

Inpainting and Morphological Component Analysis

Methods based on sparsity

Considering a transform : $\alpha = \Phi^T X$

A signal X is sparse in a basis Φ if most of the coefficients α are equal to zero or close to zero

Signal and image representations

✓ Local DCT:

- ✓ Stationary textures
- ✓ Locally oscillatory

- ✓ Piecewise smooth
- ✓ Isotropic structures

✓ Curvelet Transform

- ✓ Piecewise smooth
- ✓ Edge structures

(Starck et al, 2004)

$$Y = X_1 + X_2$$

$$\alpha_i = \phi_i^T X_i$$

$$\min_{\alpha_i} \sum_i ||\alpha_i||_1 \text{ s.t. } Y = \sum_i \Phi_i \alpha_i$$

Ridgelet component

Contour image

DCT component

Texture

Wavelet component

Compact sources

Curvelet component

Filaments

Wavelet component

Ridgelet + Curvelet component

Original image

Reconstructed image

MCA TUTORIAL

Missing data

(Elad et al, 2005)

✓ Causes of missing data:

- ✓ Occurrence of defective or dead pixels
- ✓ Partial sky coverage due to problems in the scan strategy
- ✓ Saturated pixels
- ✓ Absorption or masking of the signal by a foreground

✓ Problems caused by missing data:

- ✓ Bias and decrease on statistical power
- ✓ Distortions in the frequency domain due to abrupt truncation
- ✓ Other edge effects in multi-scale transforms

✓ How to deal with missing data?

- ✓ Correction of the measure by the proportion of missing data
- ✓ Other corrections specific to a given measure (i.e. MASTER for power spectrum estimation)
- ✓ Inpainting methods

Introduction – MCA - Inpainting Inpainting based on sparsity

$$\min_{\alpha} ||\alpha||_1 \text{ s.t. } Y = M\Phi\alpha$$

Truncated sine curve

Fourier transform of the sine curve

Inpainting on asterosismic data

Light curve (time series)

Zoom on the Light curve

Power spectrum

Original (red) and masked (black) data

Inpainted data (black)

Missing data In Weak Lensing

Introduction – MCA - Inpainting

Missing data In Weak Lensing data

Inpainting

in Cosmic Microwave Background data

INPAINTING TUTORIAL