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ABSTRACT

The SDSS-III BOSS Quasar survey will attempt to observe z > 2.15 quasars at a density of at least 15 per square
degree to yield the first measurement of the Baryon Acoustic Oscillations in the Ly-α forest. To reach this goal, we
have developped a method to identify quasars based on their variability in the ugriz optical bands. The method has
been applied to the selection of quasar targets in the SDSS region known as Stripe 82 (the Southern equatorial stripe),
where numerous photometric observations are available over a 10-year baseline. This area was observed by BOSS during
September and October 2010. Only 8% of the objects selected via variability are not quasars, while 90% of the previously
identified high-redshift quasar population is recovered. The method allows for a significant increase in the z > 2.15
quasar density over previous ugriz-based strategies, achieving a density of 24.0 deg−2 on average down to g ∼ 22 over
the 220 deg2 area of Stripe 82. We applied this method to simulated data from the Palomar Transient Factory and
from Pan-STARRS, and showed that even with data that has sparser time sampling than what is available in Stripe
82, including variability in future quasar selection strategies would lead to increased target selection efficiency in the
z > 2.15 redshift range. We also found that Broad Absorption Line quasars are preferentially present in a variability
than in a color selection.
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1. Introduction

Baryonic Acoustic Oscillations (BAO) and their imprint on
the matter power spectrum were first observed in the distri-
bution of galaxies (Cole et al., 2005; Eisenstein et al., 2005).
They can also be studied by using the Hi Lyman-α absorp-
tion signature of the matter density field along quasar lines
of sight (White, 2003; McDonald & Eisenstein, 2007). A
measurement sufficiently accurate to provide useful cosmo-
logical constraints requires the observation of at least 105

quasars, in the redshift range 2.2 < z < 3.5, over at least
8000 deg2 (Eisenstein et al., in prep.). This goal is one of
the aims of the Baryon Oscillation Spectroscopic Survey
(BOSS) project (Schlegel et al., 2009), part of the Sloan
Digital Sky Survey-III1 which is currently taking data. One
of the challenges of this survey is to build a list of targets
that contains a sufficient number of quasars in the required
redshift range.

Quasars are traditionally selected photometrically,
based on their colors in various bands (Schmidt & Green,

1 http://www.sdss3.org

1983; Croom et al., 2001; Richards et al., 2004, 2009; Croom
et al., 2009). While these methods achieve good complete-
ness at low redshift (z < 2), they present serious draw-
backs for the selection of quasars at redshifts above 2.2.
In particular, as was shown in Fan (1999), quasars with
2.5 < z < 3.0 tend to occupy the same region of opti-
cal color space as the much more numerous stellar popu-
lation, causing the selection efficiency (or purity) to drop
below ∼ 50% in that region. The same confusion occurs
again for 3.3 < z < 3.8. This was recently confirmed by
Worseck & Prochaska (2010) who have demonstrated that
the SDSS standard quasar selection systematically misses
quasars with redshifts in the range 3 < z < 3.5.

The separation of stars and quasars in the redshift
range of interest can be improved by using the variabil-
ity of quasars in the optical. Light curves sampled every
few days over several years were used by the MACHO col-
laboration (Geha et al., 2003) to identify 47 quasars be-
hind the Magellanic Clouds. In a similar way, the OGLE
project (Dobrzycki et al., 2003) has identified 5 quasars be-
hind the Small Magellanic Cloud. Three seasons of obser-
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vation on high galactic latitude fields were used by QUEST
to search for variable sources. Nine previously unknown
quasars (Rengstorf et al., 2004) were discovered.

More recently, significant progress in describing the evo-
lution with time of quasar fluxes has been made possible
by the multi-epoch data in the SDSS Stripe 82 (York et al.,
2000). Using large sample of over 10,000 quasars, deVries
et al. (2004) and MacLeod et al. (2008) have characterized
quasar light curves with structure functions. Concentrating
on SDSS Stripe 82 data, Schmidt et al. (2010) developed
a technique for selecting quasars based on their variabil-
ity. Recent works have shown that the optical variability
of quasars could be related to a continuous time stochas-
tic process driven by thermal fluctuations (Brandon et al.,
2009) and modelled as a damped random walk (MacLeod
et al., 2010a; Kozlowski et al., 2010). This resulted in a
structure function that was used by MacLeod et al. (2010b)
to separate quasars from other variable point sources. A
variant, based on a statistical description of the variability
in quasar light curves, was suggested by Butler & Bloom
(2010) for the selection of quasars using time-series obser-
vations in a single passband.

In this paper, we present a method to select quasar can-
didates, inspired from the formalism developed by Schmidt
et al. (2010). The method was adopted by the BOSS col-
laboration to choose the objects that were targeted, dur-
ing September and October 2010, in Stripe 82. This re-
gion covers 220 deg2 defined by equatorial coordinates
−43◦ < αJ2000 < 45◦ and −1.25◦ < δJ2000 < 1.25◦. It was
previously imaged about once to three times a year from
2000 to 2005 (SDSS-I), then with an increased cadence of
10-20 times a year from 2005 to 2008 (SDSS-II) as part of
the SDSS-II supernovae survey (Frieman et al., 2008). With
a sampling of 53 epochs on average, over a time span of 5 to
10 years (Abazajian et al., 2009), the SDSS Stripe 82 data
is ideal for testing a variability selection of quasars. For
the first time, in September and October 2010, the obser-
vational strategy of BOSS rested entirely on variability for
the final selection (after loose initial color cuts as explained
below). In contrast, all target lists in BOSS had been ob-
tained so far from the location of the objects in color-color
diagrams, following various strategies — such as the ker-
nel density estimation method (Richards et al., 2004) or a
neural network approach (Yeche et al., 2010).

Section 2 presents the formalism used to describe the
variability in quasar light curves and gives the performance
of the chosen selection algorithm on two test samples, one
of stars and the other of quasars. Section 3 explains how
this tool was applied to select two sets of targets in Stripe
82, and presents the results obtained. An extrapolation of
this method to the full 10,000 deg2 observed by SDSS,
made possible by adding data from the Palomar Transient
Factory (Rau et al., 2009), or from Pan-STARRS 2, is pre-
sented in Section 4. We conclude in Section 5.

2. Variability selection algorithm

The main purpose of this study was to develop an algorithm
to select quasars in Stripe 82 based on their variability,
while rejecting as many stars as possible. Spectroscopically
confirmed stars and quasars in Stripe 82 were used to com-
pute two sets of discriminating variables. The first one, used

2 http://pan-starrs.ifa.hawaii.edu/public/home.html

to distinguish variable objects from non-variable stars, con-
sists in the χ2 of the light curve with respect to the mean
flux, in each of the five photometric bands. The second one,
which helps discriminating quasars from variable stars, con-
sists in parameters that describe the structure function.

2.1. Quasar and star samples

For the quasar training sample, we used a list of 13328
spectroscopically confirmed quasars obtained from the 2dF
quasar catalog (2QZ; Croom et al., 2004), the 2dF-SDSS
LRG and Quasar Survey (2SLAQ) (Croom et al., 2009), the
SDSS-DR7 spectroscopic database (Abazajian et al., 2009),
the SDSS-DR7 quasar catalog (Schneider et al., 2010) and
the first year of BOSS observations. These quasars have
redshifts in the range 0.05 ≤ z ≤ 5.0 (cf. Fig 1) and g
magnitudes in the range 18 ≤ g ≤ 22 (Galactic extinction-
corrected).
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Fig. 1: Redshift distribution of the sample of quasars from all
previous quasar surveys covering Stripe 82. This sample is used
to test the variability algorithm and train its neural network.

For the star sample, we used 2697 objects observed by
BOSS, initially tagged as potential quasars from color se-
lection and spectroscopically confirmed as stars. Variability
and color-selection are not fully independent: bright objects
that are easily discarded by their colors are also easier to
discard by their variability. Therefore, the use of these spec-
troscopically confirmed stars constitutes a conservative ap-
proach and corresponds exactly to the type of objects that
we want to reject with the variability algorithm.

Light curves were constructed for these two samples
from the data collected by SDSS. The collaboration used
the dedicated Sloan Foundation 2.5 m telescope (Gunn et
al., 2006). A mosaic CCD camera (Gunn et al., 1998) im-
aged the sky in five ugriz bandpasses (Fukugita et al.,
1996). The imaging data were processed through a series of
pipelines (Stoughton et al., 2002) which performed astro-
metric calibration, photometric reduction and photometric
calibration. Typical examples of stellar and quasar light
curves are shown in Figs. 2 and 3 respectively. The in-
creased cadence after MJD 53500 are the SDSS-II super-
novae search observations.
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Fig. 2: Examples of light curves in the five SDSS photometric
bands for stars in Stripe 82.
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Fig. 3: Examples of light curves in the five SDSS photometric
bands for quasars in Stripe 82.

2.2. Pre-treatment of the light curves

Photometric outliers could alter significantly the values of
the variability parameters, to the point of washing out
any relevant information. The raw light curves were there-
fore cleaned of deviant points (irrespective of their origin,
whether technical or photometric) in a two-step procedure.
A 3-point median filter was first applied to the quasar light
curve in each of the five bands, followed by a clipping of
all points that still deviated significantly from a fifth order
polynomial fitted to the light curve. Note that to avoid re-

moving too many photometric epochs, the clipping thresh-
old, initially set at 5σ, was iteratively increased until no
more than 10% of the points were rejected.

2.3. Light curves χ2

While most stars have constant flux, quasars usually exhibit
flux variations. As shown by Sesar et. al. (2007), at least
90% of bright quasars are variable at the 0.03 mag level,
and the variations in brightness are on the order of 10% on
time scales of months to years (Vanden Berk et. al., 2004).

Each of the ugriz light curves were fit by a constant
flux, and the resulting χ2 recorded. While most stars have a
reduced χ2 near unity, as expected for non-variable objects,
quasar light curves tend to be poorly fit by a constant,
resulting in a large reduced χ2, as illustrated in Fig. 4 for
the r band. The χ2 thus helps to distinguish non-varying
stars from varying point sources.
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Fig. 4: Distribution of the reduced χ2 resulting from the fit of
light curves by a constant in the r band, for the stellar (blue)
and the quasar (red) test samples. As confirmed by their larger
reduced χ2, quasars clearly exhibit much larger deviations from
a constant flux than stars.

2.4. Variability structure function

The structure function characterizes light curve variability
by quantifying the change in amplitude ∆mij as a func-
tion of time lag ∆tij between observations at epochs i and
j. Following the prescription of Schmidt et al. (2010), the
variability structure function of the source magnitude, is
given by

V(∆tij) = |∆mi,j| −
√

σ2
i + σ2

j , (1)

where σ is the magnitude measurement error. The structure
function can be modeled by a power law A (∆t)γ in all
photometric bands, illustrating the fact that, for quasars,
the r.m.s. of the distribution of the magnitude difference
between two observations tends to increase with time lag
(cf. Fig. 5).
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Fig. 5: Variability structure function V(∆t) of equation 1, for a
typical quasar. The curves show the best-fit power law A (∆t)γ

for the three bands g, r, i. Note that the r and i best-fits are
almost identical.

To derive the power law parameters A and γ for a given
light curve, we define the likelihood

L(A, γ) =
∏

j>i

Lij , (2)

where for each ij pair of observations, an underlying
Gaussian distribution of ∆m values is assumed:

Lij =
1

√

2πσ(∆m)2
exp

(

−
∆m2

ij

2σ(∆m)2

)

. (3)

From the model above, the variability of the object, de-
scribed by a power law, is naturally introduced in the def-
inition of the variance σ(∆m)2 of the underlying Gaussian
distribution as

σ(∆m)2 = [A(∆tij)
γ ]

2
+ (σ2

i + σ2
j ) . (4)

The A and γ parameters were then obtained by maximiza-
tion of the likelihood L(A, γ) with the minuit package.3

We found that for a given quasar, only the g, r and i
bands had useful discriminating power, as quasars at high
redshift have little flux in observed u-band, and because
z-band light curves exhibit more noise than the other light
curves. Furthermore, the fitted value of the γ parameter
is roughly independent of the band. To reduce the uncer-
tainty on the fitted parameters, we therefore chose to fit
simultaneously the g, r and i bands for a common γ and
three amplitudes (Ag, Ar, Ai). The range of values obtained
for stars and quasars are shown in Fig. 6. Non variable ob-
jects (mostly stars) lie near the origin of the graph, while
quasars populate the region of larger A and γ values. It
is interesting to notice that this approach can also distin-
guish various variable populations. RR-Lyrae, for instance,
can have large variations (thus large A) but with no (or
little) trend in time, implying that γ remains small.

2.5. Variability selection of quasars using a Neural Network

To complete our method for discriminating stars
from quasars, an artificial Neural Network (NN) was

3 http://wwwasdoc.web.cern.ch/wwwasdoc/minuit/min-
main.html
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Fig. 6: Parameters γ and Ar of the variability structure function
for the stellar (blue points) and quasar (red points) test sam-
ples. Large A’s indicate large fluctuation amplitudes. Large γ’s
indicate an increase of the fluctuation amplitude with time.

used (Bishop, 1995).4 The basic building block of the NN
architecture is a processing element called a neuron. The
NN architecture used in this study is illustrated in Fig. 7,
where each neuron is placed on one of four “layers”, with
Nl neurons in layer l.
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Fig. 7: Schematic representation of the artificial neural network
used here with N1 input variables, two hidden layers, and one
output neuron.

The output of each neuron on the first (input) layer is
one of the N1 variables defining an object. For the present
study, N1 = 9 (five χ2’s and four structure function pa-
rameters γ, Ag, Ar and Ai). The inputs of neurons on
subsequent layers (l = 2, 3, 4) are the Nl−1 outputs (the

xl−1
j , j = 1, .., Nl−1.) of the previous layer. The inputs of

any neuron are linearly combined according to “weights”
wl

ij and “offsets” θl
j :

yl
j =

Nl
∑

i=1

wl
ij xl−1

i + θl
j l ≥ 2 . (5)

4 We used a C++ package, TMultiLayerPerceptron, devel-
oped in the ROOT environment (Brun et al., 1995).
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The output of neuron j on layer l is then defined by the
non-linear function

xl
j =

1

1 + exp
(

−yl
j

) 2 ≤ l ≤ 3 . (6)

The fourth layer has only one neuron giving an output
yNN ≡ y4

1 , with 0 ≤ yNN ≤ 1, reflecting the likelihood that
the object defined by the N1 input variables is a quasar.

Certain aspects of the NN procedure, especially the
number of layers and the number of nodes per layer, are
somewhat arbitrary. They are chosen by experience and for
simplicity. In contrast, the weights and offsets must be op-
timized so that the NN output, yNN, correctly reflects the
probability that an input object is a quasar. To determine
the weights and offsets, the NN must therefore be “trained”
with a set of objects that are spectroscopically known to be
either quasars or stars (e.g. the test samples described in
Sec. 2.1).

The result of the NN output is illustrated in Fig. 8. As
expected, stars peak near 0 while quasars have an output
value near 1, and very few objects appear in the middle
range where the classification is uncertain.
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Fig. 8: Output of the variability Neural Network for the star and
quasar samples. 97% of the quasars have yNN > 0.5, and 3% are
classified as stellar-like (yNN < 0.5).

For this study, we concentrated on objects with at least
4 observation epochs. In Stripe 82, 13063 spectroscopically
confirmed quasars met this requirement. Of these, 383 only
(3%) are not classified as “quasar-like” by the variability
NN, i.e. yield a NN output smaller than 0.5. A visual in-
spection of their light curves confirms that they exhibit no
clear variability, neither on short nor on long time-scales.
A minimum loss of ∼3% is therefore to be expected for any
variability-based algorithm to select quasars using these
data. This loss approaches 5% for the subsample of 3571
quasars at z > 2.15, probably due to the lower photometric
precision of the objects. Part of the loss might also be due
to the smaller rest frame time gap at increasing redshift.

To quantify the performance of our quasar selection, we
define the completeness C and the purity P :

C =
Number of selected quasars

Total number of confirmed quasars
, (7)

P =
Number of selected quasars

Total number of selected objects
. (8)

We also define the stellar rejection R as

R = 1 −
Number of selected stars

Total number of stars in the sample
. (9)

Fig. 9 illustrates the performance, in terms of quasar
completeness and stellar rejection, of the variability-based
NN, for the two subsets of low-z and high-z quasars of the
test sample. It is noteworthy that the latter class is only 2
to 5% less complete than the low redshift sample (for an
identical stellar rejection).

QSO completeness in %
80 85 90 95 100

S
te

lla
r 

re
je

ct
io

n 
in

 %

75

80

85

90

95

100

NN>0.5

NN>0.95

NN on z<2.15 QSOSs in Stripe 82

NN on z>2.15 QSOSs in Stripe 82

Fig. 9: Stellar rejection R vs. quasar completeness for the
variability-based NN. Open circles are for known low-redshift
quasars, squares for those with z > 2.15. Filled symbols at
R ∼ 94.5% and R ∼ 98% indicate the location on these curves
of the selection thresholds used in Sec. 3.1 and 3.2.

The small redshift-dependence of the variability-based
selection method is further confirmed in Fig. 10, which
shows C(z) for the two thresholds on the output of the
variability NN used in Sections 3.1 and 3.2. In contrast
to a standard quasar selection based on colors, the com-
pleteness obtained here depends smoothly on redshift and
has no minimum at any particular redshift. For a loose
cut on the output of the variability NN (NNvar > 0.50),
a high completeness is achieved at all redshifts. As the cut
is tightened (NNvar > 0.95), however, a strong decrease
with redshift appears, due to the reduced elapsed rest-frame
time at high redshift, and to the decrease in the light curve
signal-to-noise ratio as objects become fainter, resulting in
a weaker significance of the variability. Nevertheless, even
with a tight cut, the method still does not introduce any
sharp redshift-specific feature.

The purity of the selection cannot be determined as
easily since it strongly depends on the reference sample.
Furthermore, not all existing quasars, even in the redshift
range of interest, have yet been identified. Objects selected
through their variability might thus be confirmed as being
quasars although they were not selected by previous color
selections. Purity will therefore be given in Sec. 3.3, for two
cases where the variability selection has been applied to
actual data.
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Fig. 10: Completeness C vs. redshift for two thresholds on the
output of the variability NN corresponding to those used for the
selections of Sec. 3.1 (main sample, with NNvar > 0.50) and 3.2
(extreme variability sample, with NNvar > 0.95).

3. Variability-based selection for BOSS

BOSS is aiming for a density of ∼ 20 deg−2 quasars at
redshifts z > 2.15 (hereafter called “high-z” quasars), with

an allocation of 40 deg−2 optical fibers to obtain spectra of
quasar candidates. In this context, the above study can be
applied with two major goals.

The first one is to improve the purity of the list of
quasar candidates for which the spectra will be obtained.
In BOSS, a traditional color-based selection based on sin-
gle epoch photometry typically reaches a quasar density of
10–15 deg−2 from an initial selection of ∼ 40 deg−2 targets.
An algorithm with a higher purity presents the advantage
of reaching the desired quasar density for BOSS while keep-
ing the number of fibers fixed. This is the aim of the “Main
sample” described in Sec 3.1.

The second goal is to search for additional possible
quasars, that would have been missed by previous searches
because of unusual colors, but that could be selected based
on their variability. This is the strategy leading to the se-
lection of the “Extreme variability sample” presented in
Sec. 3.2.

Both approaches were adopted by BOSS for the obser-
vation of Stripe 82 in September and October 2010. The
results obtained are given in Sec. 3.3, and a comparison
with a color-based selection from co-added photometry is
described in Sec. 3.4.

3.1. Main sample

The goal of the Main sample was to obtain a list of
31 deg−2 targets with high quasar purity, the remaining
9 deg−2 being kept for other selections or lost at the tiling
stage (Blanton et al., 2003).

A color-based analysis on ∼20 co-added observations
(cf. Fig. 11) with very loose thresholds is used to yield an

initial list of ∼ 70 deg−2 objects, expected to be dominated
by stars by at least a ratio 2:1. The criteria for this prese-
lection were:

– output of a color-based NN > 0.2 (with colors deter-
mined from co-added observations) to remove objects
that were not in the vicinity of the quasar locus in color-
space (Yeche et al., 2010),

– (u − g) > 0.15 to enhance the fraction of z > 2.15
quasars over low-z ones. This cut rejects only 1% of
previously known high-z quasars.
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Fig. 11: Number of SDSS-I and SDSS-II measurements used to
derive the co-added photometry in Stripe 82.

The completeness of this preselection for high-z quasars is
of order 85%, which corresponds to an upper bound on the
completeness of the “main sample”.

Requiring the output on the variability NN to be larger
than 0.50 (and removing previously identified low redshift
quasars) yielded a selection of 35 deg−2 objects, which is re-

duced to 31 deg−2 for technical reasons related to the tiling
of the objects. As shown in Fig. 10, the completeness of
the variability selection at this threshold is expected to be
∼ 95% (of the sample to which it is applied).

Fig. 12 shows that the target density is flat with Right
Ascension, as expected for extragalactic objects, in contrast
to the peaks that would be expected for αJ2000 ≃ −43◦ in
the case of large contamination by Galactic stars as is seen
in the initial distribution corresponding to a loose photo-
metric selection.

3.2. Extreme variability sample

The second goal was to obtain an independent and com-
plementary list of about 3 deg−2 objects selected by the
variability NN but rejected according to their colors. With
this approach, we could expect to find quasars in the stel-
lar locus, at the risk of obtaining a sample dominated by
variable stars rather than by quasars.

The total number of point-like objects in Stripe 82 is
on the order of several millions. Because the computation
of the variability parameters on such a large sample would
have been both disk- and time-consuming, a very loose pre-
selection of about 1000 deg−2 objects was first applied, with
the following criteria:

– i > 18 to limit the contribution from low-z quasars but
g < 22.3 to maintain the possibility to obtain a good
spectrum,
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Fig. 12: Right Ascension distribution of targets in the main sam-
ple at the stage of loose color-based selection (black histogram),
and after the final variability-based selection (red histogram).
The targets of the extreme variability program are shown as the
blue histogram.

– (g − i) < 2.2 to exclude M stars,
– (u−g) > 0.4 to enhance the fraction of z > 2.15 quasars

compared to low-z ones,
– c1 < 1.5 or c3 < 0 to remove a region in color-space

distant from quasars and strongly populated by stars,
where colors c1 and c3 are defined in Fan (1999) as

c1 = 0.95(u − g) + 0.31(g − r) + 0.11(r − i) ,

c3 = −0.39(u − g) + 0.79(g − r) + 0.47(r − i) .

While these cuts reduced the total number of objects
by about a factor of ten, they rejected only about 5% of
previously known quasars.

Requiring the output of the variability NN to be greater
than 0.95 (i.e. selecting the most variable objects) and re-
moving all objects already present in the main sample,
yielded a selection of ∼ 3 deg−2 objects, as planned. The
distribution of the Right Ascension of the selected objects
is shown in Fig. 12 as the blue histogram. Its flatness is
again an indication of low stellar contamination.

3.3. Results

The reduction of the spectra were performed by the BOSS
pipeline (Bolton & Schlegel, 2009), which also gives a pre-
liminary determination of the redshift of the identified
quasars. All spectra were checked visually to yield final
identifications and redshifts. The pipeline and visual scan-
ning are in agreement for ∼ 95% of the objects.

The outcome of the targeting of the two samples
described above is summarized in Table 1. A signifi-
cant improvement over previous results is apparent. Only
∼ 4 deg−2 targets out of 35 are not quasars, which is in
agreement with the flat Right Ascension distributions of
Fig. 12.

The main sample has a quasar purity of 93% on av-
erage and 72% at a redshift z > 2.15. From this sample
alone, the average density of z > 2.15 quasars over Stripe
82 has been increased from ∼ 15 deg−2 from previous BOSS
observations to 22.3 deg−2.

It is remarkable that 86% of the objects in the “Extreme
var. only” category, all rejected according to their colors,
are quasars. Furthermore, half of these are at z > 2.15.

Considering the full sample selected from its extreme
variability (including the candidates in the main sam-
ple that fulfilled the requirement NNvar > 0.95, cf. line
“Extreme var.” of Table 1), we achieve an even higher pu-
rity: 96% of the objects are quasars, and 80% are at a red-
shift above 2.15. These results imply that variability is in-
deed an efficient tool for selecting quasars against all other
variable sources.

The low fiber budget allocated to the Extreme variabil-
ity program does not make the study of its completeness a
relevant issue. However, we note that with a target density
of only 3 deg−2, the extreme variability program raised the
high-z completeness of the main sample by ∼6%.

Redshift
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Fig. 13: Stacked redshift distribution of the confirmed quasars,
where the histograms represent the number of quasars in each of
the non-overlapping samples. The total extreme-variability sam-
ple is thus illustrated by the blue+purple surface, while the total
main sample is in purple+red. The emphasis of the selection on
z > 2.15 objects is apparent.
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Fig. 14: Redshift distribution of the fraction of quasars added
by the extreme variability selection compared to quasars in the
same variability range but fulfilling color constraints.

Fig. 13 shows the redshift distribution of the quasar
samples selected through variability. As expected, after ap-
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Selection Target All quasar z > 2.15 quasar
sample density Density P (%) Density P (%) C(%)
Main sample 31.1 29.0 93 22.3 72 84
Extreme var. 15.1 14.6 96 12.1 80 45
Extreme var. only 3.4 2.9 86 1.7 49 -
Total 34.5 31.9 92 24.0 69 90

Table 1: Density, purity P and completeness C of variability-based selections of quasar candidates. All densities are in deg−2. The
purity is the ratio of the density of the quasars in a given sample to the target density. The completeness includes all identified high-
redshift quasars, whether from their color, variability, radio emission etc. The “Target” column is for all candidates, “All quasar”
refers to confirmed quasars independently of their redshift, “z > 2.15” to the subset of high-redshift quasars. The line “Extreme
var. only” refers to objects that were rejected as quasars (e.g. from the main sample) due to their colors. The line “Extreme var.”
includes both the extreme variability sample and the targets in the main sample that fulfilled the requirement NNvar > 0.95. As
stated in the abstract, we see that 90% of the known high-redshift quasar population is recovered by its variability, and that 92%
of the selected targets are quasars (i.e., only 8% non-quasars).

plying the cut on u − g, most are at z > 2.15, correspond-
ing to the requirements of BOSS. Fig. 14 shows that the
additional quasars selected via extreme variability tend to
preferentially lie in the 2.5 < z < 3.0 redshift range where
color-based selections are known to be incomplete. This in-
dicates that a pure variability-based selection can indeed
contribute to the recovery of quasars lost during the color-
color selection. The low number of quasars at z > 3.4 pre-
vents firm conclusions from being drawn on this higher red-
shift range.

The location of the additional quasars in color-color
space is given in Fig. 15. There is no indication that they
form a new class of quasars; instead, they appear to extend
the quasar locus into the stellar locus, as expected from
synthetic models of quasar evolution (Fan, 1999).

The fraction of Broad Absorption Line (BAL) quasars
among the z > 2.15 quasars is seen to be higher in the
sample selected through its variability than in the main
sample that includes some color cuts. Comparing the two
non-overlappig “main” and “extreme var only” samples, we
have

Number of high z BAL quasars

Number of high z quasars
=

7.0% ± 0.4% (Main sample)

14.6%± 1.8% (Extreme var. only)

This seems to indicate that quasars affected by BAL fea-
tures tend to fall outside the color regions that are generally
favored by quasars.

3.4. Comparison with color selection on co-added photometry

The large number of observations in Stripe 82 also permits a
color-based selection of quasars using photometry obtained
on co-added images, i.e. deeper frames and with a higher
signal-to-noise. We used this photometry to derive a list of
35 deg−2 targets, already expected to be much more com-
plete than the traditional list based on single epoch observa-
tions. We compared the outcome of this improved selection
to that of the variability-based one (“Main” and “Extreme
variability” samples) described in the paper. Variability
yields a number of recovered quasars that is 20% to 30%
higher than the color selection, the result depending slightly
on the method used (likelihood, neural network... or a com-
bination of these). The excess might have been larger still
with a larger ratio of the 35 deg−2 fibers allocated to the

extreme-variability sample, since the latter has a higher pu-
rity than the main sample (cf. Tab. 1). As variability and
colors seem to yield complementary samples (some quasars
can be selected one way and not in the other), the most
promising method would be to use both pieces of informa-
tion simultaneously.

4. Application to the full SDSS sky

Given the success of the variability-based selection in Stripe
82, it would be interesting to apply it over a much wider
area in the sky. One possibility would be to use jointly
data from SDSS (one or two photometric measurements
over 10,000 deg2) and forthcoming data from the Palomar
Transient Factory (PTF) or Pan-STARRS 1 (PS1), which
cover the same 10, 000 deg2 at several occasions over 3 to
5 years. A strategy based on these various data sets can
be useful to future surveys like BigBOSS5 or LSST (LSST,
2009; Ivezic et al., 2008).

4.1. Extrapolation to PTF

Since December 2008, PTF has taken data in the R band
at the cadence of one measurement every 5 nights (Rau
et al., 2009). The images can be co-added to produce 4
deep frames per year of observation. Apart from Stripe 82,
most of the area covered by SDSS has been observed only
once. The data available for quasar searches at the end of
the PTF survey can therefore be expected to consist typi-
cally of 1 point from SDSS (useful to extend the lever arm
in time lag) and 4 points per year from PTF. To explore
the possibilities offered by this data combination for quasar
selection, we constructed synthetic light curves by down-
sampling data from Stripe 82 in the following way:
- The last 5 years of SDSS are used to simulate PTF mea-
surements: four evenly spaced points per year are selected
from the SDSS data,
- To simulate the sole measurement available from SDSS on
most of the sky, one point is taken at random over the pre-
vious years of SDSS, maintaining a gap of at least 2 years
between the SDSS point and the first PTF measurement
(to ensure a realistic lever arm).
Only synthetic light curves with all 21 measurements (1 for
SDSS and 4 for each of the 5 years of PTF) are consid-
ered hereafter. With this constraint, we are left with 2248

5 http://bigboss.lbl.gov
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Fig. 15: Color-color plots indicating the stellar (blue) and quasar (red) loci, as well as the position of the 370 high-redshift additional
quasars rejected from their colors but selected through the variability neural network (extreme variability sample described in
Sec. 3.2).

(83%) stellar and 11456 (86%) quasar light curves (out of
the initial samples described in section 2.1).

As PTF observes only in one band, the variability pa-
rameters are reduced to the reduced χ2 in r, Ar and γ. A
neural network was trained on the usual stellar and quasar
test samples to yield an estimator of quasar likelihood based
on these 3 parameters. The red triangles in Fig. 16 mark
the evolution of the stellar rejection vs. quasar complete-
ness as the threshold on the NN output is varied. They
show that one can reach a quasar completeness of 85% for
a rejection of 91% of the stars. For comparison, the blue
dots illustrate the favorable case of Stripe 82 with all avail-
able measurements on 5 bands (case studied in Section 3)
and a variability selection based on the 9-parameter NN.

Note that the stellar sample used for figure 16 has
passed loose color cuts that might not be available for PTF
data. We have checked that the performance of the algo-
rithm in the rejection of randomly picked Stripe 82 objects,
statistically dominated by stars by at least a ratio 10 to 1,
is within 1% of the performance plotted in the figure.

4.2. Extrapolation to PS1

Pan-STARRS 1 (PS1) started regular observations in
March 2009. With its 3 degree field of view, the whole
available sky is recorded 3 times during the dark time of
each lunar cycle. The first part of the project is expected
to last about 3 years, after which a second telescope will
begin operation. To explore the use of the PS1 data, we
proceeded in a similar way as for PTF. The main difference
is that PS1 has data available in five filters (g, r, i, z and
y) instead of one. For quasar selection in the redshift range
2.15 < z < 4, we considered only the filters in common with
SDSS (g through z). This restriction produced 8 variability
parameters: four χ2’s (one in each of the four bands), Ag,
Ar, Ai and the common γ (as for the study of Stripe 82). As
for PTF, a NN was trained to yield an estimator based on
these 8 parameters. The performance of the resulting selec-
tion is illustrated in Fig. 16 for two survey durations, 3 or
5 years. Only synthetic light curves with all 13 (in the case
of a 3-year survey) or 21 (in the case of a 5-year survey)
measurements are considered in the plot.

The 3-year survey gives results comparable to those for
the 5-year PTF. In contrast, the 5-year PS1 survey is a sig-
nificant improvement over the 3-year survey, and can reach



10 N. Palanque-Delabrouille et al.: Variability selected high-redshift quasars on SDSS Stripe 82

QSO completeness in %
80 85 90 95 100

S
te

lla
r 

re
je

ct
io

n 
in

 %

75

80

85

90

95

100

NN on SDSS Stripe 82
Selection for PS1 5 years
Selection for PS1 3 years
Selection for PTF 5 years

Fig. 16: Stellar rejection vs. quasar completeness for the full
Stripe 82 data (blue dots), for the Pan-STARRS (green and
black squares) and for the PTF (red triangles) simulated data.
In each case, the threshold on the relevant variability NN is
increased from right to left.

an 85% quasar completeness for a 97% stellar rejection, or
a 91% quasar completeness for a 95% stellar rejection.

The absence of the SDSS anchor point would reduce
the quasar completeness by about 3%. Of course, the SDSS
data would have little impact on the stellar rejection R,
since most stars exhibit flat light curves, whatever their
coverage.

In this work, the cut-off for quasar selection was set
at g < 22.3. Future surveys like BigBOSS intend to go
deeper in order to increase the density of quasars. To study
the impact of the value of this limit on the performance of
the variability selection, we computed stellar rejection vs.
quasar completeness for g < 21, g < 22 and g < 23, in the
case of five years of PS1 data. The quasar sample is the
same as before, but the stellar sample is taken to be a set
of random objects in a 7.5 deg2 region in Stripe 82 around
αJ2000 = 0. The stellar sample contains ∼ 1000 objects per
deg2 at g < 21 and ∼ 2500 objects per deg2 at g < 23.
Fig. 17 shows that the stellar rejection decreases only by
∼ 2% (at a 95% quasar completeness) when changing the
limit from g < 22 to g < 23. The major impact of lowering
the limit is therefore an increase in the number of selected
stars that follows the increase in stellar density with the
inclusion of fainter objects.

Although the variability method cannot lead to results
as good for the sparser data of Pan-STARRS (13 to 21 mea-
surements in four bands) or PTF (21 measurements in one
band) as for the SDSS data on Stripe 82 (∼50 measure-
ments in five bands), it can still contribute significantly to
quasar selection. Used in addition to a color selection, as
was done with BOSS for Stripe 82, even from a single epoch
in SDSS (for areas other than Stripe 82), it can result in
much improved selections than what color-selection alone
can achieve.

5. Conclusions

We have designed a method that characterizes light curve
variability in order to discriminate quasars from both non-
variable and variable stars. A Neural Network was imple-
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Fig. 17: Stellar rejection vs. quasar completeness for five years of
Pan-STARRS simulated data. The depth of the stellar sample
varies from g < 21 (blue) to g < 23 (red curve). The points are
affected by a systematic uncertainty on the stellar rejection of
order 1% due to the uncertainty on the estimated number of
quasars that we remove from the “stellar” (e.g. random object)
sample.

mented to yield an estimator of quasar likelihood derived
from these variability parameters.

The method has been applied in conjunction with a
loose color-based preselection to define a list of 31 deg−2

targets in Stripe 82 for which spectra were taken with
BOSS. The performance of this selection on quasars at red-
shift above 2.15 can be quantified by a purity of 72% and a
completeness of 84%. This represents a significant improve-
ment over traditional fully color-based selections which sel-
dom obtained a purity in excess of 40%.

A second study was dedicated to the objects exhibiting
an extreme quasar-like variability. An additional 3 deg−2

targets were selected on the following criteria: the objects
had to be excluded from the previous sample (i.e. did not
have favorable colors according to quasar standards), and
had a very high value of the output of the variability NN.
Half of the objects thus selected proved to be high redshift
quasars, 40% low redshift quasars and only 10% were un-
certain or stars. This program thus increased further the
completeness of the quasar selection, reaching the unprece-
dented value of 90% total on average over Stripe 82.

Combining the above two programs allowed BOSS to
obtain a density of z > 2.15 quasars in Stripe 82, all se-
lected through their variability, of 24.0 deg−2, with only
∼35 deg−2 fibers dedicated to their identification.

The method developed here was also applied to ersatz
data from Palomar Transient Factory or from Pan-STARRS
to determine the performance that can be achieved for fu-
ture target selections of quasars over about 10,000 deg−2

of the sky.
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