Exploring the Internal Structure of Composite Particles: Highlights on Proton Form Factors

Egle Tomasi-Gustafsson CEA, IRFU, DPhN and Université Paris-Saclay, France

Open questions in QCD (some)

- **Confinement**: why free quarks are not observed?
- Origin of the hadron mass: the Higgs mechanism accounts for some percent of the hadron mass
- How are color neutral objects formed?
- Establish existence and properties of exotics, hybrids, glueballs
- Structure of the nucleon (charge, magnetic, spin distributions)

Cez

The proton

- Hadrons are >90% of visible matter
- Proton is the the most common particle in nature
- Its fundamental properties as
 - Mass
 - Spin
 - Size

are still object of controversy

The MASS of the proton

-dynamically created by the strong interaction -antiproton-proton collisions: gluon rich environnement

Cez

The SIZE of the proton

cea

The SPIN of the proton

Cea

Hadron Electromagnetic Form factors

The Nobel Prize in Physics 1961

"for his pioneering studies of electron scattering in atomic nuclei and for his thereby achieved discoveries concerning the stucture of the nucleons"

Robert Hofstadter 1/2 of the prize USA

Stanford University Stanford, CA, USA Characterize the internal structure of a particle (\neq point-like) Elastic form factors contain information on the hadron ground state. In a P- and T-invariant theory, the EM structure of a particle of spin S is defined by 2S+1 form factors. Neutron and proton form factors are different (G_{F}, G_{M}) Playground for theory and experiment at low q^2 probe the size of the nucleus, at high q² test QCD scaling Assumption: dipole for GEp, GMp and GMn while GEn=0.

C R R

Dipole Approximation $G_D = (1+Q^2 / 0.71 \text{ GeV}^2)^{-2}$

Classical approach

 Nucleon FF (in non relativistic approximation or in the <u>Breit</u> <u>system</u>) are Fourier transform of the charge or magnetic distribution.

$$P_{1}(\mathbf{q}_{B} / 2)$$

$$P_{2}(\mathbf{q}_{B} / 2)$$

$$P_{2}(\mathbf{q}_{B} / 2)$$

$$Breit system$$

• The dipole approximation corresponds to an exponential density distribution.

$$-\rho = \rho_0 \exp(-r/r_0),$$

 $-r_0^2 = (0.24 \text{ fm})^2, < r^2 > \sim (0.81 \text{ fm})^2 \leftrightarrow m_D^2 = 0.71 \text{ GeV}^2$

Dipole Approximation and pQCD

Dimensional scaling

- $-F_{n}(Q^{2})=C_{n}[1/(1+Q^{2}/m_{n})^{n-1}],$
 - $\dot{m}_n = n\beta^2$, <quark momentum squared>
 - n is the number of constituent quarks
- Setting $\beta^2 = (0.471 \pm .010) \text{ GeV}^2$ (fitting pion data)
 - pion: F_{π} (Q²)= C_{π} [1/ (1+Q²/0.471 GeV²)¹],
 - nucleon: F_N (Q²)= C_N [1/(1+Q²/0.71 GeV²)²],
 - deuteron: F_d (Q²)= C_d [1/(1+Q²/1.41GeV²)⁵]

V. A. Matveev, R. M. Muradian, and A. N. Tavkhelidze (1973), Brodsky and Farrar (1973), Politzer (1974), Chernyak & Zhitnisky (1984), Efremov & Radyuskin (1980)...

Recent experimental achievements: polarization

... and also: polarized sources and targets, high intensity Θ^{-} beams, high luminosity colliders, large acceptance spectrometers, high resolution 4π detectors...

Cea

Electromagnetic Interaction

The electron vertex is known, γ_{μ}

The interaction is carried by a virtual photon of 4-mom q^2

The proton vertex is parametrized in terms of FFs: Pauli and Dirac F₁,F₂

$$\Gamma_{\mu} = \gamma_{\mu} F_{l}(q^{2}) + \frac{i\sigma_{\mu\nu}q^{\nu}}{2M} F_{2}(q^{2})$$

 $q^2 = -4E_1 E_2 \sin^2 \theta/2$

or in terms of Sachs FFs: $G_E = F_1 + \tau F_2$, $G_M = F_1 + F_2$, $\tau = q^2/4M^2$ $G_E(0) = 1(e)$ $G_M(0) = \mu_N$

What about high order radiative corrections?

QED Radiative Corrections

Modify the absolute value of the experimental observables and their dependence from the relevant kinematical variables

Crossing symmetry

- Described by the same amplitude :

$$|\overline{\mathcal{M}}(e^{\pm}h \to e^{\pm}h)|^2 = f(s, t) = |\overline{\mathcal{M}}(e^+e^- \to \overline{h}h)|^2$$

- function of two kinematical variables, *s* and *t*

 $s = (k_1 + p_1)^2$ $t = (k_1 - k_2)^2$

- which scan different kinematical regions

 $e^- + e^+ \rightarrow \overline{h} + h$

 $e^- + h \rightarrow e^- + h$

 $e(k_2)$

h(p₂

y(a)

Proton Charge and Magnetic Distributions

Egle Tomasi-Gustafsson

Hadron Electromagnetic Form Factors

The Space-Like region: low Q²

Root mean square radius

	density	Form factor	r.m.s.	comments
	ho(r)	$F(q^2)$	$ < r_c^2 >$	
	δ	1	0	$\operatorname{pointlike}$
	e^{-ar}	$\frac{a^4}{(q^2+a^2)^2}$	$\frac{12}{a^2}$	dipole
	$\frac{e^{-ar}}{r}$	$\frac{a^2}{q^2 + a^2}$	$\frac{6}{a^2}$	monopole
	$\frac{e^{-ar^2}}{r^2}$	$e^{-q^2/(4a^2)}$	$\frac{1}{2a}$	gaussian
	ρ_0 for $x \leq R$	$\frac{3(\sin X - X\cos X)}{X^3}$	$\frac{3}{5}R^2$	square well
	0 for $r \ge R$	X = qR		
$F(q) \sim$	$- 1 - \frac{1}{6}q^2 < r_c^2 >$	$< r_{c}^{2} > =$	$\frac{\int_0^\infty x^4 \rho(x) dx}{\int_0^\infty x^2 \rho(x) dx}$	

F(q) =

 $\frac{\int_{\Omega} d^3 \vec{x} e^{i \vec{q} \cdot \vec{x}} \rho(\vec{x})}{\int d^3 \vec{x} \rho(\vec{x})}$

The Proton Radius

Rp=0.84184(67) fm (muonic atom)

APC, 25-5-2021

Cea

Egle Tomasi-Gustafsson

The Space-Like region

ep-elastic scattering : Rosenbluth separation

0.0150 $Q^2 = 2.64 \text{ GeV}^2$ 0.0145 $\varepsilon = \left(1 + 2(1 + \tau) \tan^2 \left(\frac{\theta_e}{2}\right)\right)^2, \tau = \frac{Q^2}{4M^2}$ 0.0140 $Q^2 = 3.20 \text{ GeV}^2$ $\sigma_D = \varepsilon G_T^{\perp} + \tau G$ 0.0050 $Q^2 = 4.10 \text{ GeV}^2$ Linearity of the reduced cross section \mathcal{E} 0.0046 $\rightarrow tan^2 \theta_e$ dependence 0.0 0.3 0.50.8 1.0 e \rightarrow Holds for 1γ exchange only PRL 94, 142301 (2005)

cea

20

1950

ep-elastic scattering : The Akhiezer-Rekalo method

The polarization induces a term in the cross section proportional to $G_E G_M$ **Polarized beam and target or polarized beam and recoil proton polarization**

The polarization method (exp: 2000)

Transferred polarization is:

D

0

C. Perdrisat, V. Punjabi, et al., JLab-GEp collaboration

$$P_n = 0$$

$$\pm h P_t = \mp h 2\sqrt{\tau(1+\tau)} G_E^p G_M^p \tan\left(\frac{\theta_e}{2}\right) / I_0$$

$$\pm h P_l = \pm h (E_e + E_{e'}) (G_M^p)^2 \sqrt{\tau(1+\tau)} \tan^2\left(\frac{\theta_e}{2}\right) / M / I_0$$

Where, h = |h| is the beam helicity $I_0 = (G_E^p(Q^2))^2 + \frac{\tau}{\epsilon}(G_M^p(Q^2))^2$

$$\implies \frac{G_E^p}{G_M^p} = -\frac{P_t}{P_l} \frac{E_e + E_{e'}}{2M} \tan\left(\frac{\theta_e}{2}\right)$$

The simultaneous measurement of *P_t* and *P₁* reduces the systematic errors

Polarization Experiments

A.I. Akhiezer and M.P. Rekalo, 1967

Jlab-GEp collaboration (>2000)

- 1) "standard" dipole function for the nucleon magnetic FFs GMp and GMn
- 2) linear deviation from the dipole function for the electric proton FF Gep
- 3) QCD scaling not reached
- 3) Zero crossing of Gep?
- 4) contradiction between polarized and unpolarized measurements

A.J.R. Puckett et al, Phys. Rev. C96, 055203 (2017).

Issues

 Some models (IJL 73, Di-quark, soliton..) predicted such behavior before the data appeared

BUT

- Simultaneous description of the four nucleon form factors...
- ...in the space-like and in the timelike regions
- Consequences for the light ions description
- When pQCD starts to apply?
- Source of the discrepancy

...and future plans

APC, 25-5-2021

cea

Egle Tomasi-Gustafsson

The Time-Like region

Time-like observables: $|G_E|^2$ and $|G_M|^2$.

-The cross section for
$$\overline{p} + p \rightarrow e^+ + e^-$$
 (1 γ -exchange):

$$\frac{d\sigma}{d(\cos\theta)} = \frac{\pi\alpha^2}{8m^2\sqrt{\tau-1}} \left[\tau |G_M|^2 (1 + \cos^2\theta) + |G_E|^2 \sin^2\theta\right]$$
 θ : angle between e^- and \overline{p} in cms.

A. Zichichi, S. M. Berman, N. Cabibbo, R. Gatto, Il Nuovo Cimento XXIV, 170 (1962)
B. Bilenkii, C. Giunti, V. Wataghin, Z. Phys. C 59, 475 (1993).
G. Gakh, E.T-G., Nucl. Phys. A761,120 (2005).

As in SL region:

- Dependence on q² contained in FFs
- Even dependence on cos²q (1g exchange)
- No dependence on sign of FFs
- Enhancement of magnetic term

but TL form factors are complex!

Total Cross Section from $e^+e^- \rightarrow p\overline{p}$

$$\sigma_{e^+e^- \to \bar{p}p}(s) = \frac{4\pi\alpha^2\beta \,\mathcal{C}(\beta)}{3s} \left(|G_M(s)|^2 + \frac{1}{2\tau} |G_E(s)|^2 \right)$$

• Effective FF: $\sigma_{Tot} \sim F_p^2$

$$F_p(s)^2 = \frac{2\tau |G_M(s)|^2 + |G_E(s)|^2}{2\tau + 1}$$

• Equivalent to:

$$|G_E(s)| = |G_M(s)| \equiv F_p(s)$$

Strictly valid at threshold, where only one amplitude is present

The Time-like Region

S. Pacetti, R. Baldini-Ferroli, E.T-G, Physics Reports, 514 (2014) 1 Panda contribution: M.P. Rekalo, E.T-G, DAPNIA-04-01, ArXiv:0810.4245.

Cez

Egle Tomasi-Gustafsson

The Time-like Region

Cea

Oscillations : regular pattern in p_{Lab}

The relevant variable is p_{Lab} associated to the relative motion of the final hadrons

A. Bianconi, E. T-G. Phys. Rev. Lett. 114,232301 (2015)

Fourier Transform

- Rescattering processes
- Large imaginary part
- Related to the time evolution of the charge density? (E.A. Kuraev, E. T.-G., A. Dbeyssi, PLB712 (2012) 240)
- Consequences for the SL region?
- Data expected at BESIII, PANDA

Cez

Cross section from $e^+e^- \rightarrow p\overline{p}(\gamma)$

APC, 25-5-2021

Cea

Egle Tomasi-Gustafsson

Confirmation of regular oscillations

$$F_p^{\text{fit}}(s) = F_{3p}(s) + F_{\text{osc}}(p(s))$$

$$F_{3p}(s) = \frac{F_0}{\left(1 + \frac{s}{m_a^2}\right) \left(1 - \frac{s}{m_0^2}\right)^2},$$

$$F_{osc}(p(s)) = Ae^{-Bp} \cos(Cp + D).$$

$$s = 2m_p \left(m_p + \sqrt{p^2 + m_p^2} \right) ,$$

$$p = \sqrt{s \left(\frac{s}{4m_p^2} - 1 \right)} .$$

E.T.-G., A. Bianconi, S. Pacetti, Phys.Rev.C 103 (2021) 3, 035203

APC, 25-5-2021

cea

Egle Tomasi-Gustafsson

Form Factor Ratio R=|GE|/|GM|

- Precise data from BESIII
- Dip at |q²|~5.8 GeV²
- Comparison with SL (Jlab-GEp data)
- Oscillations on top of a monopole: from GE or GM?

$$F_R(\omega(s)) = \frac{1}{1 + \omega^2/r_0} \left[1 + r_1 e^{-r_2 \omega} \sin(r_3 \omega) \right], \ \omega = \sqrt{s} - 2m_p,$$

Sachs form factors: |G_E|, |G_M|

From the fit on Fp and the fit on R, the Sachs FFs (moduli) can be reconstructed

$$|G_E(s)| = F_p(s) \sqrt{\frac{1+2\tau}{R^2(s)+2\tau/R^2(s)}}$$
$$|G_M(s)| = F_p(s) \sqrt{\frac{1+2\tau}{R^2(s)+2\tau}}.$$

Threshold constrain R=1 for τ =1 The fit gives : $|G_E| = |G_M| = 0.48$

E.T.-G., A. Bianconi, S. Pacetti, Phys.Rev.C 103 (2021) 3, 035203

Egle Tomasi-Gustafsson

Models

Parametrizations have been determined by fitting Fp

|GE|: more pronounced oscillations
faster q²-decreaseThreshold constrain R=1 for $\tau=1$ The fit gives :pQCD : 0.34 $|G_E| = |G_M| = 0.48$ VDM-IJL : 0.29
E.T.-G., A. Bianconi, S. Pacetti, Phys.Rev.C 103 (2021) 3, 035203

Cea

Egle Tomasi-Gustafsson

VMD: lachello, Jakson and Landé (1973)

Isoscalar and isovector FFs

$$\begin{split} F_1^s(Q^2) &= \frac{g(Q^2)}{2} \left[\left(1 - \beta_\omega - \beta_\phi\right) + \beta_\omega \frac{\mu_\omega^2}{\mu_\omega^2 + Q^2} + \beta_\phi \frac{\mu_\phi^2}{\mu_\phi^2 + Q^2} \right], \\ F_1^v(Q^2) &= \frac{g(Q^2)}{2} \left[\left(1 - \beta_\rho\right) + \beta_\rho \frac{\mu_\rho^2 + 8\Gamma_\rho \mu_\pi / \pi}{(\mu_\rho^2 + Q^2) + (4\mu_\pi^2 + Q^2)\Gamma_\rho \alpha(Q^2) / \mu_\pi} \right], \\ F_2^s(Q^2) &= \frac{g(Q^2)}{2} \left[(\mu_p + \mu_n - 1 - \alpha_\phi) \frac{\mu_\omega^2}{\mu_\omega^2 + Q^2} + \alpha_\phi \frac{\mu_\phi^2}{\mu_\phi^2 + Q^2} \right], \\ F_2^v(Q^2) &= \frac{g(Q^2)}{2} \left[(\mu_p - \mu_n - 1) \frac{\mu_\rho^2 + 8\Gamma_\rho \mu_\pi / \pi}{(\mu_\rho^2 + Q^2) + (4\mu_\pi^2 + Q^2)\Gamma_\rho \alpha(Q^2) / \mu_\pi} \right], \end{split}$$

Intrinsic factor

Meson Cloud

Few # parameters, with physical meaning Naturally arising TL imaginary part

 $(1 + \gamma e^{i\theta} O^2)^2$

$$2F_i^p = F_i^s + F_i^v,$$

$$2F_i^n = F_i^s - F_i^v,$$

$$\alpha(Q^2) = \frac{2}{\pi} \sqrt{\frac{Q^2 + 4\mu_\pi^2}{Q^2}} ln \left| \frac{\sqrt{(Q^2 + 4\mu_\pi^2) + \sqrt{Q^2}}}{2\mu_\pi} \right|$$

Unified definition of TL-SL Form Factors

$$F(q^2) = \int_{\mathcal{D}} d^4 x e^{iq_\mu x^\mu} \rho(x), \ q_\mu x^\mu = q_0 t - \vec{q} \cdot \vec{x}$$

 $\rho(x) = \rho(\vec{x}, t)$ pace-time distribution of the electric charge in the space-time volume \mathcal{D} .

SL photon 'sees' a charge density

TL photon can NOT test a space distribution

How to connect and understand the amplitudes?

The nucleon

3 valence quarks and a neutral sea of qq pairs

Antisymmetric state of colored quarks:

$$|p \rangle \sim \epsilon_{ijk} |u^{i}u^{j}d^{k} \rangle \\ |n \rangle \sim \epsilon_{ijk} |u^{i}d^{j}d^{k} \rangle$$

Assumption:

Does not hold in the spatial center of the nucleon: the center of the nucleon *is electrically neutral*, due to strong gluonic field Inner region: gluonic condensate of clusters with randomly oriented chromo-magnetic field (Vainshtein, 1982)

Charge screening in a plasma

E.A. Kuraev, E. T-G, A. Dbeyssi, Phys.Lett. B712 (2012) 240

Predictions for SL and TL

Quark counting rules apply to the vector part of the potential

$$G_M^{(p,n)}(Q^2) = \mu G_E(Q^2);$$

$$G_E^{(p,n)}(Q^2) = G_D(Q^2) = \left[1 + Q^2/(0.71 \,\mathrm{GeV}^2)\right]^{-2}$$

The neutral plasma acts on the distribution of the electric charge (not magnetic).

Additional suppression due to the neutral plasma

$$G_E(Q^2) = \frac{G_M(Q^2)}{\mu} \left(1 + Q^2/q_1^2\right)^{-1}$$

Similar behavior in SL and TL regions

Photon-Charge coupling

Amplitude for creating *charge-anticharge pairs* at time *t*

Cross section from $e^+e^- \rightarrow n\bar{n}$

cea

Conclusions

- •Large activity at all world facilities both in Space and Time-like regions
- Theory: unified models in SL and TL regions:
 - describe all 4 FFs: proton and neutron, electric and magnetic
- Experiment: to measure
- zero crossing of GE/GM in SL? Proton radius?
- complex FFs in TL region: polarization!
- new structures in TL: access to hadron formation?

Space and Time structure of the nucleon the 4th dimension of the nucleon

Thank you for the attention!

Angular Asymmetry

Cea

The asymptotic region

Large q^{2 :} : where the extremes meat

E. T-G. and M. P. Rekalo, Phys. Lett. B 504, 291 (2001)

Phragmèn-Lindelöf theorem

$$\begin{split} \lim_{q^2 \to -\infty} F^{(SL)}(q^2) &= \lim_{q^2 \to \infty} F^{(TL)}(q^2) \\ space - like & time - like \\ (e^- + p \to e^- + p) & (e^+ + e^- \leftrightarrow \overline{p} + p) \end{split}$$

$$- F^{(TL)}(q^2) \ o \ real, ext{ if } q^2 o \infty$$

Applies to NN and NN Interaction (Pomeranchuk theorem) t=0 : not a QCD regime!

Analyticity: connection with QCD asymptotics?

The nucleon

Inner region: gluonic condensate of clusters with randomly oriented chromo-magnetic field (Vainshtein, 1982):

Intensity of the gluon field in vacuum: $< 0|\alpha_s/\pi (G^a_{\mu\nu})^2|0> \sim E^2 - B^2 \sim E^2 = 0.012 \text{ GeV}^4.$

 $G^2 \simeq 0.012 \pi/\alpha_s GeV^4$, i.e., $E \simeq 0.245 GeV^2$. $\alpha_s/\pi \sim 0.1$

In the internal region of strong chromo-magnetic field, the color quantum number of quarks does not play any role, due to stochastic averaging

 $< G | u^i u^j | G > \sim \delta_{ij}$ proton $d^i d^j$ neutron Colorless quarks: Pauli principle

Model

Antisymmetric state of colored quarks

Colorless quarks: Pauli principle

1) uu (dd) quarks are repulsed from the inner region
 2) The 3rd quark is attracted by one of the identical quarks, forming a compact di-quark
 3) The color state is restored

Formation of di-quark: competition between attraction force and stochastic force of the gluon

field

$$\frac{Q_q^2 e^2}{r_0^2} > e |Q_q| E.$$

proton: (u) Qq=-1/3neutron: (d) Qq=2/3

attraction force >stochastic force of the gluon field

Model

attraction force > stochastic force of the gluon field

$$p_0 = \sqrt{\frac{E}{e|Q_q|}} = 1.1 \text{ GeV}.$$

Proton: $r_0 = 0.22 \text{ fm}, p_0^2 = 1.21 \text{ GeV}^2$ **Neutron:** $r_0 = 0.31 \text{ fm}, p_0^2 = 2.43 \text{ GeV}^2$

Applies to the scalar part of the potential

Model

$$G_M^{(p,n)}(Q^2) = \mu G_E(Q^2);$$

$$G_E^{(p,n)}(Q^2) = G_D(Q^2) = \left[1 + Q^2/(0.71 \,\text{GeV}^2)\right]^{-2}$$

$$G_E^{(p,n)}(0) = 1, 0, G_M^{(p,n)}(0) = \mu_{p,n}$$

Model

Additional suppression for the scalar part due to colorless internal region: "charge screening in a plasma":

$$\Delta \phi = -4\pi e \sum Z_i n_i, \ n_i = n_{i0} exp \left[\frac{Z_i e \phi}{kT} \right]$$

Boltzmann constant

Neutrality condition: $\sum Z_i n_{i0} = 0$

$$\Delta \phi - \chi^2 \phi = 0, \ \phi = \frac{e^{-\chi r}}{r}, \ \chi^2 = \frac{4\pi e^2 Z_i^2 n_{i0}}{kT}.$$

Additional suppression (Fourier transform) $G_E(Q^2) = \frac{G_M(Q^2)}{\mu} \left(1 + Q^2/q_1^2\right)^{-1}$

$$\mu \quad (= \chi) \quad q_1(\equiv \chi)$$
fitting parameter

Fourier Transform

density	Form factor	r.m.s.	comments
ho(r)	$F(q^2)$	$< r_{c}^{2} >$	
δ	1	0	pointlike
e^{-ar}	$\frac{a^4}{(q^2+a^2)^2}$	$\frac{12}{a^2}$	dipole
$\frac{e^{-ar}}{r}$	$\frac{a^2}{q^2 + a^2}$	$\frac{6}{a^2}$	monopole
$\frac{e^{-ar^2}}{r^2}$	$e^{-q^2/(4a^2)}$	$\frac{1}{2a}$	gaussian
ρ_0 for $x \leq R$	$\frac{3(\sin X - X\cos X)}{X^3}$	$\frac{3}{5}R^2$	square well
0 for $r \ge R$	X = qR		

Root mean square radius $F(q) \sim 1 - \frac{1}{6}q^2 < r_c^2 > +O(q^2),$

 $< r_c^2 >= \frac{\int_0^\infty x^4 \rho(x) dx}{\int_0^\infty x^2 \rho(x) dx}.$

25-5-2021

Oscillations : regular pattern in P_{Lab}

Cea

E. T.-G., G. Gakh, PRC72, 015209 (2005), C.F Perdrisat et al, Progr.Part.Nucl.Phys.(20

021

56

Radiative return (ISR)

$$e^+ + e^- \rightarrow p + \overline{p} + \gamma$$

$$\frac{d\sigma(e^+e^- \to p\bar{p}\gamma)}{dm \, d\cos\theta} = \frac{2m}{s} W(s, x, \theta) \sigma(e^+e^- \to p\bar{p})(m), \quad x = \frac{2E_\gamma}{\sqrt{s}} = 1 - \frac{m^2}{s},$$
$$W(s, x, \theta) = \frac{\alpha}{\pi x} \left(\frac{2 - 2x + x^2}{\sin^2 \theta} - \frac{x^2}{2} \right), \quad \theta \gg \frac{m_e}{\sqrt{s}}.$$

B. Aubert (BABAR Collaboration) Phys Rev. D73, 012005 (2006)

Nucleon Form Factor Experiments

	Hall	Exp#	Exp# Title		Q _{max} ²
	A	E12-07-108	Precision Measurement of the Proton Elastic Cross Section at High Q ²	6.6 8.8 11	17,5 (14)
	A	E12-07-109	Large Acceptance Proton Form Factor Ratio Measurements at 13 and 15 (GeV/c) ² using Recoil Polarization Method	6.6 8.8 11	12(14)
	A	E12-09-019	Precision Measurement of the Neutron Magnetic Form Factor up to $Q^2 = 18.0$ (GeV/c) ² by the Ratio Method	4.4 6.6 8.8 11	13.5 (18)
	A	E12-09-016	Measurement of the Neutron Electromagnetic Form Factor Ratio <i>Gⁿ_E / Gⁿ_M</i> at High <i>Q</i> ²	4.4 6.6 8.8	10.2
	В	E12-07-104	Measurement of the Neutron Magnetic Form Factor at High Q ² Using the Ratio Method on Deuterium	11	14
	C	E12-11-009	The Neutron Electric Form Factor at Q ² up to 7 (GeV/c) ² from the Reaction 2H(e,e'n)1H via Recoil Polarimetry	4.4 6.6 11	7
A E12-09-016 Measurement of the Neutron Electromagnetic Form Factor Ratio G^n_E / G^n_M at High Q^2 4.4 B E12-07-104 Measurement of the Neutron Magnetic Form Factor at High Q ² Using the Ratio Method on Deuterium 11 C E12-11-009 The Neutron Electric Form Factor at Q ² up to 7 (GeV/c) ² from the Reaction 2H(e,e'n)1H via Recoil Polarimetry 4.4 Image:			9	Jefferson La	

