
Lecture 13: ABELIAN GAUGE THEORIES:

THE FRAMEWORK OF QED



With this chapter, we begin the study of a class of geometric models that

have played a central role in the theory of fundamental interactions for more

than a century: gauge theories. They are characterized by new physics

properties and new technical difficulties.

We devote a first chapter to a simplest but physically important exam-

ple, the Abelian gauge theory, the field theoretical framework for Quantum

Electrodynamics (QED). However, since QED is discussed extensively else-

where, we mainly focus on the formal aspects of Abelian gauge theories.

The set-up of the chapter is the following: we begin with elementary con-

siderations about the massive vector field in perturbation theory. We show

that coupling to matter field leads to field theories that are renormalizable

in four dimensions only if the vector field is coupled to a conserved current.

In the latter case the massless vector limit can be defined and the resulting

field theory is gauge invariant.



We discuss the specific properties of gauge invariant theories. We then quan-

tize gauge theories starting directly from first principles. The quantization

of gauge theories involves gauge fixing. The formal equivalence between

different gauges is established.

In section 13.6, regularization methods are described that overcome the

new difficulties one encounters in gauge theories.

The Abelian gauge symmetry, broken by gauge fixing terms, leads to a

set of WT identities, which are used to prove renormalizability.

The gauge dependence of correlation functions in a set of covariant gauges

is determined.

Renormalization results imply renormalization group equations and we

calculate the RG β-function at leading order.

As an introduction to the Standard Model of fundamental interactions at

the microscopic scale, we then study the Abelian Higgs model, which also

describes, in three dimensions, superconductors in a magnetic field.
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13.1 The free massive vector field

The quantization of the free massive vector field is not a trivial extension of

the quantization of the scalar field and thus requires a specific discussion.

Notation. In the first part of this section we work in real time with the

metric {+,−,−, · · ·} where the first component is the time component.

We then use Greek indices for the four space-time components, µ =

0, 1, 2, 3 and Roman indices for the space components i = 1, 2, 3, for ex-

ample, the vector field is denoted byAµ ≡ {A0, Ai}.
Space-time coordinates are denoted by {t ≡ x0 = −ix4, xi}, where x4 will

be later in the section the euclidean or imaginary time.

Finally, time derivative is occasionally indicated by

∂Ai
∂t

≡ Ȧi .
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The local covariant action. The local O(1, 3) invariant classical action for a

free massive vector field can be written as

A(A) = −
∫

dt d3x

[

1
4

∑

µ,ν

Fµν(t, x)F
µν(t, x)− 1

2m
2
∑

µ

Aµ(t, x)A
µ(t, x)

]

(13.1)

with

Fµν(t, x) = ∂µAν(t, x)− ∂νAµ(t, x). (13.2)

One may wonder about the peculiar form of the derivative term, but it is

straightforward to verify that the additional covariant term one could think

of adding, namely
∑

µ,ν ∂µAµ∂
νAν , depending on its sign corresponds either

to an A0 field with a negative metric, or to an unbounded potential.
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13.1.1 Quantization

Separating space and time components, the action (13.1) can be rewritten

as (∇⊥ ≡ (∂1, ∂2, ∂3) is the space gradient)

A(A) =

∫

dt d3x

[

1
2

∑

i

(

Ȧ2
i (t, x)−m2A2

i (x)
)

− 1
4

∑

i,j

F 2
ij(t, x)

+ 1
2

(

∇⊥A0(t, x)
)2

+ 1
2A

2
0(t, x)−

∑

i

Ai(t, x)∂iA0(t, x)

]

. (13.3)

The action (13.3) has a peculiar property: it does not involve the time

derivative Ȧ0 and, thus, the time component A0 of the vector field has no

conjugate momentum. Therefore, A0 is not a dynamical degree of freedom

and the corresponding field equation

δA
δA0(t, x)

=
(

−∇2
⊥ +m2

)

A0(t, x) +
∑

i

∂iȦi(t, x) = 0 , (13.4)

is a constraint equation.

1037



This feature reflects the property that a massive vector field has only three

physical degrees of freedom corresponding to a space vector in the particle

rest-frame.

Using the A0 field equation to eliminate A0 from the action, one obtains

the reduced Lagrangian density

L(A) = 1
2

∑

i,j

Ȧi(t, x)

(

δij −
∂i∂j

∇2
⊥
−m2

)

Ȧj(t, x)− 1
2m

2
∑

i

A2
i (t, x)

− 1
4

∑

i,j

F 2
ij(t, x) .

We denote by Ei (because it becomes the electric field in the massless limit)

the momentum conjugated to Ai, given by

Ei =
∂L
∂Ȧi

= Ȧi − ∂i
(

∇2
⊥ −m2

)−1 ∑

j

∂jȦj .
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The Hamiltonian density H, Legendre transform of the Lagrangian, has the

form

H(E,A) = 1
2

∑

i,j

Ei(x)

(

δij −
∂i∂j
m2

)

Ej(x) +
1
2m

2
∑

i

A2
i (x) +

1
4

∑

i,j

F 2
ij(x) .

(13.5)

The differential operator −∂i∂j being non-negative, the Hamiltonian is pos-

itive. The quantization procedure from now on is standard.

13.1.2 Euclidean field theory

After continuation to imaginary time, it leads to an euclidean field integral

in which appears the euclidean reduced Lagrangian. This Lagrangian has

unpleasant properties: it is non-local and not O(4) space–time symmetric.

However, since the dependence in A0 of the action (13.3) is quadratic,

we can proceed in the following way: we substitute in the field integral

representation of the partition function the initial euclidean Lagrangian.
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We then perform the Gaussian integral over the time component. As we

know this is equivalent to solving the corresponding equation of motion,

and we thus recover the reduced Lagrangian.

Finally, the determinant resulting from the integration is field indepen-

dent and disappears in the normalization of the field integral.

This shows that if we start from the euclidean action,

S(A) =
∫

d4x

[

1
4

∑

µ,ν

F 2
µν(x) +

∑

µ

1
2m

2A2
µ(x)

]

(13.6)

with

Fµν(x) = ∂µAν(x)− ∂νAµ(x), (13.7)

we directly obtain the correct quantized action (note that in the continua-

tion to imaginary time we have set A0 = −iA4).
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Two-point connected correlation function. The generating functional Z(J)

of Aµ-field correlation functions is then given by

Z(J) =

∫

[dAµ] exp

[

−S(A) +
∫

d4xJ(x) ·A(x)

]

. (13.8)

In terms of the Fourier representations of the vector field and the current,

Aµ(x) =

∫

d4k eikx Ãµ(k), Jµ(x) =

∫

d4k eikx J̃µ(k)

the action can be rewritten as

S(A) = (2π)4 1
2

∫

d4k
∑

µ,ν

Ãµ(−k)
[

(k2 +m2)δµν − kµkν
]

Ãν(k)

and
∫

d4xJ(x) ·A(x) = (2π)4
∫

d4k
∑

µ

J̃µ(−k)Ãµ(k).
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The Gaussian integration amounts to replacing Ãµ(k) by the solution of the

corresponding field equation,

∑

ν

[

(k2 +m2)δµν − kµkν
]

Ãν(k) = J̃µ(−k) ⇒ Ãµ(k) =
∑

ν

∆̃µν(k)J̃ν(−k)

with

∆̃µν(k) =
δµν + kµkν

/

m2

k2 +m2
.

The integration yields the generating functional Z(J). The generating func-

tional W(J) of connected functions then is,

W(J) = lnZ(J) = 1
2 (2π)

4

∫

d4k
∑

µ,ν

J̃µ(k)∆̃µν(k)J̃ν(−k). (13.9)

We conclude that ∆̃µν(k) is the vector field propagator in the Fourier rep-

resentation.
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At the pole kµ = imeµ with e2µ = 1 (the mass-shell), the numerator δµν −
eµeν is a projector transverse to the vector k and only three modes are

propagated.

In the rest frame ki = 0, the numerator becomes δµν − δµ4δν4. The

propagator thus propagates three components belonging to the vector rep-

resentation of the static group O(3), subgroup of O(1, 3).

Power counting. The propagator is such that in some directions it goes

to a constant for |k| large and the field has a power counting dimension d/2

in d dimensions. As we have already indicated in section 6.9, field theories

involving massive vector fields coupled to matter are renormalizable, in

general, only in dimensions d = 2 and cannot be used for renormalizable

theories in four dimensions.

A directly related disease (because the propagator is a homogeneous func-

tion of k and m) is the impossibility to pass continuously to the massless

limit.
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Conserved current. If the external source Jµ(x) has the form of a conserved

current,
∑

µ

∂µJµ(x) = 0 ⇔
∑

µ

kµJ̃µ(k) = 0 , (13.10)

then expression (13.9) reduces to

W(J) = 1
2

∫

d4k
∑

µ

J̃µ(k)
1

k2 +m2
J̃µ(−k).

This means that the propagator can be replaced by δµν/(k
2 + m2) which

behaves like the propagator of a scalar particle. In this case both problems

of large momentum behaviour and massless limit are solved.

One may now wonder why we have not used at once such a propagator:

the reason is that it propagates, in addition to a vector field, a scalar particle

with negative metric (like the regulator fields). This is better illustrated by

a short calculation.
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13.1.3 More general propagators, interpretation

We add to the action (13.6) the action of an uncoupled massive scalar field

χ:

S(A,χ) = S(A) + 1
2

∫

d4x
[

(

∇χ(x)
)2

+M2χ2(x)
]

. (13.11)

The generating functional of correlation functions becomes

Z(J) =

∫

[dAµ] [dχ] exp

[

−S(A,χ) +
∫

d4xJ(x) ·A(x)

]

. (13.12)

In the absence of a source for χ, the integration over χ yields a constant

factor multiplying the functional (13.8).

In the integral (13.12), we now change variables, A 7→ A′ with (note the

i factor),

A(x) = A′(x) +
i

m
∇χ(x). (13.13)
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This change, called gauge transformation, leaves Fµν invariant. If the source

satisfies the conservation equation (13.10), the source term is not modified.

Only the vector field mass term is affected:

1
2m

2A2(x) = 1
2m

2A′2(x) + imA′(x) · ∇χ(x)− 1
2

(

∇χ(x)
)2
.

This main effect is to cancel the χ kinetic term. One obtains

S(A′, χ) = S(A′) +

∫

d4x
(

imA′(x) · ∇χ(x) + 1
2M

2χ2(x)
)

.

After an integration by parts of A′ · ∇χ, one integrates over χ(x). This

amounts to replacing χ(x) by the solution of the χ(x) field equation,

χ(x) =
im

M2
∇ ·A′(x).

One obtains the new action (renaming now A′ 7→ A),

Sξ(A) = S(A) + 1

2ξ

∫

(

∇ ·A(x)
)2
d4x with ξ =M2/m2 . (13.14)
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The addition of this term is called gauge fixing. By varying ξ from 0 to

+∞, one reproduces a set of gauges: ξ = 0 corresponds to Landau’s gauge,

ξ = 1 is Feynman’s gauge. In the limit ξ = ∞ (the unitary gauge), one

recovers the initial unitary field theory.

The corresponding propagator is then

[∆̃ξ]µν(k) =
δµν

k2 +m2
+

(ξ − 1)kµkν
(k2 +m2) (k2 + ξm2)

. (13.15)

For all finite values of ξ the propagator behaves at large momentum like

a scalar field propagator. However, the new propagator has an unphysical

pole at k2 = −ξm2. The propagator can be rewritten as

[∆̃ξ]µν(k) =
δµν + kµkν/m

2

k2 +m2
− kµkν
m2(k2 + ξm2)

, (13.16)

showing that it propagates, in addition to the vector particle, an unphysical

scalar particle. In the mass-shell limit k2 → −m2, the ξ dependence cancels.
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The massless limit. For all finite values of ξ, the propagator [∆̃ξ]µν(k)

behaves at large momentum as a scalar propagator and has the zero mass

limit,

[∆̃ξ]µν(k) =
δµν
k2

+ (ξ − 1)
kµkν
(k2)2

. (13.17)

However, for values of ξ 6= 1, the term proportional to 1/k4 may generate

IR divergences in interacting theories in four dimensions, a problem that

requires some care.
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13.2 Interaction with fermion matter

We conclude from the preceding analysis that only vector fields coupled

to conserved currents and, thus, associated with continuous symmetries,

provide suitable candidates for the construction of theories renormalizable

in four dimensions. We now give an explicit, an physically relevant, example.

We start from a free action for a massive Dirac fermion,

SF(ψ̄, ψ) = −
∫

d4x ψ̄(x) (6∂ +M)ψ(x), (13.18)

and want to add an O(4) invariant coupling to a vector field.

As we have already noted in section 11.8.3, the action (13.18) for a free

Dirac fermion has a U(1) symmetry associated with the conservation of the

fermion number (Λ is constant)

ψ(x) = eiΛ ψ′(x), ψ̄(x) = e−iΛ ψ̄′(x). (13.19)

1049



To this symmetry corresponds a current whose expression is obtained by

calculating the variation of the action under a space-dependent group trans-

formation (see appendix A12.1). If Λ is space-dependent, the variation of

the action is

δSF = −i
∫

d4x ψ̄(x)6∂Λ(x)ψ(x)

and, thus, the corresponding conserved current Jµ(x) is

Jµ(x) = −iψ̄(x)γµψ(x).

The only O(4) symmetric interaction term which is renormalizable, from

the point of view of power counting, is proportional to
∫

d4x ψ̄(x) 6A(x)ψ(x) .

This interaction term has precisely the form of a vector field linearly coupled

to the conserved current Jµ(x).
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The action of a fermion interacting with a vector field then takes the form

S(A, ψ̄, ψ) = S(A)−
∫

d4x ψ̄(x) (6∂ +M + ie 6A)ψ(x), (13.20)

where S(A) is the vector free action (13.6) and the parameter e is the

current–vector field coupling constant.

The vector field propagator. The transformations of section 13.1, which

have led to the propagator (13.15), rely on a change of variables in the field

integral of the form (13.13):

A(x) = −1

e
∇Λ(x) +A′(x). (13.21)

One verifies that the induced variation of SF(A, ψ̄, ψ) can be cancelled by

a change of the fermion variables of the form of the transformation (13.19)

with a space-dependent function Λ(x):

ψ(x) = eiΛ(x) ψ′(x), ψ̄(x) = e−iΛ(x) ψ̄′(x). (13.22)
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Therefore, the algebraic transformations that allow to pass from a unitary

but non-renormalizable action to an non-unitary but renormalizable action

remain justified.

The action of massive QED with fermion matter in a renormalizable gauge

then can be written as

Sξ(A, ψ̄, ψ) =
∫

d4x

[

1
4

∑

µ,ν

F 2
µν(x) +

1
2m

2A2(x) + 1
2ξ

(

∇ ·A(x)
)2

− ψ̄(x) (6∂ +M + ie 6A)ψ(x)
]

. (13.23)

This is the action for a massive photon interacting with charged fermion

matter.

The equivalence remains valid for the action and transverse A-field corre-

lation functions. Eventually, we shall have to discuss the problem of matter

correlation functions. However, we first want to examine the special prop-

erties of the massless vector field theory.
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Higher spins. The strategy that has allowed transforming a unitary non-

renormalizable theory into a renormalizable non-unitary theory does not

work for higher spin fields even when the fields are coupled to conserved

currents like the spin two energy–momentum tensor or the spin 3/2 field

coupled to the supersymmetry current.

1053



13.3 Massless vector field: Abelian gauge symmetry

In the massless vector field limit m = 0, the classical action (13.20) reduces

to

S(A, ψ̄, ψ) =
∫

d4x

[

1
4

∑

µ,ν

F 2
µν(x)− ψ̄(x) (6∂ +M + ie 6A)ψ(x)

]

. (13.24)

The action then has a remarkable property: it is invariant under U(1) gauge

transformations as defined by equations (13.21, 13.22)). Gauge transforma-

tions are local (i.e., with space-dependent parameters) group transforma-

tions.

Such a symmetry is called a U(1) gauge symmetry and the vector field

is then called a gauge field. From the physics viewpoint, the quantum field

theory describes the interaction of a charged fermion with the electromag-

netic field, which is the basis of QED.
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By constructing a renormalizable theory for a vector field in four dimen-

sions we have been led naturally to introduce a new geometric structure, an

Abelian (because the U(1) is Abelian or commutative) gauge theory, which

is the quantum version of Maxwell’s electromagnetism.

13.3.1 Gauge symmetry

Gauge symmetry has a geometric interpretation that is worth describing.

The invariance of the fermion part of the action can be seen as a consequence

of the replacement of the derivative ∂µ of the free fermion theory by the

covariant derivative ∂µ+ieAµ, which allows the transformation of the gauge

field to cancel the term coming from the derivative. We are thus reminded

of the concepts of covariant derivative, affine connection, curvature and

parallel transport introduced for Riemannian manifolds.
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In the corresponding terminology, Aµ(x) is the affine connection.

The differential operator Dµ = ∂µ + ieAµ is the covariant derivative and,

for later purpose, we introduce the notation 6D =
∑

µ γµDµ.

The curvature tensor (which is the electromagnetic field in QED) is

Fµν =
1

ie
[Dµ,Dν ] = ∂µAν − ∂νAµ .

Finally, the parallel transporter U(Cxy) (a notion also essential for lattice

gauge theories), where Cxy is an oriented, piecewise differentiable, curve

with end-points x, y, is an element of the U(1) group. Since the group is

Abelian, it can be expressed explicitly in terms of a line integral as

U(Cxy) = exp

[

−ie
∮

Cxy

∑

µ

Aµ(s)dsµ

]

. (13.25)
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One immediately verifies that the transformation of U(Cxy) induced by a

gauge transformation (13.21) of Aµ, has the form

U(C) = U ′(C) exp

[

i

∮

Cxy

∑

µ

∂µΛ(s)dsµ

]

= U ′(Cxy) exp
[

i
(

Λ(y)− Λ(x)
)]

,

which is such that ψ̄(y)U(Cxy)ψ(x) is gauge invariant.

Note that the parallel transporter around a closed curve is gauge invari-

ant. According to Stokes theorem, for a simple closed curve, U(C) can be

rewritten as

U(C) = exp

[

1
2

∫

D

∑

µ,ν

dxµ ∧ dxν Fµν(x)

]

,

that is, in terms of a surface integral over a surface D that has the curve C

as a boundary: ∂D = C. This expression relates the curvature tensor Fµν
to parallel transport around a closed curve, remark that also will be useful

in the construction of lattice gauge theories.
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Charged scalar fields. With the geometric ideas of parallel transport in

mind, it is straightforward to construct a gauge action for a charged scalar

field. One starts from the U(1) invariant action

SB(φ) =

∫

d4x
[

|∇φ(x)|2 + U(|φ(x)|2)
]

,

in which φ(x) is a complex field, and replaces the derivative ∂µ by a covariant

derivative. The explicit form of the covariant derivative depends on the

charge assigned to the field φ(x). If one assumes that φ couples to Aµ with

a coupling constant eB, one obtains,

SB(φ,Aµ) =

∫

d4x
[

|Dφ(x)|2 + U(|φ(x)|2)
]

, (13.26)

where D is the covariant derivative, a vector with components

Dµ = ∂µ + ieBAµ . (13.27)
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Quantization of charge. If we introduce additional charged fields, we have

to assign them charges which characterize their transformation properties

under U(1). A delicate question arises here. Since the U(1) group has

the same Lie algebra as the group of translations, properties depending

only on infinitesimal group transformations do not require a quantization

of charge. In particular, in perturbation theory WT identities are true even

if the charges are not rationally related and the necessity of a quantization

of charges, therefore, never appears. The conventional wisdom is that QED

does not imply charge quantization.

However, note that the only known non-perturbative regularization, based

on a lattice approximation, involves group elements in the form of parallel

transporters and, therefore, requires charge quantization (see section 13.6).

The question remains open.
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13.3.2 The massless vector field as a limit

Geometric and physical considerations single out the theory with a massless

vector field: it has an exact gauge symmetry and it describes the physics of

QED because the photon is, at least to an excellent approximation, found

experimentally to be massless. Therefore, we could have restricted our

discussion to the massless case, as we shall do in the non-Abelian case.

However, considering the massless theory as a limit of the massive theory

provides us with a simple resolution to several difficulties.

First, we have already seen in section 13.1 that we could not write at once

a propagator for a massless vector field. In a gauge invariant theory, this

difficulty persists beyond perturbation theory.

Indeed, the gauge symmetry implies that the action does not depend on

one of the dynamical variables which is related to a gauge transformation.
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As a consequence, the field integral cannot be defined because the volume

of the gauge group, which can be factorized, is infinite.

This difficulty reflects the property that in classical electrodynamics only

the electromagnetic tensor Fµν is physical. The vector field Aµ is a mathe-

matical entity that enables deriving the classical field equations by varying

a local covariant action. It contains redundant degrees of freedom whose

evolution is not determined by the field equations.

We show in section 13.4 how the gauge action can be quantized starting

from first principles. The procedure is less straightforward and leads to

non-covariant gauges, problems whose analysis we want to postpone.

Starting from the massive theory, performing the algebraic transforma-

tions indicated in section 13.1 (which lead to gauge fixing) and taking the

massless limit, we have been able to define directly the gauge theory.

Finally, the mass of the vector field provides the theory with a natural

IR cut-off that allow to analyse the IR problems of the massless theory.

1061



13.4 Canonical quantization: non-covariant gauges

Although we have been able to construct a gauge invariant theory as a limit

of a theory of a massive vector field coupled to a conserved current, it is use-

ful to contemplate the difficulties one encounters when one tries to quantize

a gauge theory starting from first principles. Moreover, in the case of non-

Abelian gauge symmetries, the massless limit is not continuous. Therefore,

we show how, starting directly from the classical field equations of a gauge

invariant theory, it is possible to recover the field integral representation of

the generating functional of correlation functions.

The problem can be solved by several different strategies and we present

two of them, corresponding to so-called Coulomb’s gauge and temporal

gauge.
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We again consider the simple action

S(A, J) = S(A)−
∫

d4xJ(x) ·A(x), S(A) = 1
4

∫

d4x
∑

µ,ν

F 2
µν(x) ,

(13.28)

of a gauge field coupled to a conserved current.

13.4.1 Coulomb’s gauge

We first proceed as in the massive case and eliminate the gauge field time

component from the action. Taking into account current conservation (note

J0 = iJ4), we then obtain the integral of a reduced Lagrangian density:

L(Ai) =
∑

i,j

[

1
2 Ȧi(t, x)

(

δij −
∂i∂j
∇2

⊥

)

Ȧj(t, x)− 1
4F

2
ij(t, x)

+Ji(t, x)

(

δij −
∂i∂j
∇2

⊥

)

Aj(t, x)

]

.
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In contrast with the massive case, the action depends only on
∑

j

(

δij − ∂i∂j/∇2
⊥

)

Aj(t, x).

After Fourier transformation, this implies that the action does not depend

on the component of Ãi(t, k̂) along k̂, the space component of the momentum

k. We recover the well-known property that a massless vector field has

only two physical components. We thus expand the vector Ãi(t, k̂) on a

transverse basis eai (k̂), calling Ãa the corresponding two components (the

polarizations):

k̂ · ea(k̂) = 0 , ea(k̂) · eb(k̂) = δab, Ã(t, k̂) =
k̂ · Ã
k̂2

k̂ +

2
∑

a=1

ea(k̂)Ãa(k) ,

and Ja the corresponding sources. The Lagrangian density in these variables

becomes

L(Aa) =
∑

a=1,2

[

∑

µ

∂µAa(t, x)∂
µ
Aa(t, x) + Ja(t, x)Aa(t, x)

]

.
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The quantization now is straightforward. Eventually, one obtains a field

integral over the fields Aa. However, the corresponding action, once ex-

pressed in terms of the initial current Jµ, is non-local. One can reintroduce

the components Ai of the gauge field provided one multiplies the integrand

by δ(
∑

i ∂iAi). The last step, that is, returning to an integral involving the

time component, is the same as in the massive case. The final result is the

euclidean generating functional in Coulomb’s gauge:

ZCoul.(J) =

∫
[

dAµ(x)δ

(

∑

i

∂iAi(x)

)]

e−S(A,J), (13.29)

where S(A, J) is defined in (13.28). Coulomb’s gauge, in the Abelian case,

has a nice physical interpretation: only physical degrees of freedom propa-

gate, but it leads to non-covariant calculations, and this is a serious draw-

back.
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In particular, the gauge field propagator (k ≡ {k4,k⊥}) becomes



























W̃
(2)
44 (k) =

1

k2
⊥

,

W̃
(2)
i4 (k) = 0 ,

W̃
(2)
ij (k) =

1

k2

(

δij −
kikj
k2
⊥

)

.

The time component does not decrease in the large time direction. There-

fore, with this propagator the theory is not explicitly renormalizable by

power counting.

We still have to prove that this gauge is equivalent to the covariant gauges

introduced in section 13.1, but we postpone this issue and discuss before

another quantization scheme.
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13.4.2 The temporal (or Weyl) gauge

In the non-Abelian case the quantization in Coulomb’s gauge is complicate

and, therefore, we now explain another, more easily generalizable, method.

The field equations in real time t that correspond to the action (13.28)

are
∑

µ

∂µF
µν(t, x) = Jν(t, x), x ∈ R

3. (13.30)

The extension of the arguments that follow to a gauge theory containing

matter fields is straightforward.

The method relies on the observation that the gauge transformed of any

solution of equation (13.30) is again a solution. The set of all solutions can

thus be obtained by restricting the gauge field to a gauge section.
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Here, we considers only the solutions satisfying

A0(t, x) = 0 , (13.31)

in which A0 is the time component of the field Aµ. Equation (13.30) can

then be rewritten, separating time and space components, and taking into

account the condition (13.31), as (1 ≤ i, j ≤ 3)

∑

i

∂iȦi(t, x) = J0(t, x) , (13.32)

Äi(t, x)−
∑

j

∂jFji(t, x) = Ji(t, x) . (13.33)

The equation (13.33) is the field equation that can be derived from the

classical Lagrangian density

L(Ai) =
∑

i

[

1
2 Ȧ

2
i (t, x) + Ji(t, x)Ai(t, x)

]

− 1
4

∑

i,j

F 2
ij(t, x), 1 ≤ i, j ≤ 3 .
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The conjugated momentum of the field Ai(t, x) is the electric field

Ei(t, x) = Ȧi(t, x).

The expression of the Hamiltonian density follows,

H
(

E(x), A(x)
)

= 1
2

∑

i

[

E2
i (x)− Ji(x)Ai(x)

]

+ 1
4

∑

i,j

F 2
ij(x). (13.34)

The partition function Z(Ji) is then

Z(Ji) =

∫

[dAi] e
−S(Ai,Ji) =

∫

[dAµ]
∏

x

δ
(

A4(x)
)

e−S(A,J), (13.35)

since S(Ai, Ji) is the covariant euclidean action (13.28) taken for A4 = 0.
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We still have to implement the constraint (13.32), which is Gauss’s law. Af-

ter quantization, it becomes a constraint on the physically acceptable states

Ψ(A). The conjugated momenta Ei as quantum operators are represented

by functional differential operators −iδ/δAi. The condition (13.32) thus

takes the form

1

i

∑

i

∂i
δ

δAi(x)
Ψ(A) = J0(t, x)Ψ(A) . (13.36)

We recognize in the left hand side of equation (13.36) the generator of time-

independent gauge transformations of the field A(x) acting on Ψ.

In the absence of an external source (J0(t, x) = 0), the physical states

must be gauge invariant. This condition is consistent with quantum evolu-

tion because in the gauge (13.31) the theory has still an invariance under

time-independent gauge transformations.
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For a general external source, the condition (13.36) tells us how the state

transforms. Consistency with quantum evolution then requires the commu-

tation of the operator
∑

i ∂iEi− J0 with the Hamiltonian. A short calcula-

tion shows that this commutation is implied by current conservation.

We exhibit, for later purpose, a state satisfying the condition (13.36) in

the case of two opposite static charges:

J0(t, x) = e [δ(x− x2)− δ(x− x1)] , Ji(t, x) = 0 . (13.37)

The state,

Ψ(A) = exp

[

−ie
∮

C

∑

i

Ai(s)dsi

]

, (13.38)

in which C is an arbitrary differentiable path joining x1 to x2, indeed verifies

1

i

∑

i

∂i
δ

δAi(x)
Ψ(A) =

1

i

δ

δΛ(x)
Ψ(A−∇xΛ)|Λ=0

= e [δ(x− x2)− δ(x− x1)]Ψ(A).
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The result is consistent with the equations (13.36,13.37).

The representation (13.38) has the form of a parallel transporter corre-

sponding to time-independent gauge transformations. This representation,

as well as its non-Abelian generalization, will be useful in chapter 16, in the

discussion of the confinement problem.

The propagator in the temporal gauge. The propagator of the gauge field

in the temporal gauge (in the euclidean formalism) reads

W̃
(2)
ij =

1

k2

(

δij −
kikj
k2
⊥

)

+
1

k24

kikj
k2
⊥

,

in which k⊥ is the ‘space’ part of k, that is, its projection on R
3. This prop-

agator, as in the case of Coulomb’s gauge, has a large momentum behaviour

which is not uniform and thus, in contrast with covariant gauges, leads to

theories which are not explicitly renormalizable in four dimensions. More-

over, its longitudinal part has a double pole at k4 = 0 that also requires

some regularization.
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13.5 Equivalence with covariant gauges

We have obtained different field integral representations of the same theory.

We now show that, at least for expectation values of gauge invariant observ-

ables, they are formally equivalent to the O(4) covariant representations we

have discussed in section 13.1. More generally, we show here the equivalence

between the temporal gauge and a class of gauges characterized by a gauge

condition of the form

n(∂) ·A(x) = ν(x),

where the vector n is a constant or a differential operator and ν(x) an

arbitrary external field. By setting the external field ν(x) to zero, one

enforces the strict gauge condition n(∂) ·A(x) = 0 but by integrating over

it with a Gaussian weight one can generate actions of the form (13.14). This

covers all the examples met so far. The method easily generalizes to other

gauges.
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Derivation. We start from the temporal gauge. We use the second expres-

sion (13.35), which involves an integral over a 4-component vector field:

Z(J) =

∫

[dAµ]
∏

x

δ (A4(x)) e
−S(A,J) . (13.39)

We insert the identity
∫

[dΛ(x)]
∏

x

δ
[

n(∂) ·
(

∇xΛ(x) +A(x)
)

− ν(x)
]

= const. ,

inside expression (13.39),

Z ∝
∫

[dAµdΛ]
∏

x

δ(A4(x))δ
[

n(∂) ·
(

∇xΛ(x) +A(x)
)

− ν(x)
]

e−S(A,J) .

We change variables, substituting

A(x) 7→ A(x)−∇Λ(x).
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The change of variables has the form of a gauge transformation. Since the

current Jµ is conserved, only the δ-functions are modified:

δ(A4)δ
[

n(∂) ·
(

∇xΛ(x) +A(x)
)

− ν(x)
]

7→ δ(A4−Λ̇)δ [n(∂) ·A(x)− ν(x)] .

The integration over Λ can again be performed. It yields
∫

[dΛ]
∏

x

δ
(

A4(x)− Λ̇(x)
)

= const.

and, therefore,

Z(J) =

∫

[dAµ] δ [n(∂) ·A(x)− ν(x)] e−S(A,J) .

Since the result by construction does not depend on ν(x), one can either set

ν(x) to zero or integrate over ν(x) with, for example, the Gaussian measure

[dρ(ν)] = [dν(x)] exp

[

− 1
2

∫

d4x ν2(x)

]

. (13.40)
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One then obtains

Z(J) =

∫

[dAµ] exp

[

−Sgauge(A) +

∫

d4xJ(x) ·A(x)

]

with

Sgauge(A) = S(A) + 1
2

∫

d4x [n(∂) ·A(x)]2 . (13.41)

Specializing to n = ξ−1/2∇x, one sees that the result in particular demon-

strates the equivalence between the temporal gauge A4 = 0 and the covari-

ant gauges (13.14). By contrast, if one chooses n4 = 0 and n⊥ ≡ ∂⊥, and

sets ν = 0, one recovers Coulomb’s gauge.
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The propagator. To the action (13.41) corresponds the gauge field propaga-

tor

W̃ (2)
µν (k) =

1

k2

[

δµν −
(kµnν + kνnµ)

k · n +

(

k2 + n2
)

kµkν

(k · n)2

]

.

Remark. The strict gauge condition is recovered in the limit |n| → ∞,

which exists for the propagator but not for the action. To write explicitly

the limiting action one has to introduce a Lagrange multiplier λ(x) which

implements the gauge condition as

Sgauge(A) = S(A) +
∫

d4xλ(x)n(∂) ·A(x) .
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13.5.1 Interpretation: the Faddeev–Popov quantization

The result we have obtained has an interpretation that can be rigorously

justified only in the lattice approximation on a finite lattice (see section

13.6).

The problem of a gauge invariant theory is that locality requires an action

with redundant degrees of freedom or equivalently that the local gauge

invariant action does not provide a dynamics to the degrees of freedom

attached to gauge transformations.

Therefore, we supply them with a ‘stochastic’ dynamics: we express the

gauge field Aµ as the sum of a gauge field Bµ projection of Aµ on some gauge

section, that is, satisfying some gauge condition, and a gauge transformation

Λ:

A(x) = B(x) +∇Λ(x). (13.42)

We assume that this decomposition is unique. Gauge invariance implies

that the gauge action depends only on Bµ and specifies its dynamics.
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To Λ(x), whose dynamics is undetermined, we impose, for example,

E(Λ, x) ≡ ∇2Λ(x) +∇ ·B(x)− ν(x) = 0 , (13.43)

in which ν(x) is a stochastic field with some probability distribution.

We impose the equation in the field integral using the general identity

(chain rule)
∫

[dΛ]
∏

x

δ[E(Λ, x)] detM = const. ,

where M is the functional derivative of the equation (13.43) with respect

to the field Λ(x),

〈y|M|x〉 = δE(Λ, x)
δΛ(y)

.

However, here M = ∇2 and its determinant is field independent. The

determinant yields a factor that disappears in the normalization of the field

integral.
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The field integral reduces to

Z =

∫

[dBµdΛ] δ
[

∇2Λ(x) +∇ ·B(x)− ν(x)
]

exp [−S(B)] . (13.44)

The field measure [dBµdΛ] is the decomposition of the flat measure [dAµ]

into a product of measures on Bµ and Λ. The action S(B) is the gauge

invariant action S(A) in which equation (13.42) has been used. We now

recognize that the whole expression can be rewritten in terms of Aµ as

Z =

∫

[dAµ] δ [∇ ·A(x)− ν(x)] exp [−S(A)] .

Moreover, since the result of the field integration does not depend on the

dynamics of Λ(x), the result does not depend on the field ν(x) either and

we can integrate over ν(x) with, for example, the Gaussian measure (13.40).

The result remains valid in the presence of sources for gauge invariant

operators (polynomials in the fields that are invariant under gauge trans-

formations).
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13.6 Perturbation theory: regularization

For most of the section, we consider an action for massive QED with

fermions in a covariant gauge, of the form (13.23).

With the propagator (13.15) power counting is the same as for a scalar

field. Therefore, one can construct interacting theories renormalizable by

power counting in four dimensions. However, because gauge invariance is

essential for the physical consistency of the theory, it has to be preserved

by the renormalization. In a first step, gauge invariant regularizations are

thus required.

Dimensional regularization. We have defined dimensional regularization

in section 9.2. This regularization is well suited to perturbative calculations

in QED. Examples will be given in section 13.11. It leads to problems only

in the case of chiral gauge theories, due to the γ5 problem (see section 15.5)

because γ5 has no proper dimensional continuation.
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13.6.1 Momentum cut-off regularization

In this chapter the special problems generated by chiral fermions are not met

and we can calculate with dimensional regularization. However, for later

purpose it is instructive to also discuss momentum cut-off or Pauli–Villars’s

regularization, especially in the case of fermion matter. Moreover, momen-

tum regularization allows proving bare RG equations and thus discussing

the flow of effective low energy parameters, in particular, the effective low

energy charge.

It is convenient to decompose the regularization of a matter action in

presence of a gauge field into two steps, first regularization of matter in a

gauge background, then regularization of the integral over the gauge field.
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Charged fermions in a gauge background. From the point of view of mo-

mentum regularization, a specific problem arises because in a gauge theory

only covariant derivatives can be used. A regularized action of fermions in

a gauge background then takes the form (6D ≡ ∑

µ γµDµ),

SF(ψ̄, ψ,A) =

∫

d4x ψ̄(x) (M + 6D)
∏

r

(

1− 6D2/M2
r

)

ψ(x),
Mr

Λ
= O(1) .

Note that up to this point the regularization, unlike dimensional or lattice

regularizations, preserves a possible chiral symmetry for M = 0.

However, the higher order derivatives of the regularization, while they

improve the large momentum behaviour of the fermion propagator, generate

new, more singular, gauge interactions and it is no longer clear whether the

theory can be rendered finite.
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Correlation functions in the gauge background then are generated by

Z(η̄, η;A) =

∫

[

dψ(x)dψ̄(x)
]

exp
[

−SF(ψ̄, ψ,A)

+

∫

d4x
(

η̄(x)ψ(x) + ψ̄(x)η(x)
)

]

, (13.45)

where η̄, η are Grassmann sources.

Integrating over fermions explicitly, one obtains

Z(η̄, η;A) = Z0(A) exp

[

−
∫

d4x d4y η̄(y)∆F(A; y, x)η(x)

]

,

Z0(A) = N det

[

(M + 6D)
∏

r

(

1− 6D2/M2
r

)

]

,

where N is a gauge field-independent normalization and ∆F(A; y, x) the

fermion propagator in an external gauge field.
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Aµ

ψ̄ ψ

Aν

Fig. 13.1 – One-loop contribution to the gauge field two-point function.

The fermion determinant. The first problem arises from the determinant

that generates closed fermion loops in a gauge background (like in Fig. 13.1).

Using ln det = tr ln, one finds

lnZ0(A) = tr ln (M + 6D) +
∑

r

tr ln
(

1− 6D2/M2
r

)

− (A = 0).

In four dimensions, we can then use the anticommutation of γ5 with 6D,

det(6D+M) = det γ5(6D+M)γ5 = det(M − 6D),

lnZ0(A) =
1
2 tr ln

(

M2 − 6D2
)

+
∑

r

tr ln
(

1− 6D2/M2
r

)

− (A = 0).
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We see that, from the point of view of power counting, the regularization

does not improve the determinant and, thus, not one-loop diagrams of the

form of fermion closed loops with external gauge fields, a problem that

requires an additional regularization. This analysis signals a difficulty in

constructing in general a regularized gauge invariant expression for the de-

terminant of operators of the form 6D +M in the continuum and at fixed

dimension (see section 15.5).

Auxiliary fields method. The fermion determinant can be regularized by

adding to the action an unphysical boson regulator fields with spin 1/2 and,

therefore, a propagator analogous to ∆F but with different masses

SB(φ̄, φ;A) =

∫

d4x φ̄(x)
(

MB
0 + 6D

)

∏

r=1

[

1− 6D2/(MB
r )

2
]

φ(x), MB
r = O(Λ).

The integration over the boson fields φ̄, φ adds to lnZ0 the quantity

δ lnZ0(A) = − 1
2 tr ln

[

(MB
0 )2 − 6D2

]

−
∑

r=1

tr ln
[

1− 6D2/(MB
r )

2
]

− (A = 0).
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Expanding in inverse powers of 6D, one adjusts the masses MB
r to cancel

as many powers as possible. However, the unpaired initial fermion mass

M is the source of a problem. The corresponding determinant can only be

regularized with an unpaired boson with mass MB
0 = O(Λ).

In the chiral limit M = 0 we have two options: either we give a chiral

charge to the boson field and the mass MB
0 breaks chiral symmetry, or we

leave it invariant in a chiral transformation. Then, after a chiral gauge

transformation, we obtain the determinant of the operator

eiθ(x)γ5 6Deiθ(x)γ5(6D+MB
0 )−1.

For θ(x) constant, eiγ5θ anticommutes with 6D and cancels. Otherwise, a non-

trivial contribution remains. The method thus indicates potential difficulties

with chiral gauge transformations.
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Since the problem reduces to the study of a determinant in an external

background, one can examine it directly, as we will, starting with section

15.5. One verifies whether it is possible to define some regularized form

in a way consistent with chiral symmetry. One then inserts the one-loop

renormalized diagrams in the general diagrams regularized by the preceding

cut-off methods.

The gauge field propagator. After integration over the gauge field, dia-

grams constructed from ∆F(A; y, x) belong to loops with gauge field propa-

gators (figure 13.2), and, therefore, can be rendered finite if the gauge field

propagator can be improved.

For the free gauge action in a covariant gauge usual derivatives can be

used because in an Abelian theory the gauge field is neutral. The tensor

Fµν is gauge invariant and the action for the scalar χ(x) of equation (13.11)

and thus ∇ ·A is arbitrary. Therefore, the large momentum behaviour of

the gauge field propagator can be arbitrarily improved.
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Fig. 13.2 – Example of a multi-loop diagram.

Scalar matter. In the case of scalar matter, a similar analysis holds.

The determinant detD2
µ generated by integrating over charged scalar

fields in a gauge background can be regularized by Schwinger’s proper time

method. The determinant is then expressed in terms of the evolution oper-

ator corresponding to a non-relativistic Hamiltonian in a magnetic field.

For multi-loop diagrams scalar self-interaction vertices can be added, but

then the number of matter propagators exceeds the number of gauge field

vertices and again the diagrams can be made superficially convergent.

1089



13.6.2 Lattice regularization

The construction of a lattice regularized form of a gauge theory is directly

based on the notion of parallel transport and the geometric interpretation

of the gauge field as a connection. Since on the lattice points are split, the

gauge field has to be replaced by link variables corresponding to parallel

transport along links of the lattice (see section 13.3.1 and chapter 16 for a

detailed discussion).

A link variable U(x, y) is an element of the U(1) group, lattice analogue

of the parallel transporter U(C) defined by equation (13.25), the curve C

being the link joining the site x to the neighbour sitey on the lattice.

It can be parametrized in terms of an angle θxy, and is such that

U(x, y) ≡ Uxy = eiθxy = (Uyx)
−1 .

The measure of integration over the gauge variables is the group invariant

measure, that is, the flat measure dθxy.
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Lattice dependent U(1) group transformations are then the lattice equiva-

lents of the gauge transformations of the continuum theory.

Gauge invariant fermion interaction terms on the lattice, for example,

have the form (but lead to subtle issues for the fermion lattice propagator)

ψ̄(x+ anµ)γµU(x+ anµ, x)ψ(x),

where nµ is the unit vector in µ direction and a the lattice spacing.

Plaquette action. We have shown in section 13.3.1 that the curvature

tensor is associated with parallel transport around a closed curve. This

indicates that a regularized form of
∫

d4x
∑

µ,ν F
2
µν is the product of link

variables around a closed curve on the lattice, the simplest one on an hyper-

cubic lattice being a square, forming a plaquette. This leads to the famous

plaquette action (for details see chapter 16),
∑

all plaquettes

UxyUyzUztUtx , x, y, z, t forming a square .
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À typical gauge invariant lattice action corresponding to the continuum

action of a Abelian gauge field coupled to fermions then has the form

S(U, ψ̄, ψ) = β
∑

plaquettes

UxyUyzUztUtx − κ
∑

links

ψ̄yγyxUyxψx −
∑

sites

Mψ̄xψx ,

(13.46)

where have denoted by x, y,..., the lattice sites, γxy ≡ ∑

µ γµ(x − y)µ and

β and κ are the coupling constants.

Note that on the lattice and in a finite volume the gauge invariant action

leads to a well-defined partition function because the U(1) group is compact:

the volume of the gauge group for a lattice of Ω lattice sites is (2π)Ω.

However, in the continuum limit, the compact character of the group is

lost. Therefore, even on the lattice it is necessary to fix the gauge in order

to be able to construct a regularized perturbation theory. Since we shall

devote chapter 16 to lattice gauge theories, we postpone the discussion of

this problem.
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13.7 WT identities

In this section, for convenience, we assume dimensional regularization.

In gauge theories WT identities play an essential role because it is nec-

essary to maintain the gauge symmetry in order to ensure that the theory,

which is not explicitly unitary, remains equivalent to a unitary theory, at

least for the ‘physical’ observables, that is, gauge invariant observables (in-

cluding S-matrix elements).

Their derivation is simple. We again take the example of the action

(13.23)

Sξ(A, ψ̄, ψ) =
∫

d4x

[

1
4

∑

µ,ν

F 2
µν(x) +

1
2m

2A2(x) +
1

2ξ

(

∇ ·A(x)
)2

− ψ̄(x) (6∂ +M + ie 6A)ψ(x)
]
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We add sources Jµ(x), η(x) and η̄(x) for the fields Aµ(x), ψ̄(x) and ψ(x),

respectively. The action becomes

Σ(A, ψ̄, ψ) = Sξ(A, ψ̄, ψ)−
∫

d4x
[

J(x) ·A(x) + η̄(x)ψ(x) + ψ̄(x)η(x)
]

.

We make infinitesimal gauge transformations (13.22, 13.21) on the action

Σ. The terms that are not invariant are the Aµ mass term, the gauge fixing

term and the sources. The variation of the action is

δΣ = −1

e

∫

d4xΛ(x)
{(

∇2/ξ −m2
)

∇ ·A(x) +∇ · J(x)

+ie
[

η̄(x)ψ(x)− ψ̄(x)η(x)
]}

.

This leads, following the usual arguments, to an equation for the generating

functionals Z(J, η̄, η) and thus W(J, η̄, η) which has the form,
{

(

m2 −∇2/ξ
)

∑

µ

∂µ
δ

δJµ(x)
− ie

[

η̄(x)
δ

δη̄(x)
− η(x)

δ

δη(x)

]

}

W(J, η̄, η)

= ∇ · J(x). (13.47)
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This equation implies identities satisfied by correlation functions.

The contribution linear in J yields a constraint for the gauge field two-

point function, which after Fourier transformation reads

∑

µ

kµW̃
(2)
µν (k) = ξ

kν
k2 + ξm2

· (13.48)

For J = 0, from the coefficients of powers of η and η̄, one infers relations

between correlation functions (in the Fourier representation),

(k2/ξ +m2)
∑

µ

kµW̃
(2n+1)
µ (k; p1, . . . , pn; q1, . . . , qn)

= e
∑

i

[

W̃ (2n)(p1, . . . , pi + k, . . . , pn; q1, . . . , qn)

−W̃ (2n)(p1, . . . , pn; q1, . . . , qi + k, . . . , qn)
]

, (13.49)

in which k is the gauge field momentum, and pi and qi the momenta of ψ

and ψ̄ fields, respectively.
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The presence of additional external gauge fields does not modify the iden-

tities.

The equation (13.47) is a linear first-order partial differential equation.

The Legendre transformation is simple and yields an equation for the gen-

erating functional of vertex functions Γ(A, ψ̄, ψ):

(

∇2/ξ −m2
)

∇·A(x)+
∑

µ

∂µ
δΓ

δAµ(x)
+ ie

[

ψ(x)
δΓ

δψ(x)
− ψ̄(x)

δΓ

δψ̄(x)

]

= 0 .

(13.50)

It can be verified that the equations (13.47) and (13.50) have the same

content as the quantum equations of motion of the χ-field of section 13.1.

The general solution of equation (13.50) can be written as

Γ(A, ψ̄, ψ) = Γsym.(A, ψ̄, ψ) +
1
2

∫

[

m2A2(x) +
(

∇ ·A(x)
)2
/ξ
]

d4x ,

where Γsym. is gauge invariant.
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13.8 Renormalization

We perform a loop expansion of the functional Γ. Because the equation

(13.50) is linear, the tree approximation satisfies the inhomogeneous equa-

tion while all higher order terms satisfy the homogeneous equation. Denot-

ing by Γℓ the ℓ-loop contribution to Γ, we find for ℓ > 0,

∑

µ

∂µ
δΓℓ

δAµ(x)
+ ie

[

ψ(x)
δΓℓ
δψ(x)

− ψ̄(x)
δΓℓ
δψ̄(x)

]

= 0 .

Therefore, the generating functional Γℓ of ℓ-loop vertex functions is gauge

invariant. The divergent part Γdiv
ℓ of Γℓ, which is given by the singular part

of the Laurent expansion in ε = 4− d, thus is also gauge invariant.

The conclusion is that the action can be completely renormalized by

adding gauge invariant counter-terms.
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As in the example of the linear symmetry breaking in section 12.3, one can

say that the terms which break the gauge invariance, the gauge field mass

term and the gauge fixing term, are not renormalized since they are not

modified by counterterms.

The full renormalized action can then be written as

Sr(Aµ, ψ̄, ψ) =

∫

d4x

[

1
4ZA

∑

µ,ν

F 2
µν +

1
2m

2A2 + 1
2ξ (∇ ·A)

2

− Zψψ̄ (6D+M0)ψ
]

, (13.51)

where ZA is the gauge field, Zψ and M0 are the ψ field and mass renormal-

ization constants.

We now introduce the unrenormalized (bare) fields ψ0, ψ̄0, A0
µ and charge

e0,

ψ0 = Z
1/2
ψ ψ , ψ̄0 = Z

1/2
ψ ψ̄ , A0

µ = Z
1/2
A Aµ , e0 = Z1/2

e e .
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We note that the covariant derivative is not renormalized:

∂µ + ie0A
0
µ = ∂µ + ieAµ .

As a consequence, we obtain the relation

ZAZe = 1 . (13.52)

Gauge invariance relates the renormalization of the charge and the gauge

field.

Moreover, since the quantities Fµν(x) and ψ̄(x)ψ(x) are gauge invari-

ant, their correlation functions are the same in the unitary and ξ gauges.

Therefore, ZA and M0 (but not Zψ) can be chosen independent of ξ.
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13.9 Gauge dependence: the fermion two-point function

In most of the section, we assume dimensional regularization.

Some insight into the physical properties of the theory can be gained from

a study of the the gauge dependence of correlation functions. In covariant

gauges of the action (13.23) this amounts to studying the dependence on

the parameter ξ of correlation functions.

As an example, we discuss the fermion two-point function:

W
(2)
ξ (u, v) ≡

〈

ψ̄(u)ψ(v)
〉

= Z−1

∫

[dAµ dψ dψ̄]ψ̄(u)ψ(v) e−Sξ(A,ψ̄,ψ),

(13.53)

where the partition function Z is gauge independent and, thus, ξ indepen-

dent.
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We now invert the algebraic transformations of section 13.1.3. We introduce

an uncoupled scalar field χ and add a mass term to action:

Sξ(A, ψ̄, ψ) 7→ Sξ(A, ψ̄, ψ, χ) = Sξ(A, ψ̄, ψ) + 1
2ξm

2

∫

ddxχ2(x).

The direct integration over χ yields a constant factor that cancels in the

ratio (13.53).

Instead, we change variables, shifting χ(x) as,

χ(x) 7→ χ(x) +
i

ξm
∇ ·A(x).

After an integration by parts the action becomes

S(A, ψ̄, ψ, χ) = Sξ(A, ψ̄, ψ) + 1
2ξm

2

∫

ddxχ2(x)− im

∫

ddxA(x) · ∇χ(x)

− 1

2ξ

∫

ddx
(

∇ ·A(x)
)2
.
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The last term cancels the gauge fixing term and the second term in the right

hand side can be eliminated by the gauge transformation,

A(x) 7→ A(x) + i∇χ(x)/m ,

ψ(x) 7→ ψ(x) eieχ(x)/m, ψ̄(x) 7→ ψ̄(x) e−ieχ(x)/m .

The field integral representation of the two-point function then factorizes

and leads to the relation

W
(2)
ξ (u, v) =W (2)

∞ (u, v)Z−1
χ

∫

[dχ] e−Sξ(χ), (13.54)

in which W
(2)
∞ (u, v) is calculated with the unitary action (13.20) of massive

QED and

Sξ(χ) =
∫

ddx
[

− 1
2

(

∇χ(x)
)2 − 1

2ξm
2χ2(x)

]

+ ieχ(v)− ieχ(u).
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The χ integration can be performed by noting that

ieχ(v)− ieχ(u) =

∫

ddx J(x)χ(x) with J(x) = ie[δ(x− v)− δ(x− u)].

Thus, in terms of the χ propagator ∆χ,

∫

[dχ] e−Sξ(χ) = exp

[

− 1
2

∫

ddx ddy J(x)∆χ(ξ, x− y)J(y)

]

= exp
[

−e2
(

∆χ(ξ, 0)−∆χ(ξ, u− v)
)]

. (13.55)

The χ propagator has the Fourier representation

∆χ(ξ, x) =
1

(2π)d

∫

ddp eipx

p2 + ξm2

and, thus,

∆χ(ξ, 0)−∆χ(ξ, x) =
1

(2π)d

∫

ddp
(

1− eipx
)

p2 + ξm2
.
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We then infer the ratio of the bare two-point functions for two different

values of ξ. For example,

W
(2)
ξ (u, v) = exp

[

ξe2

(2π)d

∫

ddp
eip(u−v) −1

p2 (p2 + ξm2)

]

W
(2)
(ξ=0)(u, v). (13.56)

Only the second term in the exponential is divergent while the first one

contains the unphysical χ poles.

Introducing the fermion renormalization constant Zψ, we obtain the ratio

of renormalization constants for two values of ξ (up to a finite renormaliza-

tions, required in the limit m→ 0 to avoid IR divergences),

Zψ(ξ) = Zψ(0) exp

[

− ξe2

(2π)d

∫

ddp

p2 (p2 + ξm2)

]

. (13.57)

1104



Fig. 13.3 – Order e2 contribution. The full lines correspond to the fermion two-

point function, the dotted line to the unphysical scalar field propagator.

The relation between renormalized functions then becomes

W
(2)
ξ (u, v) = exp

[

ξe2

(2π)d

∫

ddp
eip(u−v)

p2 (p2 + ξm2)

]

W
(2)
(ξ=0)(u, v). (13.58)

Unitarity. An expansion in powers of ξe2 of the factor in equation (13.58)

immediately shows that only the first term, which is ξ independent, has the

physical fermion pole (see figure 13.3 for the e2 contribution) .

The method we have used can be generalized to all ψ̄, ψ, Fµν correlation

functions.

1105



Again one proves factorization and, after renormalization, only the first

term in an expansion in powers of e2ξ of the ratio between correlation

functions, which is ξ-independent, contributes in the mass-shell limit.

Therefore, the properly normalized S-matrix elements are gauge inde-

pendent and equal to the matrix elements of the unitary theory. The full

S-matrix, in the subspace of physical states, is thus unitary.

Gauge invariant operators. We have examined the gauge dependence of

S-matrix elements. From the point of view of correlation functions, the

only gauge independent quantities are the expectation values of products of

gauge invariant operators, that is, local polynomials in the field invariant

under the transformations (13.19, 13.21).

The simplest such operators are Fµν , which selects the transverse part

of the gauge field, ψ̄(x)ψ(x) or more generally ψ̄(x)ΓAψ(x) in which the

matrix ΓA is any element of the algebra of γ matrices.
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The mechanism which makes the correlation functions of ψ gauge dependent

while ψ̄(x)ψ(x) is gauge independent can be seen in equation (13.56).

When in the product ψ̄(x)ψ(y), y approaches x the additional gauge de-

pendent renormalization needed to make the product ψ̄(x)ψ(x) finite cancels

the gauge dependent part of the fermion field renormalization.

To study the renormalization properties of gauge invariant operators one

can add to the action sources for them. The form of WT identities is not

modified. The arguments of section 13.7 are still valid: the counterterms

are gauge invariant and can be chosen gauge independent. This also proves

that gauge invariant operators mix under renormalization only with gauge

invariant operators of lower or equal canonical dimensions.
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Non-gauge invariant correlation functions in the unitary gauge. With the

original action (13.20), all correlation functions are ‘physical’, but the theory

is not renormalizable. However, one is able to define some correlation func-

tions, the renormalized gauge invariant correlation functions, which have a

large cut-off limit. The relation (13.54), in presence of a cut-off,

W (2)
∞ (u, v) = exp

[

− e2

(2π)d

∫

ddk
1− eik(u−v)

m2k2

]

W
(2)
0 (u, v),

yields an explanation for this surprising property. For |u − v| 6= 0, the

leading term in the large cut-off limit in the exponential is

e2

(2π)d

∫

ddk

m2k2
∝ e2

Λd−2

m2
.

Therefore, in the physical representation all non-gauge invariant correlation

functions vanish in the infinite cut-off limit.
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The technical explanation is the following: although the mass term breaks

gauge invariance, this breaking is not sufficient to prevent fluctuations com-

ing from the gauge degrees of freedom to suppress these correlation func-

tions.
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13.10 Renormalization group equations

In this section, we derive RG equations in the case of the action (13.23),

which corresponds to massive QED with fermions, displaying the depen-

dence of RG functions on the gauge fixing parameter ξ. We denote by

Γ(l,n) the vertex functions corresponding to l gauge fields, and n fermion

pairs ψ and ψ̄. In momentum representation, the relation between bare and

renormalized vertex functions is

Γ̃
(l,n)
B (pi, qj ;α0, ξ0,m0,M0) = Z

−l/2
A Z−n

ψ Γ̃(l,n)(pi, qj ;µ, α, ξ,m,M),

(13.59)

in which µ is the renormalization scale, and we have called α the loop

expansion parameter:

α = e2/4π .
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Differentiating equation (13.59) with respect to µ at bare parameters fixed,

we find the RG equations:
[

µ
∂

∂µ
+ β(α)

∂

∂α
+ δ(α)ξ

∂

∂ξ
+ ηm(α)m

∂

∂m
+ ηM (α)M

∂

∂M

− l

2
ηA(α)− nηψ(α)

]

Γ̃(l,n)(pi, qj ;µ, α, ξ,m,M) = 0 .

The equation (13.52) relates ZA and Ze, the gauge field and coupling con-

stant renormalization constants,

ZAZe = 1 .

Therefore,

α = ZA α0 . (13.60)

Moreover, we have shown in section 13.7 that the parameters m and ξ are

not renormalized. It follows that,

m2
0 = m2Z−1

A , ξ0 = ξZA . (13.61)

1111



Finally, in section 13.9, we have shown that the renormalization constant

ZA can be chosen to be independent of ξ (the minimal subtraction scheme

satisfies this requirement). The equations (13.60, 13.61) then imply a set of

relations between RG functions:

β(α) = ηA(α), δ(α) = −β(α), ηm(α) = β(α)/2 .

In addition β(α) is independent of ξ. The function ηM can also be chosen

independent of ξ, only the fermion field renormalization is necessarily gauge

dependent. Actually, from equation (13.57) it is even possible to determine

the gauge dependence of ηψ. A short calculation within the minimal sub-

traction scheme leads to

ηψ(α, ξ) = ηψ(α, 0)− αξ/2π .
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13.11 The one-loop β-function: charged fermions

Dimensional regularization and minimal subtraction are used in the calcu-

lation.

We calculate the β-function in the case of the action (13.23), which in-

volves a gauge field and charged fermions, at one-loop order. We infer

the coupling constant renormalization from the gauge field renormalization,

provided by the gauge field two-point function, and the relation (13.52).

The one-loop contribution to the generating functional of vertex functions

coming from the fermion integration is

Γ1 loop(Aµ) = − tr ln (6∂ + ie 6A+M) .

The second derivative with respect to Aµ yields the one-loop contribution

to the renormalized vertex two-point function, which we decompose as

Γ̃(2)
µν (p) = ZA

(

δµνp
2 − pµpν

)

+ pµpν/ξ + e2Σµν(p) . (13.62)
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Then,

Σµν(p) =

∫

ddk

(2π)d
tr [γµ (6k + iM) γν (6k − 6p + iM)]

(k2 +M2) [(p− k)2 +M2]
.

One verifies that, as expected, the one-loop contribution is transverse and,

thus, ξ is not renormalized. We calculate the one-loop integral by intro-

ducing Feynman parameters. After some algebra, and with the help of the

identity

m
d

dm

∫

ddk

k2 +m2
= (d− 2)

∫

ddk

k2 +m2
= −2m2

∫

ddk

(k2 +m2)2
, (13.63)

one obtains (using trγ 1 = 4),

Σµν(p) = 8(p2δµν − pµpν)

∫ 1

0

ds s(1− s)

∫

ddk

(2π)d
1

[k2 + s(1− s)p2 +M2]
2 .

In particular, the divergent part of Σµν(p) is ( ε = 4− d)

Σµν(p) =
1

6π2ε
(p2δµν − pµpν) +O(1).
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This determines the Aµ field renormalization ZA and thus, from equation

(13.52), also Ze:

ZA = 1− e2

6π2ε
+O

(

e4
)

, Ze = 1 +
e2

6π2ε
+O

(

e4
)

. (13.64)

We infer the corresponding β-function at one-loop order (α = e2/4π):

β(α) = −ε
[

d ln (αZe)

dα

]−1

= −εα +
2α2

3π
+O

(

α3
)

.

The sign of the β-function. Note that in the domain of validity of the

expansion (13.64) (α small), ZA satisfies

ZA ≤ 1 .

This is a consequence of the Källen–Lehmann representation for the two-

point function (see section 5.11).
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In the case of the gauge field the property remains true because ZA is

related to the transverse part of the two-point function to which unphysical

states do not contribute.

Since ZAZe = 1 we see that the sign of the β-function in four dimensions

is determined by hermiticity for α small enough.

The sign of the β-function indicates that QED is trivial: in the infinite

cut-off limit the effective coupling constant at low energy scale goes to zero.

This is consistent with the small value of α at low energy.
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13.11.1 Furry’s theorem

For more general perturbative calculations the following observation is use-

ful. Correlation functions without matter field and an odd number of gauge

fields vanish. The proof is based on charge conjugation.

We consider the contribution to the effective gauge field action, det(6∂ +

ie 6A+M), which is generated by the integration over the fermion fields, and

use the property of the charge conjugation matrix C introduced in section

A11.2.5:

det (6∂ + ie 6A+M) = det
[

T (6∂ + ie 6A+M)
]

= detC−1
[

T (6∂ + ie 6A+M)
]

C

= det (6∂ − ie 6A +M) .

Therefore, the interaction between gauge fields generated by the fermions

is even in Aµ. Note in particular the implication for Feynman diagrams:

fermion loops with an odd number of external gauge fields can be omitted.

1117



13.12 The Abelian Higgs model

As an introduction to chapter 14, we now consider a gauge field coupled to

a charged scalar field φ(x) in an unusual phase. In three dimensions, this is

also a macroscopic model for a superconductor in a magnetic field.

We start from the gauge invariant action (13.26). The scalar field φ(x) is

complex and the covariant derivative Dµ is defined as in equation (13.27):

Dµ = ∂µ + ieAµ.

Renormalizability requires a scalar field self-interaction of the |φ|4 type

and a renormalizable action thus has the form

S(A, φ) =
∫

d4x

(

1
4

∑

µ,ν

F 2
µν +

∑

µ

|Dµφ|2 + r |φ|2 + 1
6g |φ|

4

)

. (13.65)

In the classical limit, for r > 0 the U(1) global symmetry is unbroken, the

gauge field has two massless components and the scalar field φ has two real

components with equal mass
√
r.
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However, for r < 0 the global U(1) symmetry is spontaneously broken

and φ(x) acquires a non-vanishing expectation value 〈φ〉 = v =
√

−3r/2g,

which for convenience we have chosen real positive (we comment later on

the meaning of 〈φ〉, which is not gauge invariant).

This is a situation we have discussed in section 12.4 and we have concluded

that the SSB of a continuous symmetry implies the presence of a massless

state, a Goldstone particle. This result can be derived, in the classical limit,

by parametrizing the field φ as (see section 12.4)

φ(x) =
1√
2
[v + ρ(x)] eiθ(x) .

As a consequence of the symmetry, the resulting action then depends only

on ∇θ and the field θ is massless.
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However, the transformation φ(x) 7→ v + ρ(x) has the form of a gauge

transformation. If we perform the corresponding transformation on the

gauge field Aµ(x),

A(x) = A′(x) +
1

e
∇θ(x),

we eliminate the field θ from the action completely. After this transforma-

tion the action S(A, φ) indeed reduces to

S(A, ρ) =
∫

d4x

[

1
4

∑

µ,ν

F 2
µν +

1
2 (∇ρ)

2 + 1
2e

2A2(ρ+ v)2 + 1
2r(ρ+ v)2

+ 1
24g(ρ+ v)4

]

. (13.66)

In the tree approximation the spectrum of the theory now contains one

massive vector particle and one massive scalar, generally called the Higgs

particle, with masses

m(A) = |e|v, m(ρ) = v
√

g/3 =
√
−2r .
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As a consequence of gauge invariance, no Goldstone boson has been gener-

ated. This is a most remarkable property, which is also at the basis of the

Meissner effect in superconductivity.

Note that the total number of physical degrees of freedom has not changed

between the symmetric phase and the spontaneously broken phase since one

degree of freedom of the scalar field has been transferred to the vector field.

From the technical point of view, the field theory has a surprising prop-

erty: in this so-called unitary gauge corresponding to the action (13.66),

the theory contains only physical fields, can be trivially quantized but is

not renormalizable (and the ρ integration measure not defined).

By contrast, if one starts from the action (13.65) and quantize it in the

same way as in the symmetric phase, the field theory contains unphysical

degrees of freedom, but is renormalizable by power counting.

1121



We are reminded of the massive vector field coupled to a conserved current,

discussed in the first part of the chapter. Actually, there exists a relation

between the massive vector field and the Higgs model: if one takes the

formal non-linear σ-model limit of the action (13.65), a limit in which the

bare mass of the Higgs field becomes infinite at fixed expectation value v,

one recovers the action (13.6) with the identification m = |e|v.
Therefore, in order to be able to calculate perturbatively gauge invariant

observables and S-matrix elements, we return to the action (13.65). We

fix the gauge by adding a term proportional to (∇ ·A)2. This amounts to

couple the phase field θ(x) which plays the role of the Λ(x) field of section

13.1.

As a final remark, we recall for later purpose that the mechanism of

spontaneous symmetry breaking can also be used to give a mass to fermions

in a chiral invariant theory (section 12.5).
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13.13 Quantization of the Abelian Higgs model

We now start from the action

S(A, φ) =
∫

d4x

[

1
4

∑

µ,ν

F 2
µν +

1

2ξ
(∇ ·A)

2
+ 1

2m
2A2

]

+

∫

d4x

[

∑

µ

|Dµφ|2 + r|φ|2 + 1
6g|φ|4

]

, (13.67)

in which a mass has been given to the vector field to provide an IR cut-off.

We assume that φ has a real expectation value v in the classical limit.

We introduce the real and imaginary parts of φ and set

φ(x) =
1√
2
[v + ϕ(x) + iχ(x)] . (13.68)
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The quadratic part S2 of the action is then

S2(A, φ) =

∫

d4x

[

1
4

∑

µ,ν

F 2
µν +

1

2ξ
(∇ ·A)

2
+ 1

2

(

e2v2 +m2
)

A2

−evχ∇ ·A+ 1
2 (∇ϕ)

2 + 1
6gv

2ϕ2 + 1
2 (∇χ)

2
]

.

We see that ∇ ·A is coupled to the Goldstone field χ. The corresponding

propagators are

W̃ (2)
µν (k) =

δµν − kµkν/k
2

k2 + e2v2 +m2
+ ξ

kµkν
k2(k2 + ξm2)

,

W̃ (2)
µχ (k) = −ξ ievkµ

k2(k2 + ξm2)
, W̃ (2)

χχ (k) =
1

k2
+

ξe2v2

k2(k2 + ξm2)
,

W̃ (2)
ϕϕ (k) =

1

k2 + gv2/3
.
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The spectrum of the theory contains three physical states and the usual

state with negative norm coming from the regulator. We see that in the

absence of a mass term for the vector field in the action (13.67), the theory

is potentially IR divergent in four dimensions. On the other hand, with the

mass term the gauge symmetry is broken and the χ-field corresponds really

to a Goldstone mode. Even in the physical gauge, a massless scalar field is

then present and coupled.

13.13.1 WT identities and renormalization

It follows from the combined analysis of chapter 12 and section 13.7 that

after renormalization the correlation functions satisfy the equivalent of WT

identities (13.47) and (13.50). As a consequence the dependence of corre-

lation functions on the parameter ξ can be determined as in section 13.9.

In particular, only correlation functions of gauge invariant operators and

S-matrix elements are gauge independent.
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The explicit form of the WT for correlation functions is now rather com-

plicate. We display here only the identities corresponding to the (Aµ, χ)

two-point vertex functions. Denoting by v the expectation value of the

renormalized ϕ-field, one obtains by differentiating equation (13.50) with

respect to Aµ:

∑

ν

kν Γ̃
(2)
µν (k) + iev Γ̃(2)

µχ(k) = kµ
(

k2/ξ +m2
)

. (13.69)

Differentiating then with respect to χ, one finds,

∑

µ

kµΓ̃
(2)
µχ(k)− iev Γ̃(2)

χχ(k) = 0 . (13.70)

We parametrize the different functions as

Γ̃(2)
µν (k) = a(k2)δµν − b(k2)kµkν , Γ̃(2)

µχ(k) = iev c(k2)kµ, Γ̃(2)
χχ(k) = d(k2).
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In the tree approximation the values of a, b, c and d are

{

a(k2) = e2v2 +m2 + k2, b(k2) = 1− 1/ξ ,

c(k2) = 1 , d(k2) = k2.

From the identity (13.70) follows

d(k2) = k2c(k2).

The identity (13.69) leads to

a(k2)− k2b(k2)− e2v2c(k2) = k2/ξ +m2.

In particular, in the k = 0 limit, the equation implies

a(0)− e2v2c(0) = m2. (13.71)
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The corresponding connected two-point functions have the general form

W̃ (2)
µν (k) =

1

a

(

δµν −
kµkν
k2

)

+
ξkµkν

k2(k2 + ξm2)
,

W̃ (2)
µχ (k) = − ξievkµ

k2(k2 + ξm2)
, W̃ (2)

χχ (k) =
1

ck2
. (13.72)

RG β functions. For completeness we give here the RG β-functions at

one-loop in a more general model with N charged scalars:

βg =
1

24π2

[

(N + 4)g2 − 18ge2 + 54e4
]

, βe2 =
1

24π2
Ne4. (13.73)

The origin e2 = g = 0 is an IR stable fixed point only for N ≥ 183.
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13.13.2 Decoupling gauge

The quantization method we have used above leads to massless fields and

thus IR divergences, even though the physical theory contained only massive

fields. By the cleverer choice of a gauge which explicitly breaks the global

U(1) symmetry of the action (and, therefore, eliminates Goldstone modes),

it is possible to circumvent this difficulty.

In terms of the decomposition (13.42), A(x) = B(x)+∇Λ(x), where B(x)

belongs to a gauge section, we impose the condition

E(Λ, x) ≡ ∇ ·
(

B(x) +∇Λ(x)
)

+ λev Im
(

φ(x) e−ieΛ(x)
)

− ξ1/2ν(x) = 0,

(13.74)

in which λ is an arbitrary constant and ν(x) an external stochastic field.
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The important new feature is that the operator (see section 13.5.1)

〈y |M|x〉 ≡ δE(Λ, x)
δΛ(y)

=
[

∇2
x + λev Re

(

φ(x) e−ieΛ(x)
)]

δ(4)(x− y),

functional derivative of equation (13.74) with respect to Λ, now depends on

the dynamical fields and the associated determinant detM is no longer a

constant.

This is a source of new difficulties: one has to introduce spinless fermion

fields to express detM in a local form,

detM =

∫

[dC dC̄] exp

[
∫

d4x d4y C(y) 〈y|M|x〉 C̄(x)
]

.

The fields C and C̄ are two scalar fermion fields. As we have explained

on an example in section 11.11, scalar fermions cannot be interpreted as

physical particles. They are of a nature similar to Pauli–Villars regulator

fields.
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As before we integrate over ν(x) with the distribution (13.40) and use the

gauge invariance of the initial action:

Ssym.(B, φ) = Ssym.(A, φ e
−ieΛ).

Changing then variables in the field integral φ e−ieΛ 7→ φ, we obtain the

quantized action

Squ(A, φ, C̄, C) =

∫

d4x

{

1
4

∑

µ,ν

F 2
µν +

1

2ξ
(∇ ·A+ λ e v Imφ)2 + |Dµφ|2

+M2 |φ|2 + 1
6g

∣

∣φ4
∣

∣− C
(

∇2 + λ e vReφ
)

C̄
}

.

The initial gauge symmetry is hardly visible in this action. However, it has

a surprising new symmetry, the BRS symmetry, that can be used to prove

that renormalization preserves the form of the action. We postpone the

analysis of such a problem until section 14.5.4, and discuss here only the

tree approximation.

1131



Tree approximation. We now use the parametrization (13.68) and choose

λ = ξ
√
2 .

This is the relation only at leading order. The propagators are then

W̃ (2)
µν =

δµν
k2 + e2v2

+
(ξ − 1)kµkν

(k2 + e2v2)(k2 + ξe2v2)
,

W̃ (2)
χχ =

1

k2 + ξe2v2
,

W̃
(2)

C̄C
=

1

k2 + ξe2v2
.

(13.75)

The advantages of this gauge (introduced by ’t Hooft) are that by construc-

tion there is no Aµχ propagator and that all unphysical fields are massive

and have the same mass ξe2v2. To prove gauge independence of physical

observables, it suffices to show that the pole at k2 = −ξe2v2 cancels.
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The price to pay here is the more complicated form of WT identities

which now are mixed with BRS symmetry (see section 14.3.4). We examine

this question in next chapter in detail.

13.14 Physical observables. Unitarity of the S-Matrix

The unphysical pole at k2 = −ξm2 can be shown to cancel in physical

observables (gauge invariant operators, S-matrix) either through a gauge

dependence analysis as we have done in section 13.9, or directly by using

the whole set of WT identities and showing explicitly that the pole coming

from W
(2)
µν cancels the contribution coming from W

(2)
µχ in the intermediate

state in generalized unitarity relations. As the expressions (13.72) show,

the residues of the pole are related and, therefore, one understands that a

cancellation is possible. The proof is not very difficult but tedious and we

refer to the literature.
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In the limit m = 0, we expect also the pole at k2 = 0 to cancel in phys-

ical observables. According to relation (13.71), for k2 → 0 the different

propagators behave like

W̃ (2)
µν ∼ kµkν

k2

(

1

m2
− 1

m2 + e2v2c(0)

)

, W̃ (2)
µχ ∼ −iev kµ

k2m2
,

W̃ (2)
χχ ∼ 1

c(0)k2
·

Again a direct argument based on WT identities for connected correlation

functions and unitarity relations allows to prove that in the m2 = 0 limit

the χ-field decouples from physical observables. Here we do not have an al-

ternative proof based upon gauge dependence. However, we shall construct

one in a more general context by using a different gauge.
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