

Proton Charge Radius from electron scattering... Is this meaningful?

Egle Tomasi-Gustafsson CEA, IRFU, DPhN et Université Paris-Saclay, France in collaboration with Simone Pacetti INFN e Università di Perugia,Italia

The SIZE of the proton

Journal of Physics: Conference Series 312 (2011) 032002

doi:10.1088/1742-6596/312/3/032002

IOP Publishing

The proton radius puzzle

A Antognini^{1,2}, F D Amaro³, F Biraben⁴, J M R Cardoso³, D S Covita⁵, A Dax⁶, S Dhawan⁶, L M P Fernandes³, A Giesen⁷, T Graf⁸, T W Hänsch^{1,9}, P Indelicato⁴, L Julien⁴, C-Y Kao¹⁰, P Knowles¹¹, F Kottmann², E-O Le Bigot⁴, Y-W Liu¹⁰, ulhauser¹¹, $\mathbf{s}^{3},$ our value delayed / prompt events [10⁻⁴ CODATA-06 13e-p scattering H₂O calib. Abstract. B rogen $(\mu^- p)$ we have measured the 1 Iz [1]. By comparing on bound-state QED this measurem we have detern v value differs by 5.0 standard devia 3 standard deviation 2 ıcy may arise from a from the e-p so computational <u>oblem in bound-state</u> QED, an unkn nental error. 49.8 49.85 49.9 49.95 49.75

laser frequency [THz]

Lamb shift and hyperfine splitting (1)

Lamb shift and hyperfine splitting (1)

An electron in S state has some probability to be inside the proton. The electric field (charge distribution) is modified by the proton size. The v_s and v_ptransitions are affected by the proton size (few %)

Lamb shift and hyperfine splitting (II)

$$\Delta E_{\text{finite size}} = \frac{2\pi Z\alpha}{3} r_{\text{E}}^{2} |\Psi(0)|^{2} \qquad \text{Atomic wave function at the origin}$$

$$|\Psi(0)|^{2} \approx m_{\text{r}}^{3}, m_{\text{r}}(\mu p \text{ system}) \cong 186 \text{ m}_{\text{e}}$$
H radius : 60000 × p radius

$$\mu \text{H Bohr radius is} \cong 200 \text{ times smaller: larger sensitivity!}$$

$$\frac{1}{4} hv_{\text{s}} + \frac{3}{4} hv_{\text{t}} = \Delta E_{\text{L}} + 8.8123(2) \text{meV}$$

$$hv_{\text{s}} - hv_{\text{t}} = \Delta E_{\text{HFS}} - 3.2480(2) \text{meV}$$

$$\Delta E_{\text{HFS}}^{\exp} = 22.8089(51) \text{ meV}$$

$$\Delta E_{\rm L}^{\rm th} = 206.0336(15) - 5.2275(10)r_{\rm E}^2 + \Delta E_{\rm TPE} \quad \Delta E_{\rm T}$$

$$\Delta E_{\rm TPE} = 0.0332(20) \, \mathrm{meV}$$

$$r_{\rm E} = 0.84087(26)^{\rm exp}(29)^{\rm th}$$
 fm
= 0.84087(39) fm

Small radius

Hadron physics: e-p scattering

ep-elastic scattering : Rosenbluth separation

Root mean square radius

In *non-relativistic approach* (and also in relativistic but in *Breit frame*) FFs are Fourier transform of the density

density	Form factor	r.m.s.	comments
ho(r)	$F(q^2)$	$< r_{c}^{2} >$	
δ	1	0	pointlike
e^{-ar}	$\frac{a^4}{(q^2+a^2)^2}$	$\frac{12}{a^2}$	dipole
$\frac{e^{-ar}}{r}$	$\frac{a^2}{q^2 + a^2}$	$\frac{6}{a^2}$	monopole
$\frac{e^{-ar^2}}{r^2}$	$e^{-q^2/(4a^2)}$	$\frac{1}{2a}$	gaussian
ρ_0 for $x \le R$	$\frac{3(\sin X - X\cos X)}{X^3}$	$\frac{3}{5}R^2$	square well
0 for $r \ge R$	X = qR		

 $\frac{\int_{\Omega} d^3 \vec{x} e^{i\vec{q}\cdot\vec{x}}\rho(\vec{x})}{\int d^3 \vec{x} \rho(\vec{x})}$

F(q)

Root mean square radius

$$F(q) = \frac{\int_{\Omega} d^3 \vec{x} e^{i\vec{q}\cdot\vec{x}} \rho(\vec{x})}{\int_{\Omega} d^3 \vec{x} \rho(\vec{x})}.$$

$$< r_c^2 >= \frac{\int_0^\infty x^4 \rho(x) dx}{\int_0^\infty x^2 \rho(x) dx}.$$

Expanding in Taylor series:

$$F(q) \sim 1 - \frac{1}{6}q^2 < r_c^2 > +O(q^2),$$

$$\langle r_{E/M}^2 \rangle = - \frac{6\hbar^2}{G_{E/M}(0)} \frac{dG_{E/M}(Q^2)}{dQ^2} \Big|_{Q^2 = 0}.$$

RMS is the limit of the **form factor derivative** for $Q^2 \rightarrow 0$

The elastic cross section diverges as $1/(Q^2)^2$ when $Q^2 \rightarrow 0$

When $Q^2 \rightarrow 0$? $Q^2 = -4EE'sin^2(\theta/2)$

1) E'=0: capture process, compound hydrogen atom -> <u>the scattering formalism does not apply</u>

OR

2) $\theta=0$: the incident electron does not 'feel' the target

The extrapolation of electron to photon induced processes is generally not meaningful

 $Q^2 > 0.004 \text{ GeV}^2$

G

High-Precision Determination of the Electric and Magnetic Form Factors of the Proton

J. C. Bernauer,^{1,*} P. Achenbach,¹ C. Ayerbe Gayoso,¹ R. Böhm,¹ D. Bosnar,² L. Debenjak,³ M. O. Distler,^{1,†} L. Doria,¹ A. Esser,¹ H. Fonvieille,⁴ J. M. Friedrich,⁵ J. Friedrich,¹ M. Gómez Rodríguez de la Paz,¹ M. Makek,² H. Merkel,¹ D. G. Middleton,¹ U. Müller,¹ L. Nungesser,¹ J. Pochodzalla,¹ M. Potokar,³ S. Sánchez Majos,¹ B. S. Schlimme,¹ S. Širca,^{6,3} Th. Walcher,¹ and M. Weinriefer¹

Mainz, A1 collaboration (1400 points)

G.I. Gakh, A. Dbeyssi, E.T-G, D. Marchand, V.V. Bytev, Phys.Part.Nucl.Lett. 10 (2013) 393, Phys.Rev. C84 (2011) 015212

Mainz ep elastic scattering

Mainz ep elastic scattering

<u>Spline:</u> Q2>0.0005 GeV² G_E from a global fit of $\sigma(Q^2, \epsilon)$, based on a pre-defined function

<u>Rosenbluth:</u> Q2>0.0152 GeV² G_E and G_M from the slope and intercept of σ_{red} (ϵ), at fixed (Q², ϵ). (larger errors, Q² interval)

<u>The choice of a pre-defined function imposes</u> serious constraints to the radius through the derivative!

Mainz ep elastic scattering-derivative

Mainz Data – Fitting Procedure

- <u>4 sets of data:</u>
 - 2 G_E data: Rosenbluth and Spline
 - 2 discrete derivatives

$$\left\{\overline{Q}_{j}^{2S}, \Delta G_{E,j}^{S}, \delta \Delta G_{E,j}^{S}\right\}_{j=1}^{N_{S}-1} \left\{\overline{Q}_{j}^{2R}, \Delta G_{E,j}^{R}, \delta \Delta G_{E,j}^{R}\right\}_{j=1}^{N_{R}-1}$$

- 4 Q² ranges,
- polynomes up to 12 degree

Radius - Fitting dG_E (R &S)

Radius - Fitting $G_F \& dG_F (R \& S)$

Rosenbluth

<u>Spline</u>

Stability of the results Very small errors Very small $\chi 2$

Rosenbluth

Spline

Functions - Fitting G_E & dG_E(R & S)

Rosenbluth

Very small χ^2

Mainz – Fitting Procedure

		Rosenbluth		Spline	
		$\chi^2/N_{\rm d.o.f.}$	$R_E \text{ (fm)}$	$\chi^2/N_{\rm d.o.f.}$	$R_E \ (fm)$
$Q^2 \le 0.3 \text{ GeV}^2$	dG_E/dQ^2	1.50	0.9411 ± 0.2310	0.19	0.8754 ± 0.0059
	$G_E \cup dG_E/dQ^2$	1.55	1.0088 ± 0.0809	0.11	0.8749 ± 0.0026
$Q^2 \le 0.4 \text{ GeV}^2$	dG_E/dQ^2	1.43	0.9568 ± 0.1309	0.14	0.8749 ± 0.0048
	$G_E \cup dG_E/dQ^2$	1.60	0.8070 ± 0.0164	0.09	0.8751 ± 0.0023
$Q^2 \le 0.5 \text{ GeV}^2$	dG_E/dQ^2	1.46	1.0681 ± 0.1848	0.13	0.8754 ± 0.0047
	$G_E \cup dG_E/dQ^2$	1.82	0.8786 ± 0.0229	0.09	0.8756 ± 0.0020
$Q^2 \le 0.6 \text{ GeV}^2$	dG_E/dQ^2	1.45	0.9927 ± 0.1453	0.12	0.8763 ± 0.0046
	$G_E \cup dG_E/dQ^2$	1.76	0.8811 ± 0.0253	0.10	0.8761 ± 0.0019

- S- Errors << R-data (x 5-10)
- S- Values very stable, R-values depend on fitting scheme
- Discrepancy on the central R- and S- values
- Very small $\chi 2$ and stability of S-results derive from the large constraint due to the pre-imposed function

Cez

Final values from Mainz data

Mainz & CLAS11

Mainz & CLAS11 Constrained Linear Fit

Mainz & CLAS11- at first sight

Rough estimation from a constrained linear fit

 $R_E = 0.81 \pm 0.08$ $R_E = 0.82 \pm 0.09$

and from Mainz data: $R_E = 0.7 \pm 0.02$

Planned ep experiments

Conclusions

Discrepancy between the determination of the proton radius:

- CODATA (ep scattering & H) and muonic hydrogen
- ep elastic scattering and μH
- Recent and previous Hydrogen Lamb shift experiments
- Tension between analysis of ep-scattering: extrapolation to Q²=0 !!!
- Our suggestion: work on derivatives
 - The cross section is measured, but the radius is related to the derivative!
 - *extrapolation of the derivative*
 - errors blow up at low Q²
- Similar problem in the high energy side, for the form factor ratio (polarized versus unpolarized)!

