave	dispersion	rela.on	

Hence	

Hence	Duvall	law	

Standing-wave	condi.on,	with	surface-induced	phase	shi�	α	
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Func.onal	analysis	
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Consequences	
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Linearized	numerical	differences	
Linearizing	around	a	reference	model,	δ ωnl	=	ωnl

	(obs)		-	ωnl
(mod)	

• 	Knlc,ρ(r),		Knlρ,c(r)	are	known	func.ons	
• 	Gsurf(ωnl)	is	a	term	from	near-surface	errors	in	the	mode	
     εnl	are	errors	in	the	observa.ons.	
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Linearized	structure	inversion	
Choose	coefficients	cnl(r0)	to	obtain	solu.on	at	r	=	r0	

is	localized	near	r	=	r0,	and	other	terms	are	small.	
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Linearized	structure	inversion	

66	



Inverse	problem	for	EOS	
From	equa.on	of	state	

Hence	

Using	
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Kernels	
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SVD analysis to understand what’s 
happening in (R)LS 

Can	make	singular	value	decomposi.on	(SVD)	of		
matrix	A	:				
A	=	U	Σ	VT	

where	U	and	V	are	orthogonal	matrices		
(i.e.	UTU=I	and	VTV=I)	with	column	vectors		
u(i)	and	v(i)	say,	and	Σ	=	diag(s1,s2,…,sR)	is	a		
diagonal	matrix	whose	elements	are	the		
singular	values	of	s1	≥	s2	≥	…	≥	sR	of	matrix	A	



Least-squares	solu.on:	
													x	=	(ATA)-1ATb		=		V	Σ-1UTb.			
Hence	

Small	singular	values	cause	any	errors	in	b	to		
“blow	up”	in	the	solu.on.	This	is	why		
unregularized	least-squares	hits	a	problem.	
	
Note	the	roles	of	U	and	V:	the	data	are		
projected	onto	the	u(i),	while	the	v(i)	form	a		
basis	for	the	solu.on	vector	x.	



Truncated	SVD	inversion	
Since	small	singular	values	cause	a	problem,	
one	egulariza.on	method	is	just	to	truncate	
the	summa.on	at	j=K,	say,	when	the	singular	
values	go	below	some	threshold	value:		



It	turns	out	that	the	solu.on	of	the	RLS	
problem	with	regulariza.on	in	standard	form	
is	

This	is	like	the	unregularized	solu.on	but	
each	term	is	mul.plied	by	a	“filter”	
fi	=	si2	/	(λ2+si2).		
When	si	»	λ,	fi	≈	1;	when	si	«	λ,	fi	≈	0.		
This	is	like	truncated	SVD	but	with	a		
smoother	cut-off.		



This	can	be	generalized	to	the	RLS	solu.on	
with	a	general	smoothing	matrix	L.	One	needs	
the	generalized	singular	value	decomposi.on		
(GSVD)	of	the	matrix	pair	(A,L):	
A	=	U	diag(αi)	W-1	,		L	=	V	diag(βi)	W-1	;	
Then	

where	(roughly)	fi	=	γi2/(λ2+	γi2)	with		
γi	=	αi	/	βi	.			
	
See	Christensen-Dalsgaard	et	al.	(1993),		MNRAS	264,	541	for	the	details.	

	



Singular	values	for	1-D	rota.on	problem		
with	834	p-modes	and	100-point	radial	mesh	
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2-D rotation inversion 
The	1-D	rota.on	example	developed	in	the	
last	lecture	is	straigh�orwardy	generalized	
to	the	case	of	Ω	=	Ω	(r,	θ).	

e.g.	Schou	et	al.	(1994)	ApJ	433,	389		



a-coefficients 
Commonly	the	results	of	the	analysis	of	the		
observa.ons	are	not	individual	nlm	frequencies.	
	
Rather,	the	frequencies	in	each	nl	mul.plet	are	
fised	as	a	polynomial	in	m:	

where	the	P’s	are	even	or	odd	polynomials	in	m		
of	degree	j.	
	
The	odd	coefficients	aj	can	be	used	as	the		
data	for	rota.on	inversions.	
	



RLS	 OLA	

OLA	

RLS	

Close-Up	

2-D	Rota.onal	Averaging	Kernels	

(1	s.d.	uncertain.es	on	inversion	are	indicated	in	
nHz,	for	a	typical	MDI	dataset)	
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Inferred	rota.on	inside	the	Sun	

from	MDI	data		(Schou	et	al.	1998,	ApJ	505,	390)	
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Transforming	between	variable	pairs	
A	key	to	compu.ng	kernels	
for	other	variable	pairs	is	
how	to	use	hydrosta.c	
equilibrium	to	transform	
between	δρ/ρ	and	δu/u,	
where	u=p/δ	.	

with	ψ=0	at	r=0	and	r=R.	
Then	

integra.on		
from	0	to	R	 logarithmic		

deriva.ves	 79	
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