Reactions involving Electrons & Protons

Egle Tomasi-Gustafsson

CEA, IRFU, DPhN and Université Paris-Saclay, France

ECT* Workshop on Radiative Corrections from Medium to High Energy Experiments July 18-22, 2022

Nucleon Charge and Magnetic Distributions

Nucleon Charge and Magnetic Distributions

Cea

Egle TOMASI-GUSTAFSSON

Experimental fact: $ep \rightarrow ep$

- Precise data on the proton space-like form factors by the Akhiezer-Rekalo recoil proton polarization method show that the electric and magnetic distributions in the proton are different, suggesting a steaper Q²monopole-like decrease of the ratio and eventually a zero-crossing of G_E.
- It is well accepted today that the polarization method gives THE reliable measurement of the EM FF ratio at large Q² (compared to the Rosenbluth method).
- The difference has been attributed to radiative corrections (including 2γ ?)
- Applying radiative corrections at first order in α brings a % uncertainty in cross section measurements.

Ch. Perdrisat, V. Punjabi

Egle TOMASI-GUSTAFSSON

.

Experimental fact: $e^+e^- \rightarrow \overline{p}p$

- BaBar and BESIII data on the proton time-like effective form factor show a systematic sinusoidal modulation in terms od the p-p relative 3-momentum in the near-threshold region.
- ~ 10% size oscillations on the top of a regular background (dipole x monopole)
- The periodicity and the simple shape of the oscillations point to an interference of mechanisms of scale 0.2 and ~1 fm.
- The hadronic matter is distributed in nontrivial way.
- High order radiative corrections are applied (structure functions method)

A.Bianconi, E. T-G. Phys. Rev. Lett. 114,232301 (2015)

Cez

Plan

- Radiative corrections modify not only the absolute values but also the dependence of the observables on the relevant kinematical variables

V.V. Bytev, E.A. Kuraev, E.T.-G. PRC77, 055205 (2008)

- Higher orders: necessity and importance
- Reaction mechanism: 1γ - 2γ interference
- Other issues:
 - Normalizations
 - Correlations

What can we learn from time-like processes?

Cross section of (quasi)elastic ep-scattering

Classify radiative corrections...

Elastic $e^{-}(p_{_{I}}) + p(p) \rightarrow e^{-}(p_{_{I}}') + p(p')$ Inelastic $\rightarrow e^{-}(p_{_{I}}') + p(p') + \gamma(k)$

Higher order inelastic

double brehmstrahlung, pair production..

 $\rightarrow e^{-}(p_{1}') + p(p') + \gamma(k_{1}) + \gamma(k_{2})$ $\rightarrow e^{-}(p_{1}') + p(p') + e^{-}(q_{-}) + e^{+}(q_{-})$ $\rightarrow \dots$

E.A. Kuraev (1940-2014)

....in terms of leading logarithm

Egle TOMASI-GUSTAFSSON

Short history (I)

• Schwinger (1949) : corrections to the cross section for electron scattering in external field

 $\sigma = \sigma_0 (1 + \delta) (1)^*$

- Yennie, Frauchi, Suura (1961) : the cross section of any pure process (without real photon emission) is zero.
- Kessler, Ericsson, Baier, Fadin, Khoze, Y. Tsai (1968): quasi real electron method. The emission of a hard photon is described in terms of a convolution of a radiative function with the Born cross section.

Short history (II)

1977: Altarelli, Parisi, Gribov, Lipatov, Dokshitzer: (DGLAP)

- Asymptotic freedom, evolution equation
- Collins factorization theorem
- Drell-Yan picture of hard processes in QED (application of QCD ideas to QED): radiative corrections in form of structure functions and Drell-Yan picture

Leading $\sim \left(\frac{1}{n}L\right)^{n}$ and non leading $\sim \frac{1}{n}\left(\frac{1}{n}L\right)^{n}$ terms are explicitly taken into account in DGLAP evolution equations.

In QED they are known as *Lipatov equations* (1975).

Structure Function Method

E. A. Kuraev and V.S. FADIN, Sov. J. of Nucl. Phys. 41, 466 (1985)

Distinguish:

-leading contributions of higher order

-non leading ones

$$= \frac{1}{\pi} \left(\frac{1}{\pi} L \right)^n$$

$$\left(\frac{2}{n}L\right)^{n}$$

Large log

$$L = \ln \frac{Q^2}{m_e^2}$$

The SF method is based on:

- Renormalization group evolution equation
- Drell-Yan parton picture of the cross section in QCD

$$\frac{d\mathcal{O}'(y) = \int \frac{dx}{x} g_{x}}{\int \frac{d\mathcal{O}_{o}(Ex)}{\left[1 - \Pi(Q^{2}x)\right]^{2}}} \mathcal{D}(x,L) \mathcal{D}\left(\frac{yg_{x}}{x},L\right) \left(1 + \frac{y}{n}K\right)$$

Electron SF: probability to 'find' an electron in the initial electron, with energy fraction x and virtuality up to Q^2

Structure Function Method

E. A. Kuraev and V.S. Fadin, Sov. J. of Nucl. Phys. 41, 466 (1985)

- SF method applied to QED processes: calculation of radiative corrections with precision $\sim 0.1\%$.
- Takes into account the dynamics of the process
- Is formulated in terms of parton densities (leptons, antileptons, photons)
- Many applications to different processes

Structure Function Method (some applications)

- $e^+e^- \rightarrow hadrons(J/\Psi width)$ E. A. KURAEV and V.S. FADIN, Sov. J. of Nucl. Phys. 41, 466 (1985)
- $ep \rightarrow e'X$ (elastic and inelastic scattering) E. A. KURAEV ;N.P. MERENKOV and V.S. FADIN, Sov. J. of Nucl. Phys. 47,1009 (1988)
- Decay width of mesons (FSI) E. A. KURAEV, JETP Lett.65, 127 (1997)
- Radiative corrections for LEP beam (small angle BHABHA scattering)

A.B.Arbuzov, E.A.Kuraev et al, Phys. Lett.B 399, 312 (1997)

- Compton and double Compton scattering A.N.Ilyichev, E.A. Kuraev, V.Bytev and Y. P. Peresun'ko, J. Exp. Theor. Phys. 100 31 (2005)
- Structure function method applied to polarized and unpolarized electron-proton scattering: A solution of the GE(p)/GM(p) discrepancy.

Y. Bystricky, E.A.Kuraev, E. Tomasi-Gustafsson, Phys. Rev. C75, 015207 (2007).

- Radiative corrections to DVCS electron tensor V.Bytev, E.A.Kuraev, E. Tomasi-Gustafsson, Phys. Rev. C78, 015205 (2008)
- Radiative proton-antiproton annihilation to a lepton pair A.I. Ahmadov, V.V. Bytev, E.A.Kuraev, E. T-G, Phys. Rev. D82, 094016 (2010)

PHYSICAL REVIEW C 75, 015207 (2007)

Structure function method applied to polarized and unpolarized electron-proton scattering: A solution of the $G_E(p)/G_M(p)$ discrepancy

Yu. M. Bystritskiy and E. A. Kuraev JINR-BLTP, RU-141980 Dubna, Moscow Region, Russian Federation

E. Tomasi-Gustafsson

DAPNIA/SPhN, CEA/Saclay, F-91191 Gif-sur-Yvette Cedex, France (Received 23 March 2006; revised manuscript received 7 August 2006; published 25 January 2007)

PHYSICAL REVIEW C 89, 065207 (2014)

Radiative corrections for electron-proton elastic scattering taking into account high orders and hard-photon emission

E. A. Kuraev and Yu. M. Bystritskiy^{*} JINR-BLTP, 141980 Dubna, Moscow Region, Russia

A. I. Ahmadov

JINR-BLTP, 141980 Dubna, Moscow Region, Russia and Institute of Physics, Azerbaijan National Academy of Sciences, Baku, Azerbaijan

E. Tomasi-Gustafsson

CEA, IRFU, SPhN, Saclay, 91191 Gif-sur-Yvette Cedex, France and CNRS/IN2P3, Institut de Physique Nucléaire, UMR 8608, 91405 Orsay, France (Received 31 October 2013; revised manuscript received 10 January 2014; published 18 June 2014)

cea

Egle TOMASI-GUSTAFSSON

Scattered electron energy

All orders of PT needed \rightarrow

beyond Mo & Tsai approximation

LSF: ‰ precision

E. A. K. and V.S. FADIN, Sov. J. of Nucl. Phys. 41, 466 (1985)

LLA (Leading Logarithm Approximation)

$$\frac{\alpha}{\pi}L \approx 1, L = ln\frac{Q^2}{m_e^2}$$

Precision of LLA

$$\left(\frac{\alpha}{\pi}\right)\left(\frac{\alpha}{\pi}L\right) \approx \frac{1}{400} \approx 0.2\%$$

Including K-factor

$$\left(\frac{\alpha}{\pi}\right)^2 \left(\frac{\alpha}{\pi}L\right) \le 0.01\%$$

Even when corrections in first order PT are $\delta \sim 100\%$, the accuracy of higher order RC (LSF) is $\alpha/\pi \delta \leq 1\%$!

RC & LSF

Cea

Radiative Corrections

Data from L. Andivahis et al., PRD50, 5491 (1994)

RC to the Rosenbluth cross section: – large (may reach 40%) – ε and Q² dependent – calculated at first order

May change the slope of σ_R (and even the sign !!!)

 $\sigma = \sigma_0 (1 + \delta)$ E. T.-G., G. Gakh, PRC 72, 015209 (2005)

10.5 with rad. correction 10.0 1.75 Ge 9.5 9.0 **≈** 8.5 8.0 GeV^2 7.5 7.06.5 without rad. correction 6.0 0.00.20.4 0.60.8 1.0 F

C. Perdrisat, V. Punjabi, M. Vanderhaeghen, Progr. in Part. and Nucl. Physics (2007)

Trento, 20-VII-2022

Egle TOMASI-GUSTAFSSON

17

Radiative Corrections (SF method)

Yu. Bystricky, E.A.Kuraev, E. T.-G, Phys. Rev. C 75, 015207 (2007)

PHYSICAL REVIEW C 93, 055201 (2016)

Reanalysis of Rosenbluth measurements of the proton form factors

A. V. Gramolin^{*} and D. M. Nikolenko Budker Institute of Nuclear Physics, 630090 Novosibirsk, Russia (Received 28 March 2016; published 10 May 2016)

Figure 3: Difference at $Q^2 = 5 GeV^2$.

Electric contribution to ep cross section

Cea

Precision Rosenbluth Measurement of the Proton Elastic Form Factors

I.A. Qattan,^{1,2} J. Arrington,² R.E. Segel,¹ X. Zheng,² K. Aniol,³ O.K. Baker,⁴ R. Beams,² E.J. Brash,⁵ J. Calarco,⁶ A. Camsonne,⁷ J.-P. Chen,⁸ M. E. Christy,⁴ D. Dutta,⁹ R. Ent,⁸ S. Frullani,¹⁰ D. Gaskell,¹¹ O. Gayou,¹² R. Gilman,^{13,8} C. Glashausser,¹³ K. Hafidi,² J.-O. Hansen,⁸ D. W. Higinbotham,⁸ W. Hinton,¹⁴ R. J. Holt,² G. M. Huber,⁵ H. Ibrahim,¹⁴ L. Jisonna,¹ M. K. Jones,⁸ C. E. Keppel,⁴ E. Kinney,¹¹ G. J. Kumbartzki,¹³ A. Lung,⁸ D. J. Margaziotis,³ K. McCormick,¹³ D. Meekins,⁸ R. Michaels,⁸ P. Monaghan,⁹ P. Moussiegt,¹⁵ L. Pentchev,¹² C. Perdrisat,¹² V. Punjabi,¹⁶ R. Ransome,¹³ J. Reinhold,¹⁷ B. Reitz,⁸ A. Saha,⁸ A. Sarty,¹⁸ E. C. Schulte,² K. Slifer,¹⁹ P. Solvignon,¹⁹ V. Sulkosky,12 K. Wijesooriya,2 and B. Zeidman2 .0150 $= 2.84 \text{ GeV}^2$.0145 .0140 [№] 1.6 .0135 1.4 .0094 $= 3.20 \text{ GeV}^8$ 1.2.0092 Gw 0090 م ط 1.0 .0088 8.0 🛋 5 2⁴0.6 .0086 .0051 $= 4.10 \text{ GeV}^2$ 0.4 .0050 ы.0049 Б 0.2 .0048 .0047 0.0 2 З 5 6 0 1 .0046 Q^2 [GeV²] 0.2 0.4 0.6 0.8 1.0 0.0 3

Radiative Corrections

Correlations

E.T-G, Phys. Part. Nucl. Lett. 4, 281 (2007)

Egle TOMASI-GUSTAFSSON

Correlations

-0.65

Correlation coefficient as a

function of $\langle C_R \rangle_{\epsilon}$

 $\sigma = \sigma_0(1 + \delta(\varepsilon, Q^2))$

 $\sigma = \varepsilon G_E^2 + \tau G_M^2$

ata = 0.7							
Q^2 , GeV	ξ	Ref.	Q^2 , GeV	ξ	Ref.	-0.7	
2.6400	-0.8823	[5]	0.2717	-0.7258	[24]		
3.2000	-0.8973		0.2911	-0.7818		-0.75	$()^2 < 2$ (ieV ²
4.1000	-0.9060		0.3105	-0.7085			
1.7500	-0.8693	[4]	0.3493	-0.7683		0.0	
2.5000	-0.9141		0.3881	-0.7417		-0.8	
3.2500	-0.9242		0.4269	-0.7093			-
4.0000	-0.9178		0.4657	-0.7381		_0 85	
5.0000	-0.8940		0.5045	-0.8126		-0.05	
1.0000	-0.9918	[22]	0.5433	-0.7646			- •
2.0030	-0.9915		0.5821	-0.8076		-0.9	- $^{\circ} O^2 \sim 2 C \sim$
2.4970	-0.9910		0.6209	-0.8061		0.0	\downarrow \downarrow \downarrow \downarrow \downarrow 2 GeV
3.0070	-0.9878		0.6598	-0.8137			-
0.1552	-0.6761	[24]	0.6986	-0.8713		-0.95	_
0.1785	-0.6788		0.7374	-0.8145			_
0.1940	-0.6915		0.7762	-0.8512		1	a as •
0.2329	-0.7177		0.8538	-0.7612		— I 1	—
							-
behavior of G_E^2 driven by G_M^2 . 1 1.15 1.2 1.25 1.3 1.35 1.4 1.45 1.							
						<i>E.</i> 7	<i>G, Phys. Part. Nucl. Lett.</i> 4, 281 (200

lation coefficient $\xi = cov(a, b)/\sigma \sigma$ for different sets of

Egle TOMASI-GUSTAFSSON

1.5

Correlations

Egle TOMASI-GUSTAFSSON

25

Normalization

Andivahis et al., PRD50, 5491 (1994)

Two spectrometers (8 and 1.6 GeV)

2 points at low E

Fixed renormalization for the lowest ε point c=0.956 (acceptance correction)

Increases the slope!

 $G_{\rm E} \approx G_{\rm D}$

Direct extraction of the Ratio

Simone Pacetti and Egle Tomasi-Gustafsson Phys. Rev. C **94**, 055202, 2016

Cea

Egle TOMASI-GUSTAFSSON

 $Q^2 [GeV^2]$

Two photon exchange

- 1 γ -2 γ interference is of the order of α =e²/4 π =1/137
- In the 70's it was shown [J. Gunion and L. Stodolsky, V. Franco, F.M. Lev, V.N. Boitsov, L. Kondratyuk and V.B. Kopeliovich, R. Blankenbecker...] that, at large momentum transfer, the sharp decrease of the FFs, if the momentum is shared between the two photons, may compensate α
- The calculation of the box amplitude requires the description of intermediate nucleon excitation and of their FFs at any Q²
- Different calculations give quantitatively different results

Interaction of 4 spin ½ fermions

16 amplitudes in the general case.
▶P- and T-invariance of EM interaction,
▶helicity conservation

Is it still possible to extract the « real » FFs in presence of 2γ exchange in <u>Model Independent</u> way?

In Space-like region -> Possible but difficult !

Space-like region :

- longitudinally polarized,
- in identical kinematical conditions

Generalization of the polarization method (A. Akhiezer and M.P. Rekalo)

- Three T-odd polarization observables (Ay, Py(le), Dab(le))
- or

- five T-even polarization observables....
 (dσ/dΩ, Px(λe), Pz(λe), Dxx, Dyy,or Dzz, Dxz)

M. P. Rekalo and E. T-G Nucl. Phys. A740 (2004) 271, M. P. Rekalo and E. T-G Nucl. Phys. A742 (2004) 322 M. P. Rekalo, E. T.-G. , EPJA (2004), Nucl. Phys. A (2003)

 One reason that it might be large: enhancement due to the fast decreasing of form factors (transferred momentum equally shared between the two photons).

- Explicit calculation for structureless proton
 - The contribution is small, for unpolarized and polarized ep scattering
 - Does not contain the enhancement factor L
 - The relevant contribution to K is ~ 1

E.A.Kuraev, V. Bytev, Yu. Bystricky, E.T-G, Phys. Rev. D74, 013003 (2006)

- One reason that it might be large: enhancement due to the fast decreasing of form factors (transferred momentum equally shared between the two photons).
- In this case it should be larger for deuteron & at large Q^2

BUT NO EVIDENCE

from Hall A and Hall C data on *ed* elastic scattering M.P. Rekalo, E.T-G, D. Prout, Phys. Rev. C 60, 042202

M.P. Rekalo, E.T-G, D. Prout, Phys. Rev. C 60, 042202 (1999) for deuteron at large Q²

R. G. Arnold et al., Phys. Rev. Lett. 35, 776 (1975)

Egle TOMASI-GUSTAFSSON

2y exchange in ed elastic scattering

M.P. Rekalo, E.T-G, D. Prout, Phys. Rev. C 60, 042202 (1999)

Several reasons for which it should keep small :

- No evidence from Hall A and Hall C data on ed elastic scattering M.P. Rekalo, E.T-G, D. Prout, Phys. Rev. C 60, 042202
- Cancellation between elastic and inelastic channels.
 Sum rules Yu. Bystricky, E.A.Kuraev, E. T.-G, Phys. Rev. C 75, 015207 (2007)
- $-e\mu$ elastic scattering can be calculated exactly and it is an upper limit of ep elastic scattering.

E.A.Kuraev, E. T.-G, Physics of Particles and Nuclei Letters, 7, (2010) 67 A.de Rujula, J. M. Kaplan, and E. De Rafael NPB35, 365 (1971); NPB 53, 545 (1973)

- No evidence from the $\epsilon\text{-dependence}$ on PL/PT ratio
- No evidence from time-like region at large Q²

Is it still possible to extract the « real » FFs in presence of 2γ exchange in <u>Model Independent</u> way?

Time-like region -> much easier!

- Large Q²
- Large efforts put in Radiative Corrections calculations and MonteCarlo at e⁺e⁻ colliders!

Time-like observables: $|G_E|^2$ and $|G_M|^2$

-The cross section for $\overline{p} + p \rightarrow e^+ + e^-$ (1 γ -exchange):

$$\frac{d\sigma}{d(\cos\theta)} = \frac{\pi\alpha^2}{8m^2\sqrt{\tau-1}} \left[\tau |\mathbf{G}_M|^2 (1+\cos^2\theta) + |\mathbf{G}_E|^2 \sin^2\theta\right]$$

 θ : angle between e^- and \overline{p} in cms.

A. Zichichi, S. M. Berman, N. Cabibbo, R. Gatto, Il Nuovo Cimento XXIV, 170 (1962)
B. Bilenkii, C. Giunti, V. Wataghin, Z. Phys. C 59, 475 (1993).
G. Gakh, E.T-G., Nucl. Phys. A761,120 (2005).

As in SL region:

- Dependence on q² contained in FFs
- Even dependence on $\cos^2\theta$ (1 γ exchange)
- No dependence on sign of FFs
- Enhancement of magnetic term

but TL form factors are complex!

Unpolarized cross section

-The cross section for
$$\overline{p} + p \rightarrow e^+ + e^-$$
 (1 γ -exchange):

$$\frac{d\sigma}{d(\cos\theta)} = \frac{\pi\alpha^2}{8m^2\sqrt{\tau-1}} \left[\tau |G_M|^2 (1 + \cos^2\theta) + |G_E|^2 \sin^2\theta\right]$$
 θ : angle between e^- and \overline{p} in cms.

Two Photon Exchange:

$$\frac{d\sigma}{d\Omega} = \frac{\alpha^2}{4q^2} \sqrt{\frac{\tau}{\tau - 1}} D,$$

- Odd function of θ :
- Does not contribute at θ = 90°

$$D = (1 + \cos^2 \theta) (|G_M|^2 + 2ReG_M \Delta G_M^*) + \frac{1}{\tau} \sin^2 \theta (|G_E|^2 + 2ReG_E \Delta G_E^*) + 2\sqrt{\tau(\tau - 1)} \cos \theta \sin^2 \theta Re(\frac{1}{\tau}G_E - G_M)F_3^*.$$

M.P. Rekalo and E. T.-G., EPJA 22, 331 (2004) G.I. Gakh and E. T.-G., NPA761, 120 (2005)

Symmetry Relations(annihilation)

• Differential cross section at complementary angles:

The SUM cancels the 2γ contribution:

$$\frac{d\sigma_+}{d\Omega}(\theta) = \frac{d\sigma}{d\Omega}(\theta) + \frac{d\sigma}{d\Omega}(\pi - \theta) = 2\frac{d\sigma^{Born}}{d\Omega}(\theta)$$

The DIFFERENCE enhances the 2γ contribution:

$$\frac{d\sigma_{-}}{d\Omega}(\theta) = \frac{d\sigma}{d\Omega}(\theta) - \frac{d\sigma}{d\Omega}(\pi - \theta) = 4N \left[(1 + x^2) ReG_M \Delta G_M^* + \frac{1 - x^2}{\tau} ReG_E \Delta G_E^* + \sqrt{\tau(\tau - 1)} x (1 - x^2) Re(\frac{1}{\tau} G_E - G_M) F_3^* \right]$$
$$\tau = \frac{q^2}{4m^2}, \quad x = \cos\theta$$

What about data?

Radiative Return (ISR)

$$\frac{d\sigma(e^+e^- \to p\bar{p}\gamma)}{dm \, d \cos\theta} = \frac{2m}{s} W(s, x, \theta) \sigma(e^+e^- \to p\bar{p})(m), \quad x = \frac{2E_{\gamma}}{\sqrt{s}} = 1 - \frac{m^2}{s},$$
$$W(s, x, \theta) = \frac{\alpha}{\pi x} \left(\frac{2 - 2x + x^2}{\sin^2 \theta} - \frac{x^2}{2} \right), \quad \theta \gg \frac{m_e}{\sqrt{s}}.$$

B. Aubert (BABAR Collaboration) Phys Rev. D73, 012005 (2006)

Egle TOMASI-GUSTAFSSON

Angular Distributions

Angular Asymmetry

Trento, 20-VII-2022

Egle TOMASI-GUSTAFSSON

Structure Function Method

E.A. Kuraev, V. Meledin, Nucl. Phys. B122, 485 (1977)

E. T.-G., E.A. Kuraev, S. Bakmaev, S. Pacetti, Phys. Lett. B659, 197 (2008)

Egle TOMASI-GUSTAFSSON

Electron & positron beams

CLAS, VEPP, OLYMPUS....

- Q²<2 GeV²
 - Effect < 2%
 - No evident increase with Q²

Radiative Corrections in α^3

The Born e^{\pm} cross section σ_{el} is the measured cross section after applying radiative corrections

The splitting in different terms may differ in calculations

Radiative Corrections (α^3)

Q²=1 GeV² ΔE =0.01 E'

Cea

Egle TOMASI-GUSTAFSSON

Electron & positron beams

A deviation from unity of the ratio:

$$R^{\text{meas}} = \frac{d\sigma^{\text{meas}}(e^+p \to e^+p)}{d\sigma^{\text{meas}}(e^-p \to e^-p)} = \frac{1 + \delta_{\text{even}} - \delta_{2\gamma} - \delta_s}{1 + \delta_{\text{even}} + \delta_{2\gamma} + \delta_s}$$

Is a clear signature of C-odd contributions (soft or hard)

A C-odd contribution to the cross section is enhanced in the Ratio

$$A^{\text{odd}} = \frac{d\sigma(e^+p \to e^+p) - d\sigma(e^-p \to e^-p)}{d\sigma(e^+p \to e^+p) + d\sigma(e^-p \to e^-p)}$$
$$= \frac{\delta_{\text{odd}}}{1 + \delta_{\text{even}}} = \frac{R - 1}{R + 1}, \quad R = \frac{1 + A_{\text{odd}}}{1 - A_{\text{odd}}}.$$

By correcting R^{meas} by δ_{even} and δ_{s}

$$R_{2\gamma}\simeq rac{1-\delta_{2\gamma}}{1+\delta_{2\gamma}},$$

Charge Asymmetry

The charge asymmetry including soft γ and hard 2γ

$$\begin{split} A_{\text{odd}}^{K} &= \frac{d\sigma^{e+p} - d\sigma^{e^{-p}}}{d\sigma^{e+p} + d\sigma^{e^{-p}}} \\ &= \frac{2\alpha}{\pi(1+\delta_{\text{even}})} \bigg[\ln\frac{1}{\rho} \ln\frac{(2\Delta E)^{2}}{ME} - \frac{5}{2} \ln^{2}\rho + \ln x \ln \rho \\ &+ \text{Li}_{2} \bigg(1 - \frac{1}{\rho x} \bigg) - \text{Li}_{2} \bigg(1 - \frac{\rho}{x} \bigg) \bigg], \\ \rho &= \bigg(1 - \frac{Q^{2}}{s} \bigg)^{-1} = 1 + 2\frac{E}{M} \sin^{2}\frac{\theta}{2}, \quad x = \frac{\sqrt{1+\tau} + \sqrt{\tau}}{\sqrt{1+\tau} - \sqrt{\tau}}. \end{split}$$

E. A. Kuraev, V. V. Bytev, S. Bakmaev, and E. T.-G., PRC 78, 015205 (2008)

VEPP

From R^{meas} to $R_{2\gamma}^{K}$ remove the odd contribution included in the data

$$R_{2\gamma}^{K} = \frac{1 - A_{\text{odd}}^{K}(1 + \delta_{\text{even}}) + \delta_{M}}{1 + A_{\text{odd}}^{K}(1 + \delta_{\text{even}}) - \delta_{M}},$$

cea

CLAS

Egle TOMASI-GUSTAFSSON

3

OLYMPUS

Egle TOMASI-GUSTAFSSON

$R_{2\gamma} - R_{Th}$ (Mo & Tsai)

$$R_{2\gamma}^{K} = \frac{1 - A_{\text{odd}}^{K}(1 + \delta_{\text{even}}) + \delta_{M}}{1 + A_{\text{odd}}^{K}(1 + \delta_{\text{even}}) - \delta_{M}}$$

cea

R_{2γ} – R_{Th} (Maximon & Tjon)

$$R_{2\gamma}^{K} = \frac{1 - A_{\text{odd}}^{K}(1 + \delta_{\text{even}}) + \delta_{M}}{1 + A_{\text{odd}}^{K}(1 + \delta_{\text{even}}) - \delta_{M}}$$

Conclusions

- High order radiative corrections are mandatory to claim a percent precision on the observables
- Effects as correlations and normalizations should be carefully scrutinized see GEp as a parameter
 ɛ-derivative of the reduced elastic cross section
- Two photon exchange as *K*-factor

Radiative corrections modify not only the absolute values but also the dependence of the observables on the relevant kinematical variables

Thank you for attention

Results obtained in collaboration with M.P. Rekalo, G.I.Gakh, E.A. Kuraev, V.V. Bytev, Yu. Bystriskiy, S. Pacetti

Egle TOMASI-GUSTAFSSON

QED versus QCD

$$dO_1'' = \frac{2dQ_1^2dQ_2^2}{\sqrt{\mathcal{D}_1Q_0^2}}, \ \mathcal{D}_1 = 2(Q_1^2 + Q_2^2)Q^2Q_0^2 - 2Q^2Q_1^2Q_2^2 - (Q_1^2 - Q_2^2)Q_0^2 - (Q^2)^2Q_0^2$$

e-u scattering constitutes an upper limit of e-pl

E.A.Kuraev, E. T.-G, Physics of Particles and Nuclei Letters, 7, (2010) 67

Egle TOMASI-GUSTAFSSON

Polarization ratio (*ɛ*-dependence)

- DATA: No evidence
 of ε-dependence at
 1% level
- •MODELS: large correction (opposite sign) at small ε

•SF method: ε-(almost)independent corrections

• Theory: corrections to the Born approximation at Q^2 = 2.5 GeV2

- Y. Bystritskiy, E.A. Kuraev and E.T.-G, Phys.Rev.C75: 015207 (2007)
- P. Blunden et al., Phys. Rev. C72:034612 (2005) (mainly G_M)
- A. Afanasev et al., Phys. Rev. D72:013008 (2005) (mainly G_E)
- N.Kivel and M.Vanderhaeghen, Phys. Rev. Lett.103:092004 (2009). (high Q²)

PHYSICAL REVIEW C 77, 055205 (2008)

Radiative corrections to the deeply virtual Compton scattering electron tensor

V. V. Bytev and E. A. Kuraev

Joint Institute for Nuclear Research, RU-141980 Dubna, Russia

$$d\sigma^{\rm tot}(e^-p \to e^-p\gamma) = d\sigma^{\rm BH} + d\sigma^{\rm DVCS} + d\sigma^{\rm odd},$$

Interference

DVCS CHARGE and HELICITY Asymmetry

$$A_{ch} = \frac{d\sigma^{e^-\mu \to e^-\mu\gamma} - d\sigma^{e^+\mu \to e^+\mu\gamma}}{d\sigma^{e^-\mu \to e^-\mu\gamma} + d\sigma^{e^+\mu \to e^+\mu\gamma}}.$$

$$\frac{d^{4}\Sigma}{d\phi} = \frac{1}{2} \left(\frac{d\sigma^{\rightarrow}}{d\phi} - \frac{d\sigma^{\leftarrow}}{d\phi} \right)$$

Different Data Sets

Phys. Rev. C 94, 055202, 2016

Nucleon FFs above 6 GeV

...which makes evident any disagreement with the dipole prediction

Simone Pacetti and Egle Tomasi-Gustafsson Phys. Rev. C **94**, 055202, 2016

Nucleon FFs above 6 GeV

Example of inelastic channels: Δ -resonance

Yu. Bystricky, E.A.Kuraev, E. T.-G, Phys. Rev. C 75, 015207 (2007)

- Small contribution ~0.5%
- Opposite sign with respect to proton intermediate state
- Confirmed by other independent calculations) ٠
- Cancellation of contributions in elastic and inelastic channels (sum rules,

analytical properties of the Compton amplitude)

box amplitude

Neglect left contribution and close contour on the right side (10% accuracy) $(N+\pi)$ $(N+2\pi)$ $(2N\overline{N})$ Right Cut) contribution t

A(1232,

Cancellation proved exactly in QED:

(N)

the $L^2 \gamma^*$ -contribution to FFs is cancelled by soft photon emission

 \mathbf{S}_2

(2NN)

() + (-)

Analytical properties of Compton amplitude

• Neglect left contribution and close contour on the right side (10% accuracy)

IC

Cancellation of strong interaction effects in FFs and inelastic channels!

Cancellation proved exactly in QED:

the $L^2 \gamma^*$ -contribution to FFs is cancelled by soft photon emission

Unpolarized Cross section

Yu. Bystricky, E.A.Kuraev, E. T.-G, Phys. Rev. C 75, 015207 (2007)

Yu. Bystricky, E.A.Kuraev, E. T.-G, Phys. Rev. C 75, 015207 (2007)

Egle TOMASI-GUSTAFSSON

Polarization ratio

Radiative Corrections to Elastic and Inelastic ep and p Scattering*

