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Abstract. After performing highly sensitive acceleration measurements during two

years of drag-free flight around the Earth, MICROSCOPE provided the best constraint

on the Weak Equivalence Principle (WEP) to date. Beside being a technological

challenge, this experiment required a specialised data analysis pipeline to look for

a potential small signal burried in the noise, possibly plagued by instrumental defects,

missing data and glitches. This paper describes the frequency-domain iterative least-

square technique that we developed for MICROSCOPE. In particular, using numerical

simulations, we prove that our estimator is unbiased and provides correct error bars.

This paper therefore justifies the robustness of the WEP measurements given by

MICROSCOPE.
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1. Introduction

MICROSCOPE’s test of the Weak Equivalence Principle (WEP) is based on the

comparison of the acceleration of two concentric cylindrical test masses of different

composition as they orbit the Earth [1–3]. Thus, the gravity that pulls the test masses
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being sourced by the Earth, any Equivalence Principle violation (EPV) signal will be

proportional to the Earth gravity acceleration. More precisely, as it is measured along

the main axis of the cylindrical masses, the signal we look for can be expected to

be proportional to the Earth’s gravity acceleration modulated by the motion and the

attitude of the satellite around the Earth, resulting in a periodic signal with a well-known

frequency (noted fEP in this paper).

The main MICROSCOPE data consists in time series of accelerations measured by

two concentric accelerometers [4]. To look for an EPV, it is then enough to look for a

non-zero signal at the fEP frequency in the difference of those two time series. Obviously,

this process is impacted by instrumental noise and systematics (either instrumental or

environmental). Thus, it consists in correcting the measured time series from –calibrated

and/or modelled– instrumental and environmental systematics, before seeking a possible

periodic signal amounting to a violation of the WEP in coloured-noise-dominated data.

As described in Ref. [5], the MICROSCOPE mission is divided in different

measurement sessions. Sessions represent a time span during which the satellite and

the instrument keep the same configuration (spin, drag-free control law...). Some of

these sessions are directly devoted to the WEP test (called “EP sessions” in this paper)

while others (“calibration sessions”) are used to calibrate or characterise the instrument.

EP sessions are the longest, most of them lasting 120 orbital periods (about 8 days),

while calibration sessions typically last a few orbits.

In this paper, we present MICROSCOPE’s data analysis pipeline. After recalling

the measurement equation in Sect. 2, we present our frequency-domain iterative

ordinary least squares (OLS) algorithm and its mathematical background in Sect. 3.

We then use “worst-case” simulations from a hybrid software-hardware MICROSCOPE

simulator to discuss the optimal way to correct for gaps in MICROSCOPE data, in

Sect. 4. Finally, in Sect. 5, we show with well-controlled numerical simulations

that our pipeline provides unbiased estimates and reliable error bars in the presence of

instrumental systematics. Combined with previous works where we showed how we can

successfully deal with missing data, those results prove that our data analysis pipeline

allows us to reliably measure an EPV, if any. We conclude in Sect. 6. A detailed

appendix discusses uncertainty propagation. Note that this paper is only about the

MICROSCOPE data analysis methodology, and does not present real data. For the real

data analysis (using the methods described in this paper), see Refs [3, 6–8].

The terminology and notations used in this paper, as well as all observables, are

defined in Ref. [4]. In particular, we define the common-mode (resp. differential-

mode) of a given observable or parameter as the half-sum (resp. half-difference) of

this observable/parameter for both test masses, o(c,d) = (o(1) ± o(2))/2, and we use the

convention o to denote a vector and [o] to denote a second-order tensor, respectively.

We note the time derivative of observable o as
.
o.
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2. Measurement principle

2.1. Measurement equation

MICROSCOPE looks for an EPV by monitoring the difference in accelerations

potentially undergone by the two test masses of a differential accelerometer [1–4]. In

an ideal case, the measurement equation is then straightforward to establish, since the

difference of acceleration of the two test masses is expected to be proportional to Earth

gravity field g, Γ(d) ≡ Γ(1) −Γ(2) = δg, where δ is the (approximate) Eötvös parameter

that we wish to estimate. However, the instrument is not perfect: for instance, scale

factors are not exactly unit and test masses are imperfectly centered and aligned with

respect to each other and to the satellite’s frame of reference, such that the common-

mode and differential-mode sensitivity matrices [ac] and [ad] are not the identity and

null matrices, respectively. Furthermore, since the satellite rotates it imparts a Coriolis

acceleration on the test masses.

The measurement equation is therefore much more complicated than in the ideal

case. Ref. [4] establishes it in full generality, introducing and taking into account all

instrumental defects and their notation. We measure the differential acceleration along

the test masses’ sensitive axis (x-coordinate in the instrument’s frame, see Fig. 1 of

Ref. [9]), such that

Γ(d)
x = 2b̃(d)x + ac11δgx + ac12δgy + ac13δgz +∆′

xSxx +∆′
ySxy +∆′

zSxz

+
(

ac13∆
′
y + ac12∆

′
z

)

Syz + ac12∆
′
ySyy + ac13∆

′
zSzz

+
(

−ac13∆
′
y + ac12∆

′
z + 2cd11

) .
Ωx − (∆′

z − 2ac13∆
′
x − 2cd12)

.
Ωy

+
(

∆′
y − 2ac12∆

′
x + 2cd13

) .
Ωz + 2

(

ad11Γ̃
(c)
x + ad12Γ̃

(c)
y + ad13Γ̃

(c)
z

)

+ 2
.
∆′

xΩx − 2
.
∆′

zΩy + 2
.
∆′

yΩz − ac11
..
∆x − ac12

..
∆y − ac13

..
∆z

+ K̃
(1)
2xx

(

Γ̃(1)
x

)2

− K̃
(2)
2xx

(

Γ̃(2)
x

)2

+ 2n(d)
x , (1)

where [T] the Earth gravity gradient tensor (GGT) in the instrument’s frame, [In] =
[ .
Ω
]

+ [Ω] [Ω] the gradient of inertia tensor, [S] the symmetric part of the [T] − [In]

matrix, [Ω] the angular velocity tensor of the satellite, and ∆ the vector between the

center of the two test masses (called “offcentering vector” hereafter).

In Eq. (1), Γ̃(c) = Γ(c)−n(c) is the noise-free common-mode measured acceleration,

[ac11, ac12, ac13] is the first row of the common-mode sensitivity matrix, [ad11, ad12, ad13]

is the first row of the differential-mode sensitivity matrix, [cd11, cd12, cd13] is the first

row of the differential-mode sensitivity matrix to the angular acceleration, b̃
(d)
x =

bd0x+ac11b
(d)
1x +ac12b

(d)
1y +ac13b

(d)
1z (with b0

(d) the differential electrostatic bias and b1
(d) the

difference of mechanical perturbations acting on the two test masses). For convenience,

in the remainder of this paper, we denote δx ≡ ac11δ, δy ≡ ac12δ, δz ≡ ac13δ, but we

warn the reader that δi should not be confused with the component of a tensor.

We should stress that the measurement is not directly sensitive to the actual
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offcenterings ∆, but to the following combinations of instrumental parameters:

∆′
x ≈ ac11∆x − ac12∆y − ac13∆z (2)

∆′
y ≈ ac11∆y + 2ac12∆x − ac23∆z (3)

∆′
z ≈ ac11∆z + 2ac13∆x + ac23∆y. (4)

Only those “derived” offcenterings ∆x,y,z can be estimated. Finally, note that the

quadratic factorsK
(j)
2xx were neglected in Ref. [4] since they are estimated to be negligible

in the real MICROSCOPE data. In this paper, we aim to be as general as possible, so

that we take them into account, and set them to non-negligible values in the simulations

below. Similarly, Ref. [4] ignored the motion of the test masses (thus, setting the time

derivatives of ∆ to 0); here, we consider it since it should be taken into account in some

calibration sessions.

2.2. Modelled, estimated and ignored (combinations of) parameters

Each term of Eq. (1) is the product of a time-varying signal by parameters related to the

experiment (called “instrumental parameters” in the remainder of this paper). Their

effects are clear from Eq. (1): the differential bias shifts the measured acceleration from

the true acceleration; the common-mode sensitivity matrix mixes components from all

axes; the differential-mode sensitivity matrix projects common-mode acceleration into

the measured differential acceleration; the coupling with the angular acceleration makes

the measurement depend on the satellite’s motion; and n(d) adds stochastic instrumental

noise to the measurement.

The varying signals are either directly measured or are derived by analyzing tracking

data, as described below and shown in Refs. [6, 10]: several satellite manoeuvres

(summarised in Appendix A) allow us to discriminate between instrumental defects

and estimate them separately.

Those terms come in four distinct categories and can be either corrected for, or

ignored in the measurement equation (1):

(i) Terms computed through models and/or on-ground restitutions:

• The position of the satellite as determined in the celestial reference frame

J2000 [11] is expressed in the Earth’s reference frame using the appropriate

rotations [12]. From this position, the components of the gravity acceleration

g and of the GGT [T] are computed in the Earth’s reference frame [13];

afterwards they are transformed to the J2000 celestial frame and then to the

instrument frame using the attitude of the satellite [11].

• Like the attitude, the angular velocity Ω and acceleration
.
Ω result from an

on-ground restitution [11].

• Γ̃
(c)
x , Γ̃

(c)
y and Γ̃

(c)
z are directly approximated by the measured quantities Γ

(c)
x ,

Γ
(c)
y and Γ

(c)
z .

(ii) Terms corrected using results from calibration sessions (∆′
y, ad1j):
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• ∆′
y

(

Sxy + Ω̇z

)

• 2
(

ad11Γ̃
(c)
x + ad12Γ̃

(c)
y + ad13Γ̃

(c)
z

)

(iii) Terms dependent on parameters estimated with the current session:

• 2b̃
(d)
x : in principle b̃

(d)
x is a readily measurable constant, although it can drift in

time (section 3.3).

• δxgx + δzgz: we take advantage from the fact that gx and gz vary at the

same frequency fEP but in quadrature to estimate both δx and δz almost

without correlation. Since ac11 ≃ 1 and ac13 ≪ 1, δx ≈ δ (estimating δ being

MICROSCOPE’s main objective). Given the upper bound on δ from previous

experiments [14], δz = ac13δ is in principle not observable but a statistic over

its value estimated in different sessions could give interesting indications on

the quality of the experiment.

• ∆′
xSxx+∆′

zSxz: the components ∆′
x and ∆′

z of the offcentering can be estimated

very accurately thanks to the strong variations of Sxx and Sxz at 2fEP

(iv) Terms neglected due to their very small magnitude [6]:

• δygy
•
(

ac13∆
′
y + ac12∆

′
z

)

Syz + ac12∆
′
ySyy + ac13∆

′
zSzz

•
(

−ac13∆
′
y + ac12∆

′
z + 2cd11

)

Ω̇x + (2ac13∆
′
x + 2cd12) Ω̇y + (−2ac12∆

′
x + 2cd13) Ω̇z

2.3. Sessions dedicated to the test of the EP

The measurement equation (1) is valid for all scientific sessions (calibration and EP

sessions). However, it can be simplified for EP sessions where test masses are kept

motionless, so that the velocities
.
∆x,

.
∆y,

.
∆z and the accelerations

..
∆x,

..
∆y,

..
∆z vanish.

Further applying the corrections described in Sect. 2.2, Eq. (1) then simplifies to

Γ(d)
x,corr = 2b̃

′(d)
x + δxgx + δzgz +∆′

xSxx +∆′
zSxz + 2n(d)

x , (5)

which is the core model fitted to the data after applying the calibration parameters: in

addition to the Eötvös parameter δx we also estimate δz which quantifies the amplitude

of a signal proportional to gz (varying also at the fEP frequency but in quadrature with

gx) and the components ∆′
x and ∆′

z of the apparent offcentering.

The next section provides more conceptual and mathematical background on the

(instrumental and Eötvös) parameters used in the MICROSCOPE data analysis.

3. Parameters estimation

3.1. Iterative weighted least square fit

Each in-flight calibration session is dedicated to estimating one (or two) parameters and

designed so that the signals sourced by those parameters have a favourable signal-to-

noise ratio. Although it is theoretically possible to cumulate all calibration sessions and
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estimate all parameters simultaneously from Eq. (1), we use the fact that they are almost

independent from each other to simplify and better control the estimation process via an

alternative method. We thus devised a technique to estimate each parameter iteratively,

refining and updating the estimation of a given parameter using the estimation of the

other parameters until some convergence criterium is reached.

The measurement equation Eq. (1) is of the form Γ
(d)
x = f(pk, t)+n

(d)
x , where pk are

parameters and the time dependence is linked to measured or modeled signals si(t). For

each session, the data provides us with Γ
(d)
x and all si(t). It is then possible to perform

a least-square (or similar) fit to estimate the parameters pk from a given model.

Moreover, for a given calibration session, we have a priori values pk,0 for the

parameters pk, as some of them have been measured on ground, or as others may

have been estimated during an earlier in-flight calibration session (Sect. 2.2). It is then

possible to correct the measurement for the corresponding signals, and use an updated

version of the measurement equation,

Γ(d)
x,corr(t) = Γ(d)

x (t)− f(pk,0, t). (6)

This equation can finally be used to refine the estimation of some parameters pke, with

a least-square method using the model

Γ(d)
x,corr(t) = Σke

∂f(pk, t)

∂pke
(pke − pke,0) . (7)

The actual estimation of a parameter depends on the technique used to deal with

missing data (see Sect. 4 for the introduction of the techniques we use to deal with them

–KARMA [15], M-ECM [16] and inpainting [17,18]). M-ECM estimates the parameters

and the noise and deals with missing data all at once; however, inpainting only fills in

missing data, and must be augmented by a least square estimate.

We use iteratively the Adam (Accelerometric Data Analysis for MICROSCOPE)

Fortran code to estimate parameters in the frequency domain. Once this iterative

process has converged (typically in two to three iterations), we use Eq. (5) to measure

the Eötvös parameter δx on calibrated data. The procedure is summarised in Algorithm

1. The data analysis processes underlying Adam are described below.

Algorithm 1 Iterative least-squares estimation of N instrumental parameters from M

independent calibration sessions.

Initial prior: Π = {π0(p1), . . . , π0(pi), . . . π0(pN)}

while not converged do

for i = 1 to M do

Correct measurement from ith session with priors Πi−1 (Eq. 6)

Estimate ith parameter (Eq. 7): estimator p̂i
end for

Update prior: Π = {p̂1, . . . , p̂i, . . . p̂N}

end while

Estimate the Eötvös parameter δx on calibrated data (Eq. 5)
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3.2. Frequency domain least square analysis: Adam

To allow for a least-squares analysis [19], the corrected measurement equation (7) can

be formally written

Y = [A]θ + n, (8)

where Y is the vector of N measurements, θ is a vector of q unknown parameters to

estimate (e.g. Eötvös parameter or test masses’ offcentering), [A] is the design matrix

and n is the noise vector. Since the models (given by Eq. 1 in the most general case

and by Eq. 5 for EP sessions) are linear with respect to the estimated parameters, the

columns of [A] simply correspond to the signal associated to each parameter, sampled

at the epochs of the measured acceleration. The N measurements are assumed to

be regularly sampled at a frequency fe over a duration T . In case of missing data

the analysis takes place after reconstruction of these data using inpainting or M-ECM

algorithms (Sect. 4).

3.2.1. Transformation of the problem from the time domain to the frequency domain In

order to solve the problem in the Fourier domain, we take the Fourier transform of Eq.

(8). To this aim, we make use of the Discrete Fourier Transform Operator [F]. The DFT

operator being unitary, the signal energy content is preserved by the transformation.

The new system can be simply written

Ŷ =
[

Â
]

θ + n̂. (9)

The original quantities being real, the new system can be reduced to N useful real

equations. These new equations can be grouped by pair (related to real and imaginary

parts of the DFT), corresponding to frequencies fk =
k
T
, k = 1 · · · ⌊N−1

2
⌋.

Moreover, the discrete Fourier transform drastically decreases the correlations

between the measurements projected in the frequency space (Fig. 1): the covariance

matrix associated to [F]n is diagonal dominant. This is beneficial as a diagonal weight

matrix leads to a quasi-optimal solution.

3.2.2. Weighting in the frequency domain Since each measurement projected in the

Fourier domain can be associated to a discrete frequency, the corresponding weight is

w(fk) =
1

√

γ(fk)
, (10)

where γ(fk) is the Power Spectral Density (PSD) of the noise at the frequency fk.

In practice, the PSD is estimated by smoothing the residual noise in the frequency

domain resulting from a first estimation and removal of the signal. The estimation–

correction–smoothing–weighting process can be iterated until convergence; in practice,

two iterations are sufficient.
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Figure 1. Covariance matrix of the measured differential acceleration of an EP session.

Working in the frequency domain allows us to deal with a diagonal covariance matrix.

3.2.3. Restriction to the frequency bands containing the dominant signals As shown

in Ref. [4], the MICROSCOPE mission was designed to concentrate useful signal on

specific frequencies (i.e., a potential EPV signal peaks at fEP, the GGT signal at 2fEP
and calibration signals at fcal). This is so true in the real data that a very simple analysis

such as synchronous detection could lead to reasonable results. However, we use a more

flexible method: we limit our least square inversion to the bands of frequency containing

the relevant signals. In practice, this is equivalent to extracting a subsystem of Eq. (9)

by selecting the relevant equations to get the truncated system

[

Âr

]

θ + n̂ = Ŷr. (11)

This trade-off between synchronous detection and the inversion of the full system brings

several advantages:

• it is more robust than synchronous detection in case of small fluctuation of the

frequencies of the signals; it is not even necessary to know precisely the value of

these frequencies;

• the choice of large enough bands containing also a substantial sample of noise allows

us to compute consistent values of the goodness of fit;

• contrary to the inversion of the full system (9) the solution of the truncated system

(11) is immune to possible unmodelled perturbations in frequency bands containing

no useful information (especially high frequency bands). Taking these bands into

account would not change the parameter estimations (because equations at different

Fourier frequencies are uncorrelated) but could decrease the global goodness of the

fit;

• the number of observation equations is neatly decreased and the analyses are faster.

A final clarification is in order: the very low frequency part of the signal, which

contains in particular the zero frequency component, is not used in the analysis. Indeed,

not only does the zero frequency contain well-known signal such as some components
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Figure 2. Time evolution of the differential acceleration. Left: evidence for a

polynomial-like tendency. Right: after correcting for a polynomial of degree 3.

of the gravity gradient but it also contains unknown signals such as the bias of the

accelerometers. All these contributions are not separable, so that the zero frequency is

difficult to exploit.

3.3. Bias drift

Strictly speaking, the bias
#»

b0
(d) included in Eq. (1) should be constant. But in practice

a very low frequency evolution can appear, in particular because of thermal variations

in the instrument (left panel of Fig. 2). This evolution can be efficiently corrected by

fitting and subtracting a polynomial (right panel of Fig. 2). As illustrated by Fig. 3,

the polynomial affects all frequencies in a wide low frequency band; consequently, the

correlation with the EPV signal (which is concentrated at the fEP frequency) is very

low. But to be sure that fitting a polynomial does not affect the signal around fEP,

we take advantage of our estimation in the Fourier space to remove the contribution of

these frequencies in the estimation of the polynomial. More precisely:

(i) we first estimate simultaneously (i) the Eötvös parameter using a narrow frequency

band around fEP, (ii) the components ∆′
x and ∆′

z of the offcentring using a narrow

frequency band around 2fEP, and (iii) the coefficients of the polynomial using a

wide band from 0 to 1 Hz but excluding the fEP and 2fEP bands.

(ii) we then use the first estimations of all these parameters to correct the measurements

according to Eq. (6); since this correction is performed in the time domain, we

implicitly correct all the frequencies and in particular the polynomial is also applied

to the fEP and 2fEP bands.

(iii) finally, we use the corrected acceleration to re-estimate the same parameters in the

same way as in step (i).

Another option is to correct low frequency variations with a model of temperature

sensitivity. Ref. [8] shows that the substraction of a model linear with respect to the

temperatures produces results similar to those obtained with a polynomial fit.
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Figure 3. Same as Fig. 2 but in the frequency domain. As expected, the subtraction

of the polynomial (blue) clearly reduces the low frequency contribution.

3.4. Combining sessions

In order to decrease the stochastic error in the estimation of (instrumental and Eötvös)

parameters, it is interesting to combine measurements from several sessions with the

same configuration. This combination can be done either in the time or in the frequency

domain, as shown below.

3.4.1. Time domain Suppose that session k leads to the following linear system of Nk

equations (of the form of Eq. 8):

[Ak]θ + nk = Yk (12)

To carry on with a classical inversion in the time domain, one can just gather the above

matrices and vectors:

[A] =











[A1]

[A2]
...

[Am]











, n =











n1

n2

...

nm











, Y =











Y1

Y2

...

Ym











(13)

where m is the number of sessions considered. Then an appropriately weighted least-

squares technique could be used to solve for the concatenated system. Given the

advantages with doing an analysis in the frequency domain as outlined above, we have

not used this time domain analysis.
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3.4.2. Fourier domain First, DFT are applied separately to the systems corresponding

to each session k, as described in Sect. 3.2.1, to get equivalent systems in the frequency

domain:
[

Âk

]

θ + n̂k = Ŷk. (14)

We use a weighting based on the PSD, as described in Sect. 3.2.2. Finally, all considered

weighted systems are gathered as shown above for the time domain case.

Like in the case of a unique session, we can use a Generalised Least-Squares

regression to solve either the whole system or, more efficiently, a selected subset of

equations corresponding to the desired bands of frequency. Nevertheless, the estimation

process is flexible enough to allow us to take into account the drift of some parameters

(e.g. offcenterings, which vary with respect to temperature).

3.5. Error propagation

Uncertainties in estimated parameters (or in the a priori knowledge of parameters

that cannot be finely estimated) propagate when correcting for them in the measured

differential acceleration, which involves three effects when estimating the EPV signal:

(1) residual systematic errors coming from the bias of each parameter estimate; (2)

statistical errors coming from the variance of each parameter estimate and (3) statistical

errors coming from the fact that we use noisy signals to calibrate the measurement,

whose noise is coupled with the parameters. The first type of errors is assessed by

upper bounds given by a detailed performance analysis [6, 20]. The second and third

type of errors are discussed in this section: they can be assessed through Monte Carlo

simulations or directly included in the least-square covariance matrix.

Using an iterative estimation technique involves propagating the uncertainties of

the ith iteration estimates to the (i+1)th iteration. Consequently, as can be seen from

Eq. (6), the variance of the calibrated differential acceleration is not only that of the raw

measured differential acceleration, but also involves a contribution from the (imperfect)

knowledge of the corrected instrumental parameters.

Error propagation is derived rigorously in Appendix B. Eq. (B.6) gives the expected

value of the calibrated differential acceleration used to estimate the Eötvös parameter

when assuming that the estimates of all instrumental parameters are unbiased. Its

variance is given by Eq. (B.9). Those equations can easily be generalised to the case

where a given instrumental parameter is estimated given some others.

Two effects coming from uncertainties in the iterative correction of instrumental

parameters (through errors in the estimated amplitudes of the signals that it contains)

can be noted: (i) statistical errors in the calibrated differential acceleration, because of

the imprecise estimation of corrected parameters (during previous iterations), and (ii)

uncertainty on the calibrated differential acceleration residuals (due to the fact that we

subtract noisy quantities multiplied by estimated parameters). Therefore, we can expect

that the least-square estimator of a parameter measured from the calibrated differential

acceleration will be affected by statistical errors from instrumental parameters, as well
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as by statistical errors coming from the measurement noise, and errors on statistical

errors coming from the uncertainties on the noise.

In practice, in order to rigorously propagate uncertainties in our iterative least-

square estimates, Eq. (B.9) can be used as the input variance, for each parameter,

at each iteration. Another possibility is to run Monte Carlo simulations that use

the variance as measured from the noise of several calibrated differential accelerations

created from drawings of instrumental parameters (that can be assumed normally

distributed, with mean and variance defined by the previous estimations). Although

more CPU- and time-consuming, this technique is more sound than using Eq. (B.9),

since it does not involve “educated guesses” on some parameters (note that some terms

appearing in Eq. (B.9) are the “true” values and not their estimates).

We show below that given the smallness of the uncertainty on the estimated

instrumental parameters, we can actually safely ignore propagating errors on the

estimation of instrumental parameters.

4. Glitches and missing data

4.1. (Masked) glitches and missing data (in practice)

Data “gaps” come in two flavours: (i) glitches, where data is available but contaminated

by physical (e.g. impact with a micrometeorite or a satellite crack) or measurement (e.g.

an internal saturation in the instrument’s servo-loop command) processes uncorrelated

with testing the WEP, and (ii) telemetry losses, where data is missing during some time

intervals. Glitches may bias the measurement or introduce spurious signals at specific

frequencies, or within some frequency range [7]. Similar events are present e.g. in

LIGO/Virgo data, where they hamper the detection and characterisation of candidate

gravitational waves signals [21], and several techniques have been developed to correct

for them (see e.g. Refs [22–26]).

To counteract the direct effect of glitches on MICROSCOPE’s WEP measurement,

we can model and subtract them as discussed in Ref. [27]; here, we choose to remove

glitches, hence giving them the same status as telemetry losses (“missing” data). Missing

data break the even sampling of data in time, thereby preventing us from using standard

OLS in the frequency domain and, most critically creating an important spectral leakage

due to noise colour, potentially burying the EPV signal in MICROSCOPE data [15,17].

We have developed and adapted methods to cope with such missing data, that

allow us to reach the required accuracy on the EPV measurement:

• KARMA [15]: the Kalman Auto-Regressive Model Analysis is a generalized least-

square technique based on an autoregressive model of the (unknown) instrumental

noise, whitened with a Kalman filter.

• M-ECM [16]: the Modified-Expectation-Conditional-Maximization technique

allows us to maximize the likelihood of available data through the estimation of
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Figure 4. Example of a transient and its correction. The black curve shows the raw

measurement. The gray zone is the region discarded by the masking procedure. The

red curve is the acceleration corrected by inpainting.

missing data by their conditional expectation, based on the circulant approximation

of the complete data covariance.

• inpainting [17, 18]: originally developed for 2D observational cosmology [28] and

1D asteroseismology [29], the inpainting technique uses a sparsity prior to estimate

the most probable value of missing data, therefore allowing us to use an ordinary

least-square fit (Adam –see below).

Those techniques have already been tested on numerical simulations with the simplifying

assumptions that instrumental defects were perfectly known and corrected for [15–18].

Note that Eq. (5) is equivalent to the form used by Refs. [15,16]; when further correcting

for offcenterings, it gives the measurement equation used by Refs. [17,18]. Ref. [1] used

Adam with no correction of transients nor missing data (taking advantage of quiet and

clean measurement sessions). Ref. [2] uses Adam on data corrected for missing data

with inpainting.

To search for glitches, we use a standard recursive σ-clipping technique, in which

we flag as outliers every point that deviates from the moving average of the data

by more than a specific number of times (4 when defining masks on the differential-

mode acceleration, or 5 when masks are defined on the common-mode acceleration)

the standard deviation of the data [7]. We then mask a specific time interval after

each detected outlier to make sure that the transient regime is always removed. The

gray area in Fig. 4 shows such a mask after an outlier to remove the corresponding

glitch, visible in black, in SUSON-simulated data (see below). Additional data points

are flagged by the instrument’s electronics, if an internal saturation has been detected

by the accelerometer digital electronics (and eventually smoothed out, thereby invisible
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in the acceleration data [9]): we decide to reject those points. The red curve in Fig. 4

shows the inpainting correction to the masked glitch (black).

We discuss below (Sect. 4.3) how missing data couple with MICROSCOPE

instrumental parameters. This allows us to define an optimal way to deal with missing

data within the iterative process described in Sect. 3, by considering at which level of the

data processing the correction for missing data should appear. This discussion is based

on numerical simulations created by a hybrid software-hardware simulator developed

by CNES (Centre National d’Etudes Spatiales) to validate MICROSCOPE’s ground

segment operations before flight. Those simulations correspond to worst-case scenarios,

with exaggerated number of glitches and maximum allowed values for instrumental

parameters. Although those simulations consider instrumental defects higher than the

in-flight MICROSCOPE data, they are valuable to amplify the effect of instrumental

parameters and of missing data, and allow for a pedagogical discussion hereafter (all

figures in this section were produced using those simulations).

4.2. Hybrid simulations: SUSON

The mock data used in this section were produced by the BVSS (Banc de Validation

Système et SCAO –Drag Free and Attitude Control System Validation Bench), a CNES

real time test bench which serves different purposes in project development plans. By

simulating very accurately the spacecraft behavior, it aims at validating all the onboard

functional chains, in particular the attitude and acceleration control. It also aims at

performing all the technical and operational system tests while connected to the ground

entities (operational and scientific centers).

The MICROSCOPE test bench relies on the other CNES microsatellite simulation

tools, and shares many hardware and software commonalities, which gives good

confidence in the product. Three benches were developed to enable the various

and intensive tests performed by the project. Each bench is constructed as follows.

A Sun Microsystems station, running at 64Hz, includes various models of the

spacecraft environment (Earth gravitational potential, Earth atmosphere and albedo,

Sun illumination) and of its dynamics. It also includes physical models of all

the embarked equipment (actuators and sensors), with major evolutions for the

MICROSCOPE peculiarities (see below). Those equipment models are coupled with a

rack of interface electronic boards, emulating the real hardware communication protocol

for each equipment. A harness then connects the interface boards to a real onboard

computer, on which the onboard software is running. Finally, electrical ground support

equipment simulates the ground stations and the radiofrequency link between stations

and spacecraft, so that the users receive the telemetry data output by the onboard

computer as in the real life.

A peculiarity of the MICROSCOPE bench is the T-SAGE‖ simulation. A very

‖ T-SAGE (Twin Space Accelerometers for Gravitation Experiments) is MICROSCOPE’s instrument

core [9]



MICROSCOPE data analysis 15

Figure 5. Spectra of the simulated differential acceleration for two different

measurement sessions, simulated with SUSON. Left: inertial WEP-measurement

session (shown are spectra with glitches present (gray) and masked then replaced by

inpainted signal (black)). Right: ∆y calibration session.

representative model was developed by CNES, called SUSON. It is composed of a real

Interface Control Unit (payload computer), running at 1027Hz and interfaced on one side

with the main onboard computer and on the other side with a specific board simulating

both the Front End Electronic Unit and the Sensing Unit [9]. The latter is fed with

64Hz data coming from the dynamics models of the spacecraft, so as to inject outside

acceleration and gravity as sensed by the test masses. Within SUSON, the 1027Hz

control loop of two tests masses is simulated with the real T-SAGE computer and

software in the loop, down to the electrode level. Many parameters enable to tune the

characteristic of the measurements: mass misalignments, mass centering, scale factor,

quadratic scale factor, stiffness, and biases. A theoretical spectrum of T-SAGE noise is

also injected.

Another interesting aspect of this test bench is the simulation of micro-

perturbations. A complementary model was developed to inject random impacts within

the dynamics model, with the possibility to tune the time, direction, and momentum

random distributions. The lack of flight data at the time of the first simulations

campaign imposed a conservative parametrization¶.

Finally, we should emphasize that it was the first time a BVSS test bench was

pushed so far in the simulation process. Among its notable characteristics is the

wide range of timecales used: 1027Hz for the payload frequency, 64Hz for dynamics

simulation, 4Hz for the onboard activation of the SCAA (Attitude and Orbit Control

System) tasks, the whole process running during 10 days to obtain the final simulation

outputs. Such a long run time is required to simulate 120-orbit sessions during which the

hardware elements of the simulator ensure a very realistic simulation of the spacecraft

and the possibility to validate in depth the functional chains.

¶ When compared to flight data (MICROSCOPE was not launch at the time the simulations were

created, but at the time of writing, we now have in-orbit estimates of the amount of crackles), it shows

that the real level of micro-perturbation is far below hypothesis.
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Fig. 5 shows the spectra of the simulated differential acceleration for two different

measurement sessions, simulated with SUSON. The left panel shows the noise and

spectral leakage induced by glitches and missing data (gray) and their correction with

inpainting (black) in the frequency domain. The right panel shows the differential

acceleration during a simulated ∆y calibration session. The bump between 0.01 Hz and

0.1 Hz is not caused by transients but is due to worst-case inaccuracies simulated in the

attitude control coming from the star sensor [30], and is linked to the angular velocity

of the satellite. This bump is not prejudicial since it occurs at frequencies different than

those of the excitations and estimated signals. Furthermore, it can be corrected for

when estimating parameters in the iterative way presented in Sect. 3.

4.3. Effect of the data level on glitches masking and missing data correction

As presented in Ref. [5], we use different data levels during data processing and analysis.

Those relevant for our current discussion are:

• N1a data: raw science data sorted by inertial sensor

• N2a data: raw science differential- and common-mode accelerations

• N2b data: derived from N2a data after correcting for instrumental parameters.

They are used to estimate the EPV signal.

We can wonder at which stage we should define the mask and correct for glitches

and missing data. We show here that the answer depends on what task we aim to

accomplish.

4.3.1. Instrumental parameters estimation We deal with calibration at the N2a level;

thus, two routes can be taken to define masks: either we mask N1a accelerations, then

logically add those masks when creating N2a data, or we ignore masking N1a data

and directly mask at the N2a level. One could naively think that when creating the

differential acceleration, glitches would cancel out (both sensors see them in the same

way, since they come from external perturbations); then, the mask needed at the N2a

level should be less conservative than the logical addition of the N1a masks. However,

sensors are not exactly identical, therefore leaving significant (though attenuated)

imprints of glitches and other invalid data at N2a level. We find that defining the

mask either at N1a level or N2a level lead to approximately the same final N2a mask,

although we find that it is best to apply inpainting on N2a data level rather than on

the N1a level. When applying inpainting to N1a data, reconstruction errors add up in

the N2a level data, thereby providing a less optimal result. We also find that KARMA

and M-ECM are more stable than inpainting with respect to the mask definition.

4.3.2. WEP measurement: non-commutativity of inpainting and systematics subtraction

We look for an EPV at the N2b level. Once instrumental parameters are estimated,

subtracting their contribution from Eq. (1) can a priori be done on data still plagued by
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missing or invalid data, to which simple subtractions should be immune. We then have

once again two routes to choose between in order to go from N2a to N2b data: either

correct for instrumental parameters on already inpainted N2a data, or correct for them

on raw N2a data, then apply inpainting, KARMA or M-ECM on those raw N2b data

level. KARMA and M-ECM do not rely on filling missing data, but only on the mask

definition. Therefore, their precision does not depend on whether we define masks at the

N2b level or we create N2b level masks from N2a masks. Hence, the following discussion

pertains only to methods that fill data gaps and we specialise on the inpainting case.

The instrumental parameters are coupled with the measured common-mode

acceleration (through the ad parameters) and the square of the acceleration of individual

sensors (through the quadratic factorsK2). Their subtraction will then evidently depend

on whether we subtract them (i) before applying inpainting or (ii) after correcting them

for invalid and missing data. In the former case, we create raw N2b data from raw N2a

data, that we must eventually mask and inpaint; in the latter case, we create inpainted

N2b data from inpainted N2a data. The guiding principle to choose between those two

possibilities is to maximise the consistency between N2a data (inpainted or raw) and

systematic/instrumental effects.

We start by computing the systematic/instrumental parameters that are to be

subtracted from N2a data. Fig. 6 shows the different contributors to systematic effects

when the common-mode and individual accelerations are not inpainted (left panel) and

are inpainted (right panel). In those figures, the blue curve shows the main effect of

the Earth gravity gradient combined with the offcentering of the test masses; the green

curve shows the effect of the common-mode misalignments acij ; the purple curve shows

the effect of the test masses’ motion and satellite’s attitude; the orange curve shows the

effect of the projection of the common-mode accelerations; the cyan curve shows the

effect of the angular to linear couplings; the red curve shows the effect of the quadratic

factors; the transparent black curve is the total systematics.

The main deterministic systematics come from the coupling between the test-masses

offcentering and the gravity gradient. The 2fEP line can be clearly seen, but the fEP
peak is strong enough to mimic an EPV violation of about 10−14 m/s2 if not corrected

for. Furthermore, the spectral leakage from the mean of the quadratic factor dominates

at almost all frequencies. It is responsible for the flat spectrum at low frequency, at a

level of 10−13 m/s2 before inpainting and 10−15 m/s2 after inpainting. This plateau can

be seen clearly on the N2a differential acceleration with the gray curve of the left panel

of Fig. 5.

The two options to create N2b data corrected for invalid and missing data can be

seen graphically as (i) subtracting the black curve (at the data level) of Fig. 6’s left

panel to Fig. 5’s gray curve, then mask the resulting data and apply inpainting to it or

(ii) just subtracting the black curve (at the data level) of Fig. 6’s right panel to Fig.

5’s black curve. The resulting N2b spectra are shown in Fig. 7.

The differences are striking. On the one hand, subtracting raw systematics to raw

N2a differential accelerations, then mask and inpaint them (left panel of Fig. 7), provides
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Figure 6. Systematics and instrumental parameters contributions on a SUSON

simulation. Left panel: with no correction of missing data. Right panel: after

correction of missing data. See main text for the description of each curve.

Figure 7. Left panel: inpainted N2b differential acceleration created from raw N2a

differential acceleration and systematics. Right panel: N2b differential acceleration

created from inpainted N2a differential acceleration and systematics.

a very clean N2b differential acceleration, with no significant deterministic signals.

On the other hand, subtracting inpainted systematics to inpainted N2a differential

acceleration provides a poor N2b acceleration (right panel of Fig. 7), with a higher

low-frequency noise and still plagued by deterministic signals, with peaks at fEP and

2fEP and the “attitude” bump about 10−2Hz (right panel of Fig. 5): although this

bump is not problematic to estimate an EPV signal, the peak at fEP would lead us to

incorrectly conclude for the existence of an EPV.

This can be explained in the following way. Systematics and instrumental

parameters are coupled with the common-mode acceleration and with the individual

test mass squared accelerations; those are to be subtracted from the (N2a) differential-

mode acceleration. Although there seems to be four different accelerations involved in

this process, there are actually only two (whose sum and difference make up the common-

mode and differential-mode accelerations), and hence all accelerations are significantly

correlated (up to the differences of both sensor’s transfer function). In particular,
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transients are seen for both test masses (albeit not in exactly the same way due to

their different transfer functions). Therefore, when subtracting raw systematics to raw

N2a differential acceleration, we consistently remove most of the invalid data, and we

almost get clean N2b data (see the gray spectrum in Fig. 8); masking the remaining

outliers and inpainting them then improves the spectrum (to obtain the clean N2b data

of the black curve of Fig. 8).

In contrast, when masking and inpainting N2a data and N1a data (needed to

subtract the quadratic factors, that couple to the individual accelerations –see Eq. 1),

inpainting introduces small errors (although not visible on individual spectra) that break

the consistency between the four accelerations involved. In particular, if some bias (that

can be different for the differential-mode and common-mode acceleration) is introduced

by inpainting in the inpainted deterministic signals, their subtraction will be imperfect,

resulting in an incorrect N2b differential acceleration. Such biases are the likely cause

of the remaining peaks in the spectrum of the lower panel of Fig. 7. Furthermore, if

transients are periodic, those inconsistent errors will create a periodic pattern at the

N2b differential acceleration, that can plague the inpainting reconstruction, thereby

introducing an artefact at the frequency of this pattern. Such an artefact can increase

the appearance of a sub-optimally subtracted deterministic systematics.

To summarise this discussion: the invalid/missing data correction (using inpainting)

and systematics substraction do not commute. Therefore, we first create raw N2b-

level differential accelerations from raw N2a accelerations and raw systematics, before

masking them and filling their gaps. This allows us to apply inpainting only once (thus

using it in the regime explored in [17, 18] and minimising the bias observed in [18]),

and to take advantage of the correlations between all the accelerations involved in the

process.

5. Validating iterative least squares through numerical simulations

Although the SUSON simulations used above are sufficient to investigate qualitatively

the impact of instrumental parameters and the effect of missing data, they are not precise

enough to test our full pipeline down to the precision required for MICROSCOPE. This

is because they were not designed for such a high-precision task, but rather to make sure

that all ground-segment systems worked as expected. Consequently, we developed Monte

Carlo numerical simulations dedicated to test the data analysis technique presented in

Sect. 3, to show the internal consistency of our iterative least-square estimations in

the absence of data gaps. We already showed that KARMA, M-ECM and inpainting

allow us to correctly deal with missing data when estimating (in a non-iterative way)

parameters [15–18], thereby allowing us to ignore missing data in the remainder of the

paper.

We assess the accuracy and precision of (i) ADAM’s least-squares estimator and of

(ii) the iterative calibration of instrumental parameters. We investigate the first point

on focusing on how well Adam recovers the ∆′
x offcentering input in the simulations,
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Figure 8. Spectrum of N2b level differential acceleration for the inertial session used

to estimate the EPV in SUSON simulations, before (grey) and after (black) glitches

and missing data correction. This spectrum can be compared with that shown (in

black) in Fig. 5 before correcting for instrumental parameters.

when all other parameters are either ignored or perfectly corrected for. The second point

is investigated by simulating 200 sets of calibration sessions and running our iterative

least-square on them. In particular, such Monte Carlo simulations allow us to easily

look into error propagation. All the simulations use the same instrumental parameters

and noise characteristics, each of them with its own noise realisation (simulated from

the power-law noise power spectral density discussed in Ref. [31]), so that the dispersion

of Adam’s outputs are solely statistical and representative of the data analysis process.

5.1. Simulations

We use Simula, a numerical fortran simulation code developed specifically for

MICROSCOPE, to simulate the acceleration measured by both test masses. The

simulator takes into account instrumental parameters (Eq. 1) the satellite’s orbit and

attitude (either measured from real data or simulated by any external orbit simulator

–e.g. GINS [32] for the orbit) and computes the Earth GGT in the instrument’s

frame. Finally, the motion of each test mass is simulated individually along its orbit

(see Ref. [4, 10] for the acceleration of individual test masses). Measurement errors

and further systematic effects (such as, but not limited to, attitude errors, datation

errors, drifts, periodic perturbations, missing data, scale factor stability, stability of

coupling between axes) can be taken into account, but the electronic servo-loop used

to control the test masses cannot easily be simulated, and is therefore ignored in this

paper. Although we simulate the effect of instrumental parameters (misalignments,

scale factors, couplings. . . ), we ignore systematic effects not linked to the instrument
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Figure 9. Distribution of ∆̂′

x
estimated with adam, from 2000 simulations. The red

dotted vertical line is the value to be recovered. The black dot and error bar show

the mean and rms of the distribution. Left: without correcting for other parameters.

Right: with perfect prior knowledge of other parameters

itself (e.g. drag-free residual or attitude control imperfections) as well as transients

and missing data. However, we take care to define all calibration sessions as they are

performed in reality (i.e. with the same duration and manoeuvres characteristics, see

Ref. [6]). Using those simplified simulations allows us to check that the least-squares

estimator is unbiased.

The values of the parameters that can be estimated are the same as in the SUSON

simulations of Sect. 4, and are listed in the second column of Table 1. We use

exaggerated values, so that the instrumental defects’ effect is most easily visible. Besides

instrumental parameters, we simulate an EPV δ = 10−14. Our goal is thus to recover

all instrumental parameters, and estimate the EPV with a 7 × 10−15 precision (given

the length and noise level of the corresponding simulated session) after correcting them

from the simulated differential acceleration.

5.2. Results

5.2.1. Adam estimates’ bias and variance We first check that the Adam least-square

estimates are not intrinsically biased. To this aim, we measure the ∆′
x offcentering, first

with no prior on other instrumental parameters, i.e. without correcting for them (which

is equivalent to the first iteration of the iterative calibration). The left panel of Fig. 9

shows the distribution of the ∆̂′
x estimator, based on 2000 simulations; the black dot and

associated error bar show the mean and rms of the distribution; the input offcentering

(as should be recovered by Adam) is shown by the red dotted vertical line on the right

hand side of the figure. This estimation is clearly biased; although the bias is small (≈

1%), it is highly significant.

The observed bias is due to other uncorrected instrumental parameters affecting

the measurement, which justifies the use of an iterative technique.

To make sure of this assertion, we now consider the estimation of ∆′
x when other
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Figure 10. Distribution of Var(∆̂′

x
) estimated with adam. The red dotted vertical

line is the “true” variance as computed from the distribution of the estimator (Fig.

9). The black dot and error bar show the mean and rms of the estimated variance

distribution.

instrumental parameters are perfectly known, and can therefore be corrected for in the

measured differential acceleration before estimating ∆′
x. The right panel of Fig. 9 shows

the distribution of the ∆̂′
x estimators in this case: adam’s estimate is now unbiased,

proving that the bias observed above was only due to ignoring the effect of other

parameters. We can therefore claim that it is essential to iterate across instrumental

parameters when measuring them and that the iterative Adam’s estimation is unbiased.

Nevertheless, we will show below that the Eötvös parameter estimation is insensitive

to small biases on instrumental parameters, and therefore does not require an iterative

process.

We show the distribution of the estimators’ variance in Fig. 10. We can first

notice that adam’s estimated variance is distributed as a χ2-distribution, as expected

for a least-square estimator’s variance. In this figure, the red dotted vertical line is the

“true” variance, as computed from the estimator’s distribution (Fig. 9). The black dot

and associated error bars give the mean and rms of the variance of Adam’s individual

estimator. Since the “true” variance is within those error bars, we can conclude that

the variance provided by Adam for each estimation is reliable. This is particularly

important in the MICROSCOPE landscape, and we can safely conclude that the upper

bounds statistical errors on the Eötvös parameter provided in Refs. [1, 2] are correct.

We can then safely conclude that adam is intrinsically unbiased and provides

correct error bars. We checked that our conclusions about ∆′
x still hold for different

values of ∆′
x, as well as for other instrumental parameters.
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Table 1. Results of the Monte Carlo simulations: measured value of instrumental

parameter at each iteration. For each parameter, the first line provides the results

when propagating errors from one iteration to the next; the results listed in the second

line ignore the error propagation. The second column gives the input values with the

precision required to meet MICROSCOPE’s objective in brackets.

Expected Iter 1 Iter 2 Iter 3 Iter 4 Iter 5

∆′
x [µm] 33.275 33.172± 0.025 33.303± 0.023 33.266± 0.023 33.264± 0.024 33.269± 0.028

(0.1) 33.171± 0.025 33.301± 0.026 33.269± 0.026 33.267± 0.028 33.271± 0.029

∆′
y [µm] -16.900 −17.552± 0.010 −17.268± 0.012 −17.368± 0.011 −17.368± 0.013 −17.367± 0.013

(2) −17.550± 0.011 −17.265± 0.011 −17.368± 0.012 −17.367± 0.013 −17.367± 0.012

∆′
z [µm] -26.559 −26.561± 0.026 −26.559± 0.027 −26.559± 0.027 −26.557± 0.023 −26.554± 0.023

(0.1) −26.557± 0.021 −26.557± 0.026 −26.556± 0.025 −26.556± 0.024 −26.557± 0.027

a′d11 9.877 9.8866± 0.0004 9.8865± 0.0004 9.8865± 0.0003 9.8865± 0.0004 9.8866± 0.0004

[×10−3] (0.15) 9.8866± 0.0004 9.8865± 0.0004 9.8865± 0.0003 9.8865± 0.0003 9.8865± 0.0004

ad12 1.5983 1.5941± 0.0004 1.5940± 0.0004 1.5941± 0.0004 1.5940± 0.0003 1.5941± 0.0003

[×10−3] (0.05) 1.5940± 0.0004 1.5940± 0.0004 1.5941± 0.0004 1.5940± 0.0004 1.5940± 0.0003

ad13 -1.4026 −1.4067± 0.0004 −1.4068± 0.0003 −1.4068± 0.0003 −1.4067± 0.0003 −1.4068± 0.0004

[×10−3] (0.05) −1.4068± 0.0003 −1.4068± 0.0004 −1.4068± 0.0004 −1.4068± 0.0004 −1.4068± 0.0004

ac12 2.99 4.39± 0.05 2.84± 0.05 2.83± 0.05 2.83± 0.04 2.83± 0.05

[×10−3] (0.9) 4.39± 0.04 2.83± 0.04 2.82± 0.05 2.83± 0.04 2.84± 0.04

ac13 -3.75 −4.95± 0.04 −3.55± 0.05 −3.55± 0.05 −3.56 ± 0.05 −3.56± 0.04

[×10−3] (0.9) −4.94± 0.05 −3.55± 0.05 −3.54± 0.05 −3.56 ± 0.04 −3.56± 0.05

K2d [s2/m] 5612.6 5746.6± 1.2 5746.7± 1.2 5746.7± 1.2 5746.6± 1.1 5746.7± 1.2

(250) 5746.7± 1.2 5746.7± 1.1 5746.7± 1.2 5746.9± 1.1 5746.8± 1.2

δ [×10−15] 10 7.95± 7.39 10.31± 8.07 11.63± 7.97 11.29± 6.58 9.52± 6.68

(7) 8.45± 7.48 9.58± 7.00 10.81± 7.80 9.50± 7.34 8.94± 7.30

5.2.2. Full iterative calibration After focusing on the ∆′
x estimation above, we now

consider all parameters to mimic a real in-flight iterative calibration. We estimate

the parameters listed in the first column of Table 1, with input values listed in the

second column; the required combined accuracy and precision of the estimation of each

parameter is given in Table A1. The remaining columns list the values measured for

each parameter at each iteration of the process. For each parameter, the first line gives

the value estimated when considering error propagation from one iteration to the other;

in the second line, we ignore error propagation and use for the ith iteration the best fit

of each parameter obtained at the (i − 1)th iteration. The best fit and uncertainty for

each parameter are computed as the mean and rms of the distribution of 100 estimates

from 100 simulations for each parameter and iteration. For the estimation of a given

parameter, all simulations share the same deterministic signals but have a different

realisation of the instrumental noise. Note however that because of computational

limitations, we could not use the same set of simulations in both cases. This led to

different best fits when propagating uncertainties or not (nevertheless, the differences

are well within the error bars).

It is clear that after the first iteration where the estimation of some parameters

is somewhat biased (most notably ∆′
x, ac12 and ac13), the iterative correction of

instrumental parameters allows us to recover the input values, well within the required

accuracy. In practice, based on these results, we iterate on instrumental parameters
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while estimates from one iteration to the next do not vary significantly, with a maximum

number of iterations set to five [6]. Note also that the ac12 and ac13 parameters, though

correctly estimated here, are not measured in real data [6,8] since they are close to their

required value from construction, and the noise (higher than in these simulations) does

not allow for a precise measurement.

The discussions in Sect. 3.5 and Appendix B show that error propagation is not

trivial in our iterative calibration. The comparison of each instrumental parameter’s

lines in Table 1 (the first one corresponding to the case where we propagate errors, the

second one to the case where we ignore error propagation) shows that we can ignore

error propagation when estimating instrumental parameters.

The last line of Table 1 gives the measurement of the Eötvös parameter after

correction of the estimated instrumental parameters. It is clear that we are able to

accurately recover the input EPV signal with the expected precision. Just like in the case

of instrumental parameters, the uncertainty on the Eötvös parameter is not impacted

by the uncertainty propagation from one iteration to the next. We can therefore reliably

ignore the error propagation in our iterative estimations.

6. Conclusion

In this paper, we summarised MICROSCOPE’s data analysis process. Building on

the measurement equation, we showed how we can either estimate, model or ignore

instrumental parameters. The estimation of those that cannot be ignored nor modelled

is performed through an iterative weighted least square fit in the frequency domain.

We provided an extensive characterisation of inpainting, a gap-filling technique that

we adapted to MICROSCOPE. This exercice, based on worst-case scenario numerical

simulations, shows the behavior of the algorithm in a complex data-processing pipeline,

and can be useful to other experimental data analyses.

Using well-controlled numerical simulations, we then showed that our iterative least-

square method is robust to estimate instrumental parameters and correct for them in

order to reliably measure the Eötvös ratio. In particular, we showed that our main least-

square estimator is intrinsically unbiased. Combined with our previous works [15–18],

those results prove that our data analysis pipeline allows us to reliably measure an EPV

even in the presence of missing data and instrumental imperfections.

Finally, we discussed the non-trivial, but important, problem of uncertainties

propagation in our pipeline. Like in any precision experiment, the problem of

uncertainty estimation is central to the MICROSCOPE data analysis. We showed that

not only does our iterative least-square technique provide correct error bars, but we can

also safely ignore the problem of uncertainty propagation throughout iterations. This

paper therefore justifies the results provided in Refs. [1–3, 8].
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Table A1. Parameters that can be calibrated in orbit, method to perform their

calibration, and precision required to satisfy MICROSCOPE’s objective. Oscillations

are given along or about axes in the instrument frame. fEP is the frequency of the

test, where we may expect to detect a WEP violation. The fourth column gives the

maximal allowed value by design. See Ref. [6, 10] for details.

Parameter Calibration technique Aimed precision Max. allowed value

∆′
x No satellite maneuver; take advantage of Earth’s GGT signal at 2fEP 0.1µm 20 µm

∆′
y Angular oscillation of the satellite about the z-axis 2µm 20 µm

∆′
z No satellite maneuver; take advantage of Earth’s GGT signal at 2fEP 0.1µm 20 µm

ac12 Angular oscillation of the satellite about the x-axis and linear oscillation 9× 10−4rad 2.6× 10−3rad

of the test mass along the z-axis

ac13 Angular oscillation of the satellite about the x-axis and linear oscillation 9× 10−4rad 2.6× 10−3rad

of the test mass along the y-axis

a′d11 Linear oscillation of the satellite along the x-axis 1.5× 10−4 0.01

ad12 Linear oscillation of the satellite along the y-axis 5× 10−5rad 1.5× 10−3rad

ad13 Linear oscillation of the satellite along the z-axis 5× 10−5rad 1.5× 10−3rad

K
(d)
2xx/

(

K
(c)
1x

)2

Linear oscillation of the satellite along the x-axis 250 s2/m 14000 s2/m
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Appendix A. In-flight instrumental parameters estimation

Table A1 lists the parameters that we can calibrate, and summarizes the techniques

used to perform their estimation. The third column of the table lists the precision

and accuracy required on the estimation of each parameter to satisfy the overall

MICROSCOPE goal to reach the 10−15 level for the Eötvös parameter; the fourth

column shows the maximum value allowed by design of the instrument; those numbers

were obtained with a performance analysis, whose description is beyond the scope of

this paper. See Ref. [6] for a complete description of which parameters can be estimated

in flight.

Appendix B. Error propagation through least-square estimation

This appendix presents a pedagogical derivation of error propagation when correcting

the measured differential acceleration from estimated instrumental parameters. We

show two different approaches: the first one is a traditional variational approach, while
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the second one computes the full variance of the calibrated differential acceleration.

We show that the latter provides a more complete view of the effects of propagating

uncertainties when correcting for (estimated) instrumental parameter.

Appendix B.1. Uncorrected differential acceleration and estimated parameters

The uncorrected differential acceleration (Eq. 1) can be re-written as:

Γd(t) = 2Γδ(t) +

3
∑

j,k=1

(Tjk(t)− Injk(t))ac1j∆k(t)

+ 2
3
∑

k=1

(−1)k
[

ac1i∆̇j(t)− ac1j∆̇i(t)
]

i<j,i,j 6=k
Ωk

−
3
∑

k=1

ac1k∆̈k(t) + 2
3
∑

k=1

ad1kΓ̃
c
k(t)

+K21

(

Γ̃(1)(t)
)2

−K22

(

Γ̃(2)(t)
)2

+ 2nd(t), (B.1)

where Γδ(t) gathers terms depending on the Eötvös ratio δ, and where the indices i, j, k

are either in (1,2) or (x,y,z) depending on the variable they index. In Eq. (B.1), we

ignore angular-to-linear couplings. In this equation, the common-mode and individual

accelerations, marked by a tilde, are noise-corrected (e.g. Γ̃c
k(t) = Γc

k(t)− nc(t)).

The common-mode and differential-mode noises are assumed normally distributed

with variance σ2
d = σ2

1 + σ2
2 and σ2

c = (σ2
1 + σ2

2)/4, where σ2
k is the variance for the kth

(k = 1, 2) sensor’s noise.

The parameters estimated before correction are the following: ac1k, ad1k, ∆k, K2k.

In the following, we assume that their estimators âc1k, âd1k, ∆̂k, K̂2k are unbiased and

of variance σac1k, etc.

Note that although ac11 cannot be estimated, it is possible to consider it as an

unknown parameter, and assume it is a random variable of mean 1 and variance given

by its specifications (or an educated guess). For the sake of clarity, we shall not pursue

this possibility here.

Appendix B.2. Synthetic uncorrected and calibrated accelerations

In order to simplify the computation of the calibrated differential acceleration, of its

expectation value and of its variance after propagating the errors on the estimation of

instrumental parameters, we define a synthetic (uncorrected) differential acceleration

as:

Γd(t) = Γδ(t) + κaaY (t) + κbcbcZ(t) + κkkΓ̃
c(t) + l1

(

Γ̃(1)
)2

− l2

(

Γ̃(2)
)2

+ nd(t), (B.2)
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where a, b, c, k, l1 and l2 are estimated, κi are numerical (constant) factors, Y (t) and Z(t)

are deterministic signals that can be measured or modeled, and we kept the common-

mode and individual accelerations unchanged. Although b and c may be degenerate, we

will assume that they are not correlated. This equation encompasses all types of terms

found in Eq. (B.1).

The calibrated synthetic acceleration can then be shown to be:

Γd
cal(t) = Γδ(t) + κa(a− â)Y (t) + κbc(bc− b̂ĉ)Z(t) + κk(k − k̂)Γ̃c(t)

+ (l1 − l̂1)
[

Γ̃(1)(t)
]2

− 2l̂1Γ̃
(1)(t)n1(t)− (l2 − l̂2)

[

Γ̃(2)(t)
]2

+ 2l̂2Γ̃
(2)(t)n2(t)

+
1

2

[

(n1(t)− n2(t))− κkk̂(n1(t) + n2(t))
]

− l̂1n
2
1(t) + l̂2n

2
2(t) (B.3)

In what follows, we assume that we wish to estimate the Eötvös ratio δ (hence,

the assumption that the estimates of the instrumental parameters are unbiased). The

discussion can readily be generalized to the estimation of any instrumental parameter

given priors on the others.

Appendix B.3. Error propagation. Method 1: variational approach

We first use a variational approach to compute the variance of the calibrated differential

acceleration (see e.g. [33]).

Appendix B.4. Expectation value of calibrated differential acceleration

Under the assumption that all estimates are unbiased, the expectation value of Eq.

(B.3) is

E[Γd
cal(t)] = Γδ(t)− l̂1σ

2
1 + l̂2σ

2
2. (B.4)

It should be noted that the calibration entails a constant non-zero bias. However,

the same bias is applied at all times t, and therefore does not affect the estimation of

the amplitude of the WEP violation signal.

Appendix B.4.1. Error propagation Taking the sum of partial derivatives of Eq. (B.3)

and assuming that |Γ(1)| ≪ 1 and |Γ(2)| ≪ 1, we get:

σ2
Γcal

= κ2
aY

2(t)σ2
a + κbcZ

2(t)b̂2ĉ2
(

σ2
b

b̂
+

σ2
c

ĉ2

)

+ κ2
k [Γ

c(t)]2 σ2
k

+

[

1− κkk̂

2
− 2l̂1Γ

(1)(t)

]2

σ2
1 +

[

2l̂2Γ
(2)(t) −

1 + κkk̂

2

]2

σ2
2 (B.5)

Note that in Eq. (B.5), the common-mode and individual accelerations that appear are

the effectively measured (hence, noisy) ones, contrary to those which appeared in the

uncorrected acceleration.
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Appendix B.4.2. Actual calibrated acceleration: Expectation value and variance

Returning to the actual MICROSCOPE accelerations, Eqs. (B.4) and (B.5) give:

E[Γd
cal(t)] = Γδ(t)−

1

2
(K̂21σ

2
1 + K̂22σ

2
2) (B.6)

and

σ2
Γcal(t)

=
1

4

3
∑

j,k=1

[Tjk(t)− Injk(t)]
2 â2c1j∆̂

2
k

(

σ2
∆k

∆̂2
k

+
σ2
ac1j

ˆac1j2

)

+

3
∑

k=1

[

∆̇j(t)
2σ2

ac1i + ∆̇i(t)
2σ2

ac1j

]

i,j 6=k,i<j
Ωk(t)

2

+
1

4

3
∑

k=1

∆̈k(t)
2σ2

ac1k +

3
∑

k=1

[Γc(t)]2 σ2
ad1k

+

[

1−
∑3

k=1 âd1k
2

− 2K̂21Γ
(1)(t)

]2

σ2
1

+

[

2K̂22Γ
(2)(t)−

1 +
∑3

k=1 âd1k
2

]2

σ2
2. (B.7)

Note that the uncertainties on the quadratic factors σ2
K2i do not appear in this

equation. This is because we assumed that |Γ(i)| ≪ 1.

Eq. (B.7) shows that the instrumental parameters themselves and the uncertainties

on their estimation bring up two different effects on the variance of the calibrated

differential acceleration:

• extra-contributors to total variance: uncertainties on the estimated instrumental

parameters add up to the noise, therefore increasing the calibrated differential

acceleration’s variance, and increasing the uncertainty on the Eötvös parameter

estimated with a least-square fit of the calibrated differential acceleration. Those

extra contributions can be taken into account simply by adding them in the data

covariance passed to the least-square fit. Another method (more computationally

expensive) is to use Monte Carlo simulations where we vary the correction terms

within their allowed bounds.

• modification of the noise: the calibrated differential acceleration noise variance is

not simply σ2
d = σ2

1 + σ2
2 as that of the uncorrected differential acceleration noise.

Instead, it is modified by the presence of non-zero differential parameters (ad1k)

that couple to the common-mode acceleration and of non-zero quadratic factors that

couple to the individual accelerations. The knowledge of the best estimates for those

instrumental parameters allows us to quantify the modification of the noise (which,

given the values of the involved parameters, remains negligible). However, Eq.

(B.7) is valid only for a given set of instrumental parameters’ estimators, and does

not tell us anything about the distribution of the corrected differential acceleration
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noise, and hence on the uncertainty on the calibrated differential acceleration noise.

A more general approach is necessary (see below).

Appendix B.5. Error propagation. Method 2: general variance analysis of the

calibrated differential acceleration

For this analysis, we first go back to our synthetic model (B.3), whose variance we

directly compute.

Appendix B.5.1. Synthetic model Under the same assumptions as for Eq. (B.5), we

find (with a straightforward but tedious algebra):

Var[Γcal(t)] = κ2
aY

2(t)σ2
a+κ2

bcZ
2(t)b̂2ĉ2

[

σ2
bσ

2
c

b̂2ĉ2
+

σ2
b

b̂2
+

σ2
c

ĉ2

]

+κ2
k

[

Γ̃c(t)
]2

σ2
k+l21σ

4
1+l2σ

4
2

+
1

4

[

1 + κk(κkσ
2
k − 2k + k2) + 16(σ2

l1 + l21)
[

Γ̃(1)(t)
]2

− 2(1− κkk)l1Γ̃
(1)(t)

]

σ2
1

+
1

4

[

1 + κk(κkσ
2
k + 2k + k2) + 16(σ2

l2
+ l22)

[

Γ̃(2)(t)
]2

− 2(1− κkk)l2Γ̃
(2)(t)

]

σ2
2. (B.8)

Note that although we assume σ1,2 ≪ 1, we do not ignore the σ4
1,2 terms since the

l1,2 terms may be significant (they encode the quadratic factors).

We can observe that the contributors from the error propagation (those which do

not contribute to the noise) are the same as in Eq. (B.5), except for the σ2
bσ

2
c/b̂

2ĉ2 term,

that pops-up here since we did not assume that b and c were independent. However,

for MICROSCOPE, we always have σ2
b,c ≪ (b, c)2, so we will ignore this term in the

following, so that the contribution to the uncertainty on the Eötvös parameter from

error propagation is the same in our two analyses (Eqs. (B.5) and (B.8)).

However, the noise term is much more complex in Eq. (B.8) than in Eq. (B.5). This

is because it encompasses the uncertainty on the estimated instrumental parameters.

In that sense, whereas Eq. (B.5) tells us how the noise is modified when we correct

the differential acceleration for a given set of instrumental parameters, Eq. (B.8) tells

us how the modified noise is distributed. It provides a more conservative uncertainty

propagation, and should be favored when analyzing data.
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Appendix B.5.2. Actual calibrated differential acceleration Ignoring the σ2
bσ

2
c/b̂

2ĉ2 term

from Eq. (B.8), the total variance for the actual MICROSCOPE acceleration is

Var[Γcal(t)] =
1

4

3
∑

j,k=1

[Tjk(t)− Injk(t)]
2 â2c1j∆̂

2
k

(

σ2
∆k

∆̂2
k

+
σ2
ac1j

â2c1j

)

+
3
∑

k=1

[

∆̇j(t)
2σ2

ac1i + ∆̇i(t)
2σ2

ac1j

]

i,j 6=k,i<j
Ωk(t)

2

+
1

4

3
∑

k=1

∆̈k(t)
2σ2

ac1k +
3
∑

k=1

[Γc(t)]2 σ2
ad1k

+
1

4

{

1 +
3
∑

k=1

σ2
ad1k − 2

3
∑

k=1

ad1k +
3
∑

k=1

a2d1k + 16
(

σ2
K21 +K2

21

)

[

Γ̃(1)
]2

−2

(

1−
3
∑

k=1

ad1k

)

K21Γ̃
(1)

}

σ2
1

+
1

4

{

1 +
3
∑

k=1

σ2
ad1k + 2

3
∑

k=1

ad1k +
3
∑

k=1

a2d1k + 16
(

σ2
K22 +K2

22

)

[

Γ̃(2)
]2

−2

(

1 +
3
∑

k=1

ad1k

)

K22Γ̃
(2)

}

σ2
2

+K2
21σ

4
1 +K2

22σ
4
2 (B.9)

The noise term in Eq. (B.9) makes it clear that the ad1k parameters and quadratic

factors, as well as the uncertainty on their estimation, modify the measured noise.

Although in practice the uncertainty on those parameters can be seen as bringing

an uncertainty on the noise (the noise is corrected by some uncertain estimates of the

parameters), Eq. (B.9) combines those uncertainties to provide an upper bound of the

measured noise. That is, it provides the most conservative variance of the calibrated

differential acceleration. Therefore, it should be used to completely take into account

the errors in the estimate of instrumental parameters, and should be included in the

least-square fit.

Note that in this equation, the values of ad1k and K2i are not their estimates, but

their “real” value. In practice, assuming that our estimates are unbiased, or at least give

a correct order of magnitude of the real value, we can replace them by their estimated

values.
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C, Lebat V, Leseur P, Liorzou F, List M, Löffler F, Panet I, Pouilloux B, Prieur P, Rebray A,



MICROSCOPE data analysis 31

Reynaud S, Rievers B, Robert A, Selig H, Serron L, Sumner T, Tanguy N and Visser P 2017

Physical Review Letters 119 231101 (Preprint 1712.01176)
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[16] Baghi Q, Métris G, Bergé J, Christophe B, Touboul P and Rodrigues M 2016 Phys. Rev. D 93

122007 (Preprint 1608.08530)
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