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ABSTRACT

The aperture mass statistic is a common tool used in weak lensing studies. By convolv-
ing lensing maps with a filter function of a specific scale, chosen to be larger than the
scale on which the noise is dominant, the lensing signal may be boosted with respect
to the noise. This allows for detection of structures at increased fidelity. Furthermore,
higher-order statistics of the aperture mass (such as its skewness or kurtosis), or count-
ing of the peaks seen in the resulting aperture mass maps, provide a convenient and
effective method to constrain the cosmological parameters. In this paper, we more
fully explore the formalism underlying the aperture mass statistic. We demonstrate
that the aperture mass statistic is formally identical to a wavelet transform at a spe-
cific scale. Further, we show that the filter functions most frequently used in aperture
mass studies are not ideal, being non-local in both real and Fourier space. In contrast,
the wavelet formalism offers a number of wavelet functions that are localized both
in real and Fourier space, yet similar to the optimal aperture mass filters commonly
adopted. Additionally, for a number of wavelet functions, such as the starlet wavelet,
very fast algorithms exist to compute the wavelet transform. This offers significant
advantages over the usual aperture mass algorithm when it comes to image processing
time, demonstrating speed-up factors of ∼ 5 − 1200 for aperture radii in the range 2
to 64 pixels on an image of 1024× 1024 pixels.

Key words: gravitational lensing: weak - methods: data analysis - cosmology: cos-
mological parameters - cosmology: dark matter

1 INTRODUCTION

The aperture mass statistic, Map, is a well-established
tool in weak gravitational lensing studies, being useful for
detection of structures (Schneider 1996; Schneider et al.
1998) and for the determination of cosmological parameters
through related statistics such as its variance, skewness and
kurtosis, or through peak statistics (e.g. Schneider et al.
1998; Jarvis et al. 2004; Kilbinger & Schneider 2005;
Dietrich & Hartlap 2010). Formally, the aperture mass
technique consists of applying a filter, defined on circular
apertures, to a map of measured shears.

The strength of the aperture mass technique lies in the
fact that the structures responsible for the lensing signal
are dominant over the noise at certain scales. Choosing an

⋆ Email: adrienne.leonard@cea.fr

aperture filter whose shape traces that of the expected signal
and with a scale similar to that of the expected structures
results in an aperture mass map with optimal signal to noise.
Moreover, assessment of the noise properties of a given Map

reconstruction is straightforward, carried out by randomis-
ing the input data a large number of times and computing
the variance of the resultingMap reconstructions, σ2

Map
. The

signal-to-noise of the aperture mass map can thereby be di-
rectly computed from the data : S =

Map

σMap
.

However, the signal-to-noise will only be maximum in
the aperture mass map if the filter function is tuned to fol-
low the shape of the expected signal, which is not necessar-
ily known a priori, and when the aperture size matches the
scale of the structures we aim to detect. Choosing an ideal
filter function is, consequently, somewhat challenging. Per-
haps the largest difficulty with this method, though, is that
evaluating the Map statistic and its associated noise map is
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time consuming, particularly for larger apertures, and this
limits the ability to consider reconstructions of large fields,
or across a range of scales.

An alternative method for analysing weak lensing data
at multiple different scales simultaneously is to use the
wavelet formalism (Starck et al. 2006). This method involves
first converting the shear map, evaluated via measurement of
galaxy shapes, into a convergence map in Fourier space, then
applying a wavelet transform. One advantage of this method
is that there exist fast algorithms to compute the wavelet
transform. These algorithms compute simultaneously sev-
eral wavelet bands analogous to aperture mass maps at
dyadic scales.

In this paper, we demonstrate that the aperture mass
statistic is formally equivalent to the wavelet transform
of a map of the weak lensing convergence κ evaluated
at a particular scale, for appropriate choice of filter func-
tion. Furthermore, we demonstrate that the most frequently
used aperture mass filter functions (Schneider et al. 1998;
van Waerbeke 1998; Jarvis et al. 2004) do not meet all of
the desired requirements of aperture mass filters, and are
therefore not ideal. We propose an alternative filter function
– the starlet wavelet – and demonstrate that this filter func-
tion meets all the desired requirements for aperture mass
filter functions. Moreover, we show that this function is very
similar in form to the aperture mass filter function found to
be optimal for weak lensing skewness studies in Zhang et al.
(2003), and is therefore a perfect choice for lensing studies.
Lastly, we demonstrate that the à trous wavelet transform
algorithm, publicly available as part of the MRLens software
package1 (Starck et al. 2006), is substantially faster than the
aperture mass algorithm, offering up to three orders of mag-
nitude speed-up in processing time for an 1024× 1024 pixel
image.

This paper is organised as follows. In § 2, we describe the
formalism underlying the aperture mass method, and out-
line the desired characteristics of the associated filter func-
tions. In § 3, we define the wavelet transform of an image,
and demonstrate that the wavelet transform of a map of
the weak lensing convergence κ is identical to the aperture
mass statistic evaluated at corresponding scales. In § 4, we
describe the two most commonly-used aperture mass filter
functions, and compare these to the starlet wavelet func-
tion, which we show to be more ideally-suited for aperture
mass studies. In § 5, we compare the processing time for
the aperture mass and wavelet transform algorithms, and
we conclude with a summary of our results in § 6.

1 http://irfu.cea.fr/Ast/mrlens software.php

2 THE APERTURE MASS STATISTIC

2.1 Map definition

The aperture mass statistic is defined (Schneider 1996) as
the convolution of the convergence, κ, with a radially sym-
metrical filter function, U(|ϑ|):

Map(θ) =

∫

d2ϑ κ(ϑ)U(|ϑ|) . (1)

By considering the relationship between the shear, γ, and
the convergence, one can reformulate equation (1) in terms
of the measured shear as

Map(θ) =

∫

d2ϑ γt(ϑ)Q(|ϑ|) , (2)

where γt(ϑ) is the tangential component of the shear at
position ϑ relative to the centre of the aperture, Q(|ϑ|) is a
second radially-symmetric function, related to U(|ϑ|) by:

Q(ϑ) ≡ 2

ϑ2

∫ ϑ

0

ϑ′U(ϑ′)dϑ′ − U(ϑ) , (3)

and U(ϑ) is subject to the condition that

∫ θ

0

ϑ U(ϑ) dϑ = 0 , (4)

with θ being the radius of the aperture. Furthermore, Q(ϑ)
and U(ϑ) are required to go to zero smoothly at ϑ = θ. It is
also preferable that the power spectrum of U(ϑ) is local in
the frequency domain, and shows no oscillatory behaviour.
This ensures that the filter function acts as a band-pass
filter, allowing detection of structures at the scale of interest
only.

The filter functions Q(ϑ) and U(ϑ) may take any form,
subject to the conditions outlined above, namely:

(i) The filter function should be compensated within the
aperture being considered.

(ii) The filter function should be local in real space; i.e.
it should go to zero smoothly at a finite radius, and be zero
outside this radius.

(iii) The filter function should be local in Fourier space,
with no oscillatory behaviour in the power spectrum.

Schneider (1996) showed that optimal signal to noise
will be achieved if the function Q(ϑ) matches the expected
profile of γt as far as possible. This is generally not known a

priori, so a number of generic functions, or families of func-
tions, have been proposed (see, e.g. Schneider et al. 1998;
van Waerbeke 1998; Jarvis et al. 2004). These popular filter
functions will be discussed in detail in § 4 below, where we
will demonstrate that none of them are able to simultane-
ously meet all three of the above criteria.

We now consider the wavelet transform and its applica-
tion in weak lensing. Specifically, we will demonstrate below
that the wavelet transform at a given scale is formally equiv-
alent to the aperture mass statistic described above.

c© 2009 RAS, MNRAS 000, 1–9
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2.2 Associated Statistics of Map

The aperture mass statistic is useful not only for generating
filtered maps of the lensing convergence, and thereby de-
tecting structures as a function of aperture scale, but also
for constraining cosmological parameters through associated
statistics of the aperture mass Map.

Most commonly, the variance of the aperture mass
statistic,

〈

M2
ap

〉

(θ), is considered as a function of aperture
radius θ. This measure is related to the power spectrum
Pκ(k) via (Schneider et al. 1998):

〈

M2
ap

〉

(θ) =
1

2π

∫

d2kP (k)W (kθ) , (5)

where

W (kθ) = [Ũ(k)]2 (6)

is the power spectrum of the filter U(ϑ).
Equation (5) can equivalently be expressed in terms of

the two point correlation function of the shear (see, e.g.
Crittenden et al. 2002; Schneider et al. 2002; Jarvis et al.
2004), and this statistic helps to constrain the amplitude
of the matter power spectrum σ8.

In order to probe non-gaussianities in our cosmolog-
ical model, higher-order statistics need to be considered.
Jarvis et al. (2004) present a derivation of the skewness of
the aperture mass statistic

〈

M3
ap

〉

in terms of the Bispec-
trum or, equivalently, the three-point correlation function
of the shear. This statistic, as well as the kurtosis of the
convergence and aperture mass, and peak counting are con-
sidered in Pires et al. (2009, 2012), where the efficacy of
these probes to discriminate between competing cosmologi-
cal models along the ΩM − σ8 degeneracy are considered.

3 WAVELET TRANSFORM

The wavelet transform is a multiscale transform, where the
wavelet coefficients of an image are computed at each posi-
tion in the image at various different scales simultaneously.
In one dimension, the wavelet coefficient of a function f(x),
evaluated at position b and scale a is defined as (Starck et al.
1998; Starck & Murtagh 2006):

W (a, b) =
1√
a

∫

f(x)ψ∗

(

x− b

a

)

dx , (7)

where ψ(x) is the analysing wavelet. The analysis is analo-
gous in 2 dimensions, with ψ(x, y) = ψ(x)ψ(y).

By definition, wavelets are compensated functions;
i.e. the wavelet function ψ(x) is constrained such
that

∫

R1 ψ(x)dx = 0 and hence, by extension
∫∫

R2

ψ(x, y)dx dy = 0. (8)

According to the definition in equation (7), the continuous
wavelet transform of an image is therefore nothing more than
the convolution of that image with compensated filter func-
tions of various characteristic scales. If the image f(x, y) is

taken to be the convergence κ(x, y), then for an appropri-
ate choice of (radially-symmetric, local) wavelet, the wavelet
transform is formally identical to the aperture mass statistic
at the corresponding scales.

In practice in application, we use the starlet trans-
form algorithm (see Starck et al. 1998; Starck & Murtagh
2006), which simultaneously computes the wavelet trans-
form on dyadic scales corresponding to 2j pixels. This al-
gorithm decomposes the convergence map of size N × N
into J = jmax + 1 sub-arrays of size N ×N as follows:

κ(x, y) = cJ (x, y) +

jmax
∑

j=1

wj(x, y) , (9)

where jmax represents the number of wavelet bands (or,
equivalently, aperture mass maps) considered, cJ represents
a smooth (or continuum) version of the original image κ,
and wj represents the input map filtered at scale 2j (i.e. the
aperture mass map at θ = 2j pixels).

Using the wavelet formalism to derive the aperture mass
statistic presents different advantages:

• Many families of wavelet functions have been studied
in the statistical literature, and all these wavelet functions
could be applied to the aperture mass statistic. We will
demonstrate in § 4 that the starlet wavelet, in particular,
simultaneously meets all three of the requirements for aper-
ture mass filters described in § 2, and is therefore ideal for
weak lensing studies.

• For some specific wavelet functions, discrete and very
fast algorithms exist, allowing us to compute a set of wavelet
scales through the use of a filter bank with a very limited
number of operations. See Starck et al. (2010) for a full re-
view of the different wavelet transform algorithms.

• Wavelets have shown to be very powerful for non Gaus-
sianity studies for both weak lensing data (Starck et al.
2006; Pires et al. 2009, 2012) and CMB data (Vielva et al.
2004; Jin et al. 2005; Starck et al. 2004; Vielva et al. 2006;
McEwen et al. 2008; Curto et al. 2011).

4 FILTER FUNCTIONS

We have shown above that a 2D wavelet transform of a map
of the convergence κ is formally identical to computing aper-
ture mass maps of the convergence – or, equivalently, the
shear – at the chosen scales. We now consider the functional
form of the compensated filter functions commonly associ-
ated with aperture mass studies, and compare with a wavelet
transform that has been frequently used for weak lensing
studies: the starlet wavelet (Starck et al. 2006; Pires et al.
2009, 2012).

c© 2009 RAS, MNRAS 000, 1–9
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4.1 Aperture Mass Filter Functions

Schneider et al. (1998) have proposed a family of polynomial
filter functions defined by:

U(ϑ) =
(ℓ+ 2)2

πθ2

(

1− ϑ2

θ2

)ℓ (

1

ℓ+ 2
− ϑ2

θ2

)

H(θ − ϑ),

Q(ϑ) =
(1 + ℓ)(2 + ℓ)

πθ2
ϑ2

θ2

(

1− ϑ2

θ2

)ℓ

H(θ − ϑ) , (10)

where H(θ − ϑ) is the Heaviside step function, which takes
the value of 1 for ϑ 6 θ and zero for ϑ > θ.

More recently, several authors (e.g. van Waerbeke 1998;
Jarvis et al. 2004) have advocated a filter function of the
form:

U(ϑ) =
A

θ2

(

1− bϑ2

θ2

)

exp

(

− bϑ
2

θ2

)

,

Q(ϑ) =
A

θ2
bϑ2

θ2
exp

(

− bϑ
2

θ2

)

, (11)

where various choices for the constant b and the over-
all normalisation A have been used in the literature (see,
e.g., Crittenden et al. 2002; Zhang et al. 2003; Jarvis et al.
2004). Of specific interest to this paper are the forms used
by van Waerbeke (1998), who takes b = 4, and that of
Jarvis et al. (2004) and Zhang et al. (2003), who take b =
1/2.2

Zhang et al. (2003) have shown that the form in equa-
tion (11) is optimal for weak lensing skewness measurements,
and van Waerbeke (1998) notes that this form is preferable
to the polynomial filter of Schneider et al. (1998) for skew-
ness measurements because the power spectrum of U(ϑ) is
non-oscillatory, with a well-localised peak in the frequency
domain.

Note that the Q(ϑ) filter function described in equation
(11) shows a peak at ϑ =

√
2θ, and tends to zero as ϑ→ ∞.

In practice, any algorithm used to generate an aperture mass
map will need to truncate this filter function at some finite
radius. This will involve a trade-off between accuracy and al-
gorithm speed, and truncation may affect the effective width
of the filter. This will be discussed more fully in sections 4.3,
4.4, and 5 below.

4.2 Starlet Wavelet Function

One of the most popular wavelet transform algorithms in
astronomy is the Isotropic Undecimated Wavelet Tranform
(IUWT) (Starck et al. 2010, 2011), also called à trous algo-
rithm or starlet transform. In this algorithm, the wavelet
ψ(x, y) is separable and can be defined by:

ψ
(x

2
,
y

2

)

= 4

[

ϕ(x, y)− 1

4
ϕ
(x

2
,
y

2

)

]

, (12)

where ϕ(x, y) = ϕ(x)ϕ(y) and ϕ(x) is a scaling function
from which the wavelet is generated. In the case of the starlet

2 This form is analogous to the Mexican Hat wavelet function

wavelet, ϕ(x) is a B3-spline:

ϕ(x) =
1

12
(|x− 2|3 − 4|x− 1|3 +6|x|3 − 4|x+1|3 + |x+2|3),

(13)
which is a compact function that is identically zero for |x| >
2.

This wavelet function has a compact support in real
space, is well localized in Fourier domain, and the wavelet
decomposition of an image can be obtained with a very fast
algorithm (see Starck & Murtagh (2006) for a full descrip-
tion). Computation time will be discussed in detail in Sec-
tion 5.

Evaluation of equation (12) yields the following aper-
ture mass filters:

U(η) =
1

9

(

93 |η|3 − 64

[

∣

∣

∣

∣

1

2
− η

∣

∣

∣

∣

3

+

∣

∣

∣

∣

1

2
+ η

∣

∣

∣

∣

3
]

+18
[

|1− η|3 + |1 + η|3
]

− 1

2

[

|2− η|3 + |2 + η|3
]

)

, (14)

where η = ϑ/θ, and

Q(η) =
1

45η2

(

−279η2|η|3 + 8[1 + 6η + 24η2]

∣

∣

∣

∣

1

2
− η

∣

∣

∣

∣

3

−9[1 + 3η + 6η2] |1− η|3 − 9[1 − 3η + 6η2] |1 + η|3

+

[

1 +
3

2
η +

3

2
η2
]

|2− η|3 +
[

1− 3

2
η +

3

2
η2
]

|2 + η|3

+8[1− 6η + 24η2]

∣

∣

∣

∣

1

2
+ η

∣

∣

∣

∣

3
)

. (15)

4.3 Properties in Real Space

In Figure 1, we compare the aperture mass filter functions
defined above with the corresponding starlet wavelet func-
tions in real space. The label S98 corresponds to the filters
in to equation (10) taking ℓ = 3, and JBJ04 corresponds to
equation (11) with b = 1/2. All filters are renormalised to
have a peak value of 1, for comparison purposes. We have
not included the filters defined by van Waerbeke (1998) in
this comparison, as they are functionally identical to those
of Jarvis et al. (2004) with a different scaling. In practice,
they are very similar in scale and shape to the starlet wavelet
filters.

While the S98 U(ϑ) filter is compensated within an
aperture of radius θ, thus yielding an obvious truncation
point for this filter function when making maps, neither the
starlet or JBJ04 filters show such behaviour. The starlet fil-
ter U(ϑ) filter is, however, compensated within an aperture
of radius 2θ, and application of the starlet transform algo-
rithm considers the full filter function out to this radius. In
contrast, the JBJ04 Q(ϑ) function tends to zero as ϑ→ ∞,
and the U(ϑ) filter function is only strictly compensated at
this radius.

In practice, a truncation at large ϑ, e.g. ϑcut ∼ 5θ would
yield minimal error on the solution. However, the larger the
truncation radius, the longer the computation time when

c© 2009 RAS, MNRAS 000, 1–9
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Figure 1. Comparison of the U(ϑ/θ) (left) and Q(ϑ/θ) (right)
filter functions commonly used in weak lensing studies and corre-
sponding starlet wavelet functions. Plots are normalised so that
each curve attains a peak amplitude of 1. The filters considered
are those of Schneider et al. (1998) (taking ℓ = 3, labelled S98),
and Jarvis et al. (2004) (equation (11) with b = 1/2, labelled
JBJ04). A dotted vertical line in each plot shows the location of
the aperture radius, indicating where the filters would be trun-
cated in application of the aperture mass technique.

computing an aperture mass map. Moreover, contamination
by edge effects and missing data becomes more problematic
as the aperture radius is increased. Two-point and higher
order statistics, however, remain unaffected by this trunca-
tion, as the effect of the aperture mass filter can be com-
puted analytically in both real and Fourier space for these
statistics.

Moreover, statistics such as peak counting are unlikely

to be affected by such a truncation. For a non-compensated
filter function, the amplitude of structures seen in the result-
ing Map realisation may be offset by an additive constant

proportional to
∫ ϑcut

0
ϑU(ϑ)dϑ (see Schneider 1996). Peak

counting is generally performed on the signal to noise of the
Map, and as the noise map is generated in the same manner
as the signal, it stands to reason that this will not be af-
fected significantly. A similar argument applies to statistical
moments of theMap distribution such as the variance, skew-
ness and kurtosis computations performed on the aperture
mass map directly, which subtract the mean from the map
inherently.

4.4 Properties in Fourier Space

Perhaps more important than their real-space behaviour is
the behaviour of these filter functions in Fourier space. The
key feature of aperture mass methods is to isolate structures
on a particular scale determined by the aperture radius. If
this radius is chosen to be much larger than the scale at
which the noise is dominant, one may suppress the noise and
therefore resolve real structures above the noise. In this way,
the aperture mass filters (or, equivalently, the wavelet trans-
form) act as band-pass filters, restricting a given aperture
mass map or wavelet scale to a limited range of frequencies
in the Fourier domain.

To assess the response of our aperture mass filters and
starlet wavelet transform in Fourier space, we consider the
power spectrum of the U(ϑ) filter function. Ideally, we would
like the chosen filter to be localised in the Fourier domain,
with a single peak corresponding to the characteristic fre-
quency for the scale being considered, and with no oscil-
lations at high frequencies, as these would result in high-
frequency (noisy) information being included in a lower-
frequency filtered map.

In order to accurately characterise the behaviour of the
filters, including any truncation that is applied, we generate
an artificial shear data generated from a null convergence
map with a single central delta function, and with no noise
in the maps. The aperture mass algorithm is then applied
to the resulting shear maps for θ = 4, and the power spec-
trum of the resulting map computed. For the JBJ04 filter,
we consider two truncation radii, at ϑcut = θ and ϑcut = 5θ,
for illustrative purposes. The wavelet transform is also com-
puted for the map, and the power spectrum for the second
wavelet scale computed for comparison. The power spectra
are then renormalised to peak at 1. Figure 2 shows the re-
sulting power spectra. In the figure, each curve has been
offset from the one below by 0.5 along the vertical axis, for
clarity.

Broadly, all the filter functions show the expected be-
haviour. All but one are peaked at approximately the same
frequency, indicative of the fact that they are probing struc-
tures at a similar scale, and they are all fairly well localised
in the frequency domain. The frequency offset seen in the
peak of the JBJ04 filter truncated at ϑ = 5θ is indicative
of the change in the effective width of the filter function as

c© 2009 RAS, MNRAS 000, 1–9
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Figure 2. Power spectra associated with the aperture mass filters
S98, JBJ04 and the starlet wavelet filter. We have plotted the S98
for both ℓ = 3 as before (solid curve) and ℓ = 1 (dotted curve) to
show the dependence of the power spectrum on the polynomial
order ℓ. For the JBJ04 filter, a truncation has been applied at
ϑcut = 5θ (solid curve) and ϑcut = θ (dot-dashed curve). The
power spectra for the different filter functions have been offset at
intervals of 0.5 along the vertical axis, for clarity.

the truncation radius is changed. Oscillations are seen with
the JBJ04 filter truncated at ϑcut = θ and the S98 filter at
high frequency, but not in the case of the starlet filter or the
JBJ04 filter truncated at ϑcut = 5θ.

The oscillations in the strongly truncated JBJ04 case
are a result of the fact that the filter function is significantly
non-zero and non-compensated within the truncation radius
of ϑcut = θ. This results in oscillations at high frequency
and, as a consequence, a contamination of the resultingMap

map with high frequency modes not pertaining to the scale
of interest. Clearly, truncations at a large radius, such as
ϑcut = 5θ yield negligible oscillations.

Similar oscillations are seen in the S98 filter. This is a
direct consequence of the fact that the filter used is a locally-
defined function: it is defined to follow the given form only
for ϑ < θ and artificially set to zero outside this radius by
the Heaviside step function. This step function introduces
a discontinuity in the filter function, which manifests as os-
cillations in the Fourier space response of the filter. These
oscillations are reduced in amplitude as ℓ is increased.

The starlet filter is very well-behaved at high frequen-
cies, showing no oscillations at any frequency, which results
from the fact that the starlet transform algorithm applies no
truncation to the starlet filter functions. Therefore, the star-
let transform at each scale represents a strictly limited range
of frequencies, with no contamination from higher-frequency
modes.

The starlet filter offers an additional advantage over
aperture mass filtering: the aperture mass filter is a band-
pass filter. Because theMap reconstruction is only computed
for a discrete set of aperture scales, information on interme-
diate scales may be lost, particularly at both the small and
large frequency extremes. In contrast, the wavelet transform
retains information on all scales. The first wavelet scale is
effectively a high-pass filter, retaining all the high-frequency
information in the image, while the remaining wavelet scales
are bandpass filtered as with the Map-filtered images. Fi-
nally, the wavelet transform retains cJ , which encodes the
large-scale information in the image, and therefore consists
of a smoothed version of the image (or an image with a low-
pass filter applied). Figure 3 demonstrates this point for a
wavelet transform with J = 5, showing the Fourier-space
response of the wavelet filter as a function of scale j.

4.5 Practical considerations in application

The starlet transform would seem to offer a clear advantage
over traditional Map filtering techniques when it comes to
map making, as it requires no truncation of the filter func-
tions and retains information on all scales within the original
image. However, in application there are several difficulties
that arise, and which must be addressed.

The starlet transform is computed on the convergence
map, rather than on the shear catalogue itself. The shear
and convergence are related by a straightforward 2D convo-
lution which, in principle, may be inverted directly in Fourier
space. However, in practice, this gives rise to significant er-

c© 2009 RAS, MNRAS 000, 1–9
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Figure 3. Fourier-space response of the wavelet filter as a func-
tion of filter scale. Note that at at intermediate scales, the wavelet
filter responds as a limited band-pass filter, while at large and
small scales, the wavelet transform yields a low- and high-pass
filter, respectively.

rors in the convergence estimation, particularly at the edges
of the field, arising from the fact that we are considering
a finite field sampled over a discrete range of frequencies,
while the convolution acts over all space.

This can give rise to∼ 10% leakage of power into lensing
B-modes in the convergence map, which biases the resulting
convergence map. Various techniques have been developed
to mitigate such effects; most recently, Deriaz et al. (2012)
have presented a method using a Wavelet-Helmholtz decom-
position to separate E- and B-modes in the lensing signal,
and to recover the convergence to excellent precision, of-
fering a factor of ∼ 30× reduction in B-mode contamina-
tion compared to a direct FFT inversion and ∼ 5× reduc-
tion in B-mode contamination compared to the method of
Seitz & Schneider (1996, 2001), and yielding an RMS error
at the percent level in reconstructions. Note also that the
Deriaz et al. (2012) method may be applied directly to dis-
crete data; i.e. the technique can be applied directly to a
shear catalogue, rather than pixelated shear maps.

A further difficulty that arises when attempting to re-
construct the convergence, and compute statistics of the
resulting map, is due to missing data in the image. This
usually arises due to masking out of bright stars and other
contaminating features in the image (such as bad pixels).
This lost information is not recovered in the reconstruction,
and this biases the statistics computed on the resulting mass
map. In Pires et al. (2009), the authors describe a method

by which one can recover information in regions covered by
the mask. This method is based on an assumption of spar-
sity, and the authors find that they are able to recover the
power spectrum to a relative error of 0.5 − 1% using Sub-
aru and CFHT masks, respectively on a 4 deg2 image, and
can recover the equilateral bispectrum to a relative error of
1− 3% for the same masks.

Using the techniques described above, it is therefore
possible to compute maps of the convergence to sufficient
accuracy to be able to compute associated statistics on the
resulting maps, and thereby place constraints on cosmolog-
ical parameters in a similar manner to methods applied di-
rectly to the shear catalogue.

5 ALGORITHM SPEEDS

5.1 Map making

Generating an aperture mass map generally involves brute
force application of equation (2) to a given dataset. Such
an algorithm has complexity ∝ O(N2ϑ2

cut), where N ×N is
the dimension of the image, and ϑcut is the chosen trunca-
tion radius. This scaling means that for large apertures or,
equivalently, for high-resolution images, the algorithm may
prove to be very time-consuming. Estimation of the noise in
aperture mass studies is generally carried out by randomis-
ing the data and repeating the measurement many times.
Therefore it is of great importance to be able to compute
the aperture mass for a given image rapidly.

The starlet wavelet transform algorithm is of complexity
∝ O(N2J), where J is the number of scales considered, and
is limited by N > 2J . This means that the processing time
for the wavelet transform algorithm is sensitive only to the
number of scales considered, rather than the size of the filter
functions involved, and depends linearly on this number.

In Figure 4, we compare the processing time for the
aperture mass algorithm and the starlet transform algo-
rithm3, both programmed in C++, to analyse an image of
1024 × 1024 pixels on a 2 × 2.66GHz Intel Xeon Dual-Core
processor. We consider aperture scales θ = [2, 4, 8, 16, 32, 64],
which correspond to J = jmax + 1 = [2, 3, 4, 5, 6, 7] wavelet
scales in the wavelet transform. In the aperture mass al-
gorithm, the filters are truncated at a radius of ϑcut = θ.
For the application of filters such as the JBJ04 filter, which
necessitates truncation at a much larger radius, we expect
the computation time to be roughly an order of magnitude
longer. Even at the smallest aperture radius, the wavelet
transform is ∼ 5× faster than the aperture mass algorithm.
At θ = 64 pixels, the wavelet transform is ∼ 1200× faster
than the aperture mass algorithm. Note that the wavelet
transform for a given value of J simultaneously computes
the wavelet transform at all scales 2j , 0 < j 6 J−1, in addi-
tion to the smoothed continuum map cJ , whilst the aperture
mass algorithm computes the transform at a single scale θ.

3 available from http://irfu.cea.fr/Ast/mrlens software.php
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Figure 4. Comparison of the processing time of the aperture
mass algorithm and the starlet transform algorithm to analyse
an image of 1024 × 1024 pixels on a 2 × 2.66GHz Intel Xeon
Dual-Core processor. The top axis represents the total number J
of 1024 × 1024 pixel arrays computed by the wavelet transform
algorithm, including the smooth continuum map.

We note further that the computational time for the wavelet
transform for J = 7 wavelet scales is still a factor of ∼ 2×
less than the computational time for the aperture mass al-
gorithm at θ = 2 pixels.

The starlet transform algorithm therefore offers a clear
and significant time advantage over the aperture mass al-
gorithm for all scales of interest. Note that wavelets do not
restrict our data analysis only to dyadic scales. Indeed some
other wavelet transform algorithms, such as that based on
fractional splines (Unser & Blu 2000), allow us to use any
intermediate wavelet scale.

5.2 Computing higher-order Map statistics

When computing higher-order statistics such as the vari-
ance, skewness or kurtosis of the aperture mass statistic, one
can choose to work directly on the shear field, and compute
the statistics via the n-point correlation function. Computa-
tion of such statistics using a naive approach usually results
in an algorithm with complexity O(Nn

gal), where Ngal is the
number of galaxies being considered and n is the order of
the correlation function. On large fields, such a computation
can be prohibitive.

In recent years, tree codes have been employed to speed
up computation of n-point correlation functions. Typical
tree codes to compute n-point correlation functions are
O(Ngal log(Ngal)) (Zhang & Pen 2005) on a shear cata-
logue. For a single Euclid exposure of 0.5 deg2, we can ex-
pect Ngal ∼ 54, 000 (30 galaxies/arcmin2) - 180, 000 (100
galaxies/arcmin2). Tree codes exist that act on pixelated
data (e.g. Eriksen et al. 2004) which run at O(N2

pixnbin)
where N2

pix is the total number of pixels and nbin is the num-
ber of bins in the correlation function. For a Euclid exposure,

assuming pixels of 1 arcminute, we have N2
pix = 1800, and

nbin will be dependent on the required resolution of the cor-
relation function. Typically, statistics will be computed on
much larger fields, however (for example, Pires et al. (2009)
compute statistics on a field of 3.95 × 3.95 deg2, which is a
scale-up of ∼ 30 in area).

The wavelet method acts on pixellated data, and is
O(N2J) in computation time, so our algorithm will be com-
parable for computation of 2-point statistics, if the 2-point
correlation function is computed on pixellated data, but if
a shear catalogue is used, we will have a faster algorithm
by at least an order of magnitude. For higher-order statis-
tics, this advantage is even more pronounced. Furthermore,
while optimised software is freely and publicly available to
compute the wavelet transform, such optimised software is
not available for n-point correlation functions.

Note that Jarvis et al. (2004) show an O(Ngal) com-
plexity for the computation of n-point statistics with their
algorithm, with no log(Ngal) factor. However, for n > 3, the
prefactor becomes quite large, and for n = 3 their algorithm
was unable to reach the theoretical O(Ngal log(Ngal)) scal-
ing at Ngal = 106. This means that their algorithm may be
competitive for computation of two-point statistics, but for
higher order statistics, methods acting on pixellated data
– such as the wavelet method described above – would be
advantageous.

5.3 Further advantages of wavelets

In Starck et al. (2006), the authors describe a method for re-
constructing the convergence from shear measurements us-
ing wavelets. Using their method, it is possible to carry out
an explicit denoising of the convergence field using thresh-
olding based on a False Discovery Rate method. This allows
them to derive robust detection levels in wavelet space, and
to produce high-fidelity denoised mass maps. In Pires et al.
(2009, 2012), it is shown that more non-gaussian informa-
tion can be extracted from these wavelet-denoised maps as
compared to the shear, convergence or Map-filtered maps,
and therefore that tighter constraints may be placed on the
cosmological model using the wavelet method.

In addition, wavelet-based methods offer more flexibil-
ity than aperture mass filters. Whilst we have presented here
only the starlet wavelet function, many other wavelet dictio-
naries may be used. The starlet filter seems ideal for lensing
studies, due to its similarity to the JBJ04 filter presented
here, which was deemed to be optimal in Zhang et al. (2003).
However, different dictionaries may be optimal in different
applications; for example, if one were attempting to study
filamentary structure, ridgelets or curvelets might be a more
appropriate basis. The vastness of the wavelet libraries and
the public availability of fast algorithms to compute these
transforms are major strengths of wavelet-based approaches.

c© 2009 RAS, MNRAS 000, 1–9
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6 SUMMARY AND DISCUSSION

In this paper, we have compared the aperture mass statistic,
a commonly-used tool in weak lensing studies, with the 2D
wavelet transform using a starlet wavelet. We have demon-
strated that the aperture mass technique is formally identi-
cal to the wavelet transform evaluated at a specific scale.

We have considered two common forms for the aperture
mass filter function, and compared it to the equivalent star-
let functions. One of these aperture mass filters – labelled
JBJ04 – is considered to be the optimal aperture mass filter
for skewness studies (Zhang et al. 2003), and is thus consid-
ered to be the state-of-the-art in this field. We outline three
criteria for the aperture mass filters:

(i) They should be local in real space.
(ii) They should be compensated within the aperture ra-

dius being considered.
(iii) They should be local and non-oscillatory in Fourier

space.

We demonstrate that none of the commonly used aperture
mass filter functions meet all three criteria simultaneously,
whilst the starlet – by definition – meets all of the criteria.

Lastly, we show that the starlet transform algorithm,
which forms part of a publicly available software package
containing numerous tools for weak lensing, dramatically
outperforms a brute force application of the aperture mass
technique, with speed-up factors of 5− ∼ 1200 seen for the
processing of a single aperture mass reconstruction, depend-
ing on the scale considered.

Given that the aperture mass technique is identical to
the wavelet transform, that the starlet wavelet function is
more appropriately suited to aperture mass studies, and that
the starlet transform algorithm offers such a great advantage
in terms of processing time over the standard aperture mass
algorithm, we argue that the wavelet transform should be
the preferred method in future weak lensing studies involv-
ing use of the aperture mass method.

A further advantage of this wavelet method is that
fast and effective software is available to carry out explicit
denoising in the wavelet domain (Starck et al. 2006). In
Pires et al. (2009, 2012), it has been shown that further cos-
mological information can be extracted from noisy conver-
gence maps if such denoising is applied to the convergence
maps, as the starlet wavelet transform is particularly sen-
sitive to non-gaussian structures. In addition, a multitude
of wavelet libraries are available, and may be chosen to be
optimal for a given problem. Thus, wavelet methods have
an inherent flexibility in application.
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