

PRELIMINARY MAGNETIC DESIGNS FOR LARGE-BORE AND HIGH-FIELD DIPOLE MAGNETS*

D. Leroy¹ and O. Vincent-Viry²

This report presents the results of calculations - magnetic, forces, conductor losses - for dipole magnets having bores of 88, 130, 160 mm. The calculations are made for two types of dipole design: a layer design and a slot design. The aim of these calculations was to define the characteristics of a Nb3Sn strand suitable to reach dipolar field in the range 13 to 15 T. This report constitutes a deliverable for the NED Joint Research Activity within the CARE Program.

¹ CERN, Accelerator Technology Department, Geneva, Switzerland

² Formerly CERN, Accelerator Technology Department, Geneva, Switzerland

Work supported by the European Community-Research Infrastructure Activity under the FP6 « Structuring the European Research Area » programme (CARE, contract number RII3-CT-2003-506395).

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH EU contract number RII3CT 2003 506395 Eaboratory for Particle Physics CARE-Report-05-023-NED

Departmental Report

CERN/AT 2004-22 (MAS) NED

PRELIMINARY MAGNETIC DESIGNS FOR LARGE-BORE AND HIGH-FIELD DIPOLE MAGNETS^{*}

D. Leroy¹ and O. Vincent-Viry²

This report presents the results of calculations - magnetic, forces, conductor losses - for dipole magnets having bores of 88, 130, 160 mm. The calculations are made for two types of dipole design: a layer design and a slot design. The aim of these calculations was to define the characteristics of a Nb₃Sn strand suitable to reach dipolar field in the range 13 to 15 T. This report constitutes a deliverable for the NED Joint Research Activity within the CARE Program.

CERN, Accelerator Technology Department, Geneva, Switzerland
 Formerly CERN, Accelerator Technology Department, Geneva, Switzerland

*This work was supported in part by the European Community-Research Infrastructure Activity under the FP6 "Structuring the European Research Area" program (CARE, contract number RII3-CT-2003-506395)

Administrative Secretariat AT Department CERN CH - 1211 Geneva 23

Geneva, Switzerland December 2004

Table of contents

1.	INTROD	UCTION	1
2.	GENERA	LITIES ON STRAND, CABLE AND MAGNET STRUCTURE	2
3.	LAYER I	DESIGN	5
	2.1 Mag	mat gan avail layout of a 99mm have dinale	5
	5.1 Mag	, net general layout of a somm bore dipole	5
	3.2 Cab	le configurations	5
	3.3 Imp	act of various parameters: the cable strand number, strand diameter,	
	copper to no)n copper ratio	· 6
	3.3.1	Impact of strand diameter	· 0
	3.3.3	Impact of strand number in cable	8
	3.3.4	Impact of Cu/non Cu ratio	8
	3.3.5	Conclusions	8
	3.4 Base	e line design for a two layer, 88 mm bore dipole	9
	3.4.1	Magnetic aspects	9
	3.4.1.1	Magnetic field distribution	9
	3.4.1.2	Peak fields in blocks and load lines	10
	3.4.1.3	Magnetic field lookage	·11
	3.4.1.4 3.4.2	Flectromagnetic Forces	
	3.4.3	Losses in conductors	13
	3.4.3.1	Hysteretic losses	13
	3.4.3.2	Inter-filament losses	13
	3.4.3.3	Inter-strands coupling losses	14
	3.4.4	Overall Characteristics of the 88 mm, two layers, base line design	14
	3.4.5	Considerations on the mechanical design	15
	3.5 A 88	3 mm dipole with 2 types of cables	15
	3.6 Base	e line design for a two layers, 130 mm bore dipole	16
	3.6.1	Magnetic aspects of a 130 mm layer design dipole	17
	3.6.2	Electro-magnetic force aspects of a 130 mm layer design dipole	18
	3.6.3	Conductor losses in a 130 mm layer design dipole	18 18
	3632	Inter-filament losses	18
	3.6.3.3	Inter-strands coupling losses	19
	3.6.4	Overall Characteristics of the 130 mm, two layers, base line design	20
	3.7 Base	e line design for a two lavers, 160 mm bore dipole	20
	3.7.1	Magnetic aspects of a 160 mm layer design dipole	21
	3.7.2	Electro-magnetic force aspects of a 160 mm layer design dipole	22
	3.7.3	Conductor losses in a 160 mm layer design dipole	23
	3.7.3.1	Hysteretic losses	23
	3.7.3.2	Inter-strands coupling losses	23
	3.7.4	Overall Characteristics of the 160 mm, two layers, base line design	24
1	SLOT DE	SIGN	
7.	4.1 Mag	net general lavout	25
	42 Con	ventions and naming for the electro-magnetic force calculations	
	7.2 CUII	ventions and naming for the electro-magnetic force calculations	21
	12 17	intions of design nonometers for slot magnets	27
	4.3 Var	Impact of the number of conductors	27
			20

EU cor	ntract nun	nber RII3CT-2003-506395 C/	ARE-Report-05-023-NED
	4.3.2	Impact of notch angle and notch length	28
	4.3.2.1	Variation of the length of one notch (Annex IV, IV)	V 2 2)29
	4.3.3	Impact of notch width	30
	4.3.4	Impact of notch number	30
4	.4 Base	e line design of a slot type dipole of 88 mm apertur	re30
	4.4.1	Magnetic aspects of a 88 mm slot design dipole	31
	4.4.2	Electro-magnetic forces aspects of a 88 mm slot des	ign dipole32
	4.4.3	Conductor Losses of a 88 mm slot design dipole	34
	4.4.3.1	Inter-filament losses	
	4433	Inter-strands coupling losses:	35
	4.4.4	Overall Characteristics of the 88 mm, base line slot	design36
4	.5 Base	e line designs for a slot type dipole of 130 mm aper	-ture36
	4.5.1	Magnetic aspects of a 130 mm slot design dipole	36
	4.5.2	Electro-magnetic force aspects of a130 mm slot des	ign dipole37
	4.5.3	Conductor Losses in a 130 mm slot design dipole	
	4.5.3.1	Hysteretic losses	
	4.3.3.2	Inter-strands coupling losses	
	454	Another design with larger cable of a 130 mm slot	type dipole40
	4.5.5	Comparison of the two 130 mm slot design CRT9 at	nd CRT9_3144
4	.6 Base	e line designs for a slot type dipole of 160 mm aper	ture44
	4.6.1	Magnetic aspects of a 160 mm slot design dipole	45
	4.6.2	Electro-magnetic force aspects of a 160 mm slot des	sign dipole45
	4.6.3	Conductor Losses in a 160 mm slot design dipole	4/
	4.0.3.1	Inter-filement losses	47
	4.6.3.3	Inter-strand coupling losses	48
	4.6.4	Another design, with larger cable, of a 160 mm slot	type dipole49
	4.6.5	Comparison of the two 160 mm slot design CRT14	and CRT14_3153
5. API	COMPAI ERTURE	RISON OF SLOT AND LAYER DESIGNS AS A FU	UNCTION OF
6.	MULTIP	OLE OPTIMISATION IN THE SLOT DESIGN	56
7.	MULTIP	OLE COMPENSATION AT LOW FIELD	58
8.	CONCLU	SION	60
9.	REFERE	NCES	61
10.	ANNE	X /	63
11.	ANNE	X	65
12.	ANNE	X III	67
13.	ANNE	X IV	69
14.	ANNE	X V	

1. INTRODUCTION

The NED project is one of the Joint Research Activities (JRA) approved by EU in the frame of CARE program [1] in view of developing high field accelerator magnets in Europe.

At the EU's request, the initial NED proposal has been divided into two Phases:

- Phase I covers conductor development and includes some limited studies on conductor insulation (representing about 25% of the initial program)

- Phase II is devoted to the detailed design, manufacturing and test of the dipole magnet model [2].

Six institutes have agreed to collaborate to the NED JRA:

- CCLRC-RAL (United Kingdom)

- CEA/DSM/DAPNIA (France)
- CERN/AT (International)
- INFN Milano/LASA and Genova (Italy)
- University of Twente (The Netherlands)
- University of Wroclaw (Poland).

Phase I of NED is articulated around three main work packages: (1) Thermal Studies and Quench Protection (TSQP), (2) Conductor Development (CD) and (3) Insulation Development and Implementation (IDI).

The CD work package is coordinated by CERN.

The core of the activity will be devoted to wire and cable development but it includes the preliminary designs of a large-aperture and high-field (up to 15 T) Nb₃Sn dipole magnet in order to derive meaningful conductor specifications: mainly the critical current density in the non-copper part and the strand dimensions.

It was foreseen in the NED proposal to make a review and analysis of the various dipole designs. This work package has been withdrawn in the project re-profiling due to the limited funding. Preliminary magnetic designs for large bore and high - field dipole magnets has been then incorporated in the CD package in order to define the Nb₃Sn strand characteristics suitable for large field applications.

Preliminary studies of the various optical schemes for LHC upgrade have shown the necessity to have dipoles reaching fields larger than 11 T in large bore apertures. Moreover, the magnets will be exposed to high beam losses in their mid-plane.

The preliminary dipole studies have considered the 3 apertures of 88, 130, 160 mm. To calculate the limits in fields in the magnet, it is necessary to have in mind some initial constrains imposed on the conductor and some views on the magnet mechanical structure.

The critical current density in the non-copper cross-section of the Nb₃Sn strand is assumed to be $1500A/mm^2$ at 15 T and 4.2 K. This high critical current density is considered as the goal of a R&D development program for the strand.

The present study concentrates on two types of magnetic designs: a layer design and a slot design, for which there exists some previous experience of construction for dipole fields up to 10 T.

The aim of the preliminary design studies is not to make a detailed mechanical design of the dipoles but to show the trends and possibilities existing in the two types of designs. The detailed mechanical designs will have to be revisited in the future.

This report presents for each type of magnet configuration -called layer design or slot design- the calculation and distribution of magnetic field and forces, and of the conductor losses, for the 3 apertures of 88, 130, 160 mm.

Each design is treated in a different paragraph.

At the end, we show ways of compensating the harmonics generated by conductor distribution in the slot design and principles of compensation of the harmonics due to the effective larger size of filaments inherent to the Nb₃Sn technology.

This report constitutes a deliverable for the NED Joint Research Activity within the CARE Program.

2. GENERALITIES ON STRAND, CABLE AND MAGNET STRUCTURE

<u>Strands:</u>

The first basic choice concerns the critical current density in the non-copper area for Nb₃Sn strands, which has been fixed as a goal for the conductor development at 1500 A/mm², 4.2 K ,in an external field of 15 T.

The second basic choice concerns the copper to non-copper ratio which has been fixed to 1.25 to 1, to have a current density in the copper at quench around 1100 A/mm^2 , values normally used at present in the magnet for their protection in case of quench. It is not excluded that higher current densities in copper could be used following the studies on quench protection and thanks to the high quench velocities measured at high field in the Nb₃Sn magnets.

Cables:

- The maximum strand number is limited to 40 strands, given by the existing cabling machines in Europe.
- There are two types of magnet designs. In both designs, the coil structure has blocks and the current distribution approaches a $\cos\theta$ type. One approach is based on the layer design and uses a keystone cable. The other, called slot design, uses a rectangular cable.
- A 10% critical current degradation due to cabling has been assumed. It is a reasonable goal. The cable degradation will be measured in the course of the conductor development as well as the pressure effect on the cable characteristics. The keystone cable could have more degradation on the thin edge than the rectangular cable. No supplementary degradation due to transversal pressure effects on cables has been taken into account.

- The electrical insulation is assumed to be 0.2 mm thick on each cable side.
- The geometrical dimensions of cables are determined from the following formulas to ensure a good mechanical stability and less cabling degradation. They are based on the work made at LNBL [3].In the mentioned reference, there exists more experimental data of the degradation for rectangular cables; the degradation for keystone cables has still to be investigated.

for keystone cable:

$$height = 1.04 \frac{nbr_str}{2} \phi_{str}$$

width_inner = 2*0.87 ϕ_{str} ; width_outer = 2*0.95 ϕ_{str}

where ϕ_{str} is the strand diameter and *nbr_str* the number of strands in the cable.

for rectangular cable:

$$height = 1.04 \frac{nbr_str}{2} \phi_{str}; width = 2*0.87 \phi_{str}$$

Magnet:

To calculate the magnetic and electrical characteristics, one needs to have in mind a basic conceptual mechanical design. The same approach will be taken for all the comparative studies. The present study has been concentrated on 3 bore diameters: 88, 130, and 160 mm.

- There exists an intermediate spacer (collars) between the coils and the iron in the case of the layer design.
- For the slot design, the conductors are wound in a metallic structure participating in the force transmission.
- The iron yoke is split horizontally to benefit from the iron inertia to sustain the high horizontal forces. The iron thickness is estimated on a criterion of flux return and a mechanical approach to guarantee that the horizontal gap stays closed at high field like it is for MFRESCA [4].
- The coil ends are supposed to be maintained in a cage for the slot design (MFISC Dipole Magnet) [5].
- An outer stainless steel cylinder closes the structure. The thickness of the outer cylinder is estimated to ensure that the horizontal iron gap stays closed in all the magnet operating conditions; its value is then different for each dipole aperture.

Magnetic calculations with finite iron have been carried out by mean of the code ROXIE [6]. For the slot design, it has been necessary to elaborate a tool for the preparation of the block geometry before using ROXIE [7].

Losses in conductor:

The different types of losses occurring in the magnet will be estimated according to the following relations [8]:

Losses due to the magnetization of the filaments:

$$Q_hyst = \oint \frac{2d_f}{3\pi} J_c(B).\operatorname{sgn}(\frac{dB}{dt}).dB \qquad [J/m^3/\operatorname{cycle}] \tag{1}$$

 $d_{\rm f}$: effective filament diameter

Losses due to inter-filaments coupling currents:

$$P_{if} = \left(\frac{L_{p,f}}{2\pi}\right)^2 \frac{\left(\frac{dB}{dt}\right)}{\rho_{eff}} \qquad [W/m^3]$$
(2)

 $L_{p,f}$: twist pitch of the filaments ρ_{eff} : matrix effective transverse resistivity

Losses due to inter-strands coupling currents:

$$P_{a} = 0.17 \frac{\frac{L_{p,s}h^{2}(1 - \frac{1}{N_{s}})}{R_{a}} \left(\frac{dB_{per}}{dt}\right)^{2} + 0.125 \frac{L_{p,s}w^{2}}{R_{a}} \left(\frac{dB_{par}}{dt}\right)^{2} \quad [W/m]$$
(3)

$$P_c = 8.49.10^{-3} \frac{L_{p,s} h^2 (N_s^2 - N_s)}{R_c} \left(\frac{dB_{per}}{dt}\right)^2$$
 [W/m] (4)

 $L_{p,s}$: twist pitch of the strands

h, w: height and mid-width of the cable

R_a: resistance between to adjacent strands

R_c: resistance between crossing strands

B_{par}: field component parallel to the cable height

B_{per}: field component perpendicular to the cable height

3. LAYER DESIGN

3.1 Magnet general layout of a 88mm bore dipole

All the magnet structures, which have been investigated, are based on the same layout of principle.

Fig. 1 Magnet cross section (layer design)

The coil radius is 44 mm; there is a 3 mm space between the two layers (wound with the same cable). The iron yoke is separated from the coils by an intermediate spacer (collars) of 25 mm thickness and surrounded by a thick stainless steel shrinking cylinder. In the magnetic calculations, the fringing field have been calculated with a 25 mm outer cylinder. Mechanical estimations have lead to increase the thickness of the outer cylinder to 28 mm.

The inner layer consists of 4 blocks of conductors while the outer is made of 3 blocks. The adjacent blocks are distant by at least 2 mm.

The critical current density in the non-copper area of the strand is assumed to be 1500 A/mm^2 at 15 T, 4.2 K for all designs. The variation of the critical current density as a function of field, temperature, stress has been calculated by using the formula given in Annex I.

3.2 Cable configurations

Magnet designs using the same cable in the 2 layers have been studied for the layer design. The copper to non-copper ratio in the strands is 1.25.

In this report, the convention names for the cable dimensions are slightly not usual: the height is equivalent to the generally used word width of the cable; width_inner is the thin edge cable dimension and width_outer is the thick edge dimension.

The various cable configurations investigated are described in the following table:

name	strand diam. [mm]	strand number	height	width_inner [mm]	width_outer [mm]	Jc (cable + insul.) at 4.2K, 15T [A/mm ²]
CK3	1.25	36	23.4	2.175	2.375	416.3
CK6	1.25	40	26	2.175	2.375	417.1
CK7	1.15	40	23.92	2.001	2.185	411.2
CK8	1.3	40	27.04	2.262	2.47	419.7
CK9	1.3	38	25.688	2.262	2.47	419.4
CK10	1.3	36	24.336	2.262	2.47	419.0

A magnet design using different cable dimensions for inner and outer layer has also been studied in order to have the best use of the quantity of superconducting material (Annex II). The two different cables for inner and outer layers are:

cable	strand	strand	Cu/		width	width		Jc_str at	Jc_cab at
name	diam.	number	non_Cu	height	inner	outer	insulation	15T, 4.2K	15T, 4.2K
	[mm]			[mm]	[mm]	[mm]	[mm]	$[A/mm^2]$	$[A/mm^2]$
CK1_i	1.35	34	1.25	23.868	2.349	2.565	0.2	666.67	421.2
CK1_o	1.15	40	1.8	23.92	2.001	2.185	0.2	535.71	330.4

3.3 Impact of various parameters: the cable strand number, strand diameter, copper to non copper ratio

Before going to a base line design, several parameters have been varied to see their impact. They are: the cable strand number, strand diameter, copper to non-copper ratio. The variations are sometimes coupled.

The impact study of the various mentioned parameters is made for a two layers dipole design having a bore of 88 mm. For the following impact calculations (paragraph 3.3.1 to 3.3.4.) the iron yoke has been kept at 300 mm thickness.

3.3.1 Impact of strand number and strand diameter

The point here is to check if using cables with bigger strands but less numerous is more efficient. Decreasing the strand diameter gives a thinner cable; this allows then to add more conductors in some blocks of the coils.

The 2 magnet designs compared are CK3 and CK7(block numerology shown in Fig 2)

	Block	1	2	3	4	5	6	7
CK3	conductor nbr.	6	6	4	3	9	10	7
CK7	conductor nbr.	6	7	4	3	10	10	8

This gives:

r							
	strand diam.	strand number	Bore field	P_inner	P_outer	Sum Fx	P_1
	[mm]	-	[T]	[MPa]	[MPa]	[MN/m]	[MPa]
CK3	1.25	36	14.19	-155.02	-151.51	15.03	103.84
CK7	1.15	40	14.16	-150.90	-149.10	15.07	106.82

The main field is the bore field in the magnet centre at quench of the conductor reaching the short sample limit (at 4.2 K).

P_inner is the pressure given by summing the azimuthal components of the magnetic forces acting on blocks over the whole inner layer and then dividing it by the cable height.

P_outer is the same but for the outer layer. The effective local pressure on the thin edge of the Rutherford cable can be increased up to 20% compared with the average pressure.

P_1 is the average value of the pressures acting on the width of every conductor of the first block of inner layer (the closest from the mid-plane) supported as a radial pressure by the outer layer supposed to be rigid.

Sum Fx is twice the sum of the x-component of the magnetic forces, over all the conductors of the first quadrant. Sum Fx is then the total horizontal force.

The peak field obtained in both design is the same (14.91 T) and is located in the same place (inside the upper conductor of inner layer, on the inner side).

Comparing the amount of SC material in the two cases, there is a small decrease of 0.3% in CK3 for a field increase of 0.2%.

The effect is marginal.

3.3.2 Impact of strand diameter

Coils with the same number of conductors in the magnet, and same number of strands of different diameters in the cables, are compared.

	strand diam.	Bore field	P_inner	P_outer	Sum Fx [MN/m]	P_1 [MPa]
CK6	1.25	14.34	-148.48	-140.21	15.75	110.14
CK8	1.3	14.43	-147.30	-137.39	16.20	108.56

Increasing the strand diameter gives a slightly higher magnetic field. An increase of 8 % in SC material volume leads to an increase of 0.6% in the bore field. Yet the gain in field is low with respect to the effort needed to increase the strand diameter from 1.25 to 1.3, strand diameter in which the aimed current density of 1500 A/mm² would be even more difficult to reach.

3.3.3 Impact of strand number in cable

Coils with the same strand diameter (1.3 mm) and the same number of conductors, but of different cable heights are compared.

	strand number	Bore field	P_inner	P_outer	Sum Fx	P_1
	-	[T]/[%]	[MPa] / [%]	[MPa] / [%]	[MN/m] / [%]	[MPa] / [%]
CK8	40	14.43	-147.30	-137.39	16.20	108.56
CK9	38	-0.68	2.03	3.65	-2.22	-3.22
CK10	36	-1.65	4.25	6.96	-4.89	-6.65

Increasing the number of strand in the cable gives a lower azimuthal pressure on both layers (the cable height is bigger). A reduction of the cable height by 10.9% leads to a field reduction of 1.65%.

3.3.4 Impact of Cu/non Cu ratio

The cable used here is CK6. This gives:

Cu/						copper current
non_Cu	bore field	P_inner	P_outer	Sum Fx	P_1	density
- / [%]	[T]/[%]	[MPa] / [%]	[MPa] / [%]	[MN/m] / [%]	[MPa] / [%]	$[A/mm^2] / [\%]$
1.25	14.34	-148.48	-140.21	15.76	110.14	1050.58
-4	0.31	0.69	0.65	0.60	0.65	2.24
-8	0.63	1.36	1.31	1.22	1.30	4.63
-12	0.98	2.09	2.02	1.90	2.01	7.25
-20	1.64	3.52	3.41	3.19	3.38	13.21

Decreasing the copper to non-copper ratio by 20 % gives only 1.64 % gain in main field. We consider that, in our preliminary magnet design studies, it is not a relevant parameter to reach higher magnetic inductions since the copper to non-copper ratio must stay a parameter at disposal for magnet protection studies.

3.3.5 Conclusions

In conclusion on the impact study of a few variables on the conductor, it appears that the main parameter influencing the main field is the overall current density in the coil which is dominated by the critical current density in the non-copper and the insulation thickness.

Both have not been considered as a free parameter because they depend so much on the technology, which will be developed in the frame of the NED program.

With a critical current density of 1500 A/mm^2 in the non-copper and 0.2 mm thick insulation, the main bore field is limited to 14.4 T in the layer design for a peak field of 15 T on the conductor.

The insulation represents 17% of the total conductor area. The pressure on the broad face of the cable, only due to the electromagnetic forces amounts to 150MPa.

3.4 Base line design for a two layer, 88 mm bore dipole

The base line design of a dipole magnet having a bore of 88 mm is now described below.

It uses the same cable of 40 strands with a diameter of 1.25 mm (cable CK6) in the 2 -layers:

cable	strand	strand	Cu/		width	width		Jc_str at 15T,	Jc_cab at
name	diam.	number	non_Cu	height	inner	outer	insulation	4.2K	15T, 4.2K
	[mm]			[mm]	[mm]	[mm]	[mm]	$[A/mm^2]$	$[A/mm^2]$
CK6	1.25	40	1.25	26	2.175	2.375	0.2	666.67	417.1

The number of conductors is 19 for the inner layer and 26 for the outer layer.

The iron yoke thickness is 350 mm.

The outer cylinder is 28 mm thick.

3.4.1 Magnetic aspects

3.4.1.1 Magnetic field distribution

The magnet configuration is the design CK6 with a first optimization to decrease the multipole levels which are not yet satisfactory and must still be reduced. This gives the following magnetic field distribution.

Fig. 3 Magnetic induction distribution (design CK6_opt)

								copper current
Central field	Ι	b1	b3	b5	b7	L	E/m	density
at 4.2 K [T]	[A]	-	-	-	-	[mH/m]	[kJ/m]	$[A/mm^2]$
-14.42	28530	10000	3.986	-0.035	0.012	4.43	1803.67	1046.2

The reference radius for the multipole calculation is 10 mm. Further optimization is required to further decrease the multipole levels, for an accelerator type magnet. This optimization is not in the scope of this report due to the uncertainty on the final cable dimensions which will be known at the end of the development programme on the conductor.

3.4.1.2 Peak fields in blocks and load lines

It has to be pointed out that the current density in the non-copper is 1500 A/mm^2 at 15 T, 4.2 K; 3000 A/mm^2 at 12 T, 4.2 K and that a cable degradation of 10% is assumed.

Block number	Peak field	% on load line	Peak/Central
	[T]	at 4.2 K [%]	[%]
1	14.22	95.1	98.6
2	14.35	95.8	99.5
3	14.72	98.0	102.1
4	15.09	100.0	104.6
5	6.17	49.6	42.8
6	8.97	65.4	62.2
7	12.02	82.7	83.3

With the magnet working in the superfluid helium, one could reach a maximum bore field of 15.3 T, with 16.1 T of peak field at short sample limit.

3.4.1.3 Magnet transfer function

Fig. 5. Transfer function (design CK6_opt)

The difference, due to the iron saturation effect, between the actual central field obtained in the magnet and the linear extrapolation of the low field load line is of 11.39 % at the quench field of 14.42 T in the bore.

3.4.1.4 Magnetic field leakage

The iron yoke is made of Armco iron (Ms = 2.11 T), the leakage magnetic field calculated on the midplane just outside the shrinking cylinder is :

iron yoke thickness	central field	Ι	B leakage
[mm]	[T]	[A]	[T]
350	14.42	28530	0.072

3.4.2 Electromagnetic Forces

Fig. 6 *Magnetic forces (design CK6_opt) -(Only the 3rd digit is significant).*

P_inner	P_outer	P_1	Sum Fx
[MPa]	[MPa]	[MPa]	[Tonnes/m]
-147.830	-141.226	111.068	1585.6

For the P_inner and P_outer definitions, see paragraph 3.3.1.

3.4.3 Losses in conductors

3.4.3.1 Hysteretic losses

For the cable used in design CK6_opt, we have:

d _f	h	<w></w>	Cu/non_Cu
[µm]	[mm]	[mm]	-
50	26	2.275	1.25

Taking the parameterisation described in Annex I for the superconductor critical density and assuming a cycle from 0.01 to 14 T and back to 0.01 T, we get for a one meter long magnet:

 $Q_hyst = 15444 J/m/cycle$

3.4.3.2 Inter-filament losses

Cu/non_Cu	L _{p,f}	$ ho_{eff}$	RRR
-	[mm]	$[\Omega.m]$	-
1.25	30	6.80E-11	250

Here $\rho_{eff} = \rho_{matrix}$: we assume that half of the filaments contribute to the transverse resistivity of the matrix. The ramp rate for the field increase is 0.1 T/s. The inter-filament losses are difficult to calculate in a Nb₃Sn strand because of the presence of bronze and copper. The results given for a one meter long magnet are thus only indicative and valid for comparison purposes.

We then get: $P_{if} = 12.471 \text{ W/m}$

 $\tau_{if} = 211 \text{ ms}$ (time constant of the inter-filaments coupling currents) The high value of τ is governed by the assumed high values of L_{p,f} and RRR of 30mm and 250.

The upper conductor of each layer has the higher inter-filament losses.

3.4.3.3 Inter-strands coupling losses

For a magnetic field ramp rate of 0.1 T/s, we get:

Lp,s	h	<w></w>	strand number	Ra	Rc	P_a	P_c
[mm]	[mm]	[mm]	-	[µohm]	[µohm]	[W/m]	[W/m]
182	26	2.275	40	1000	100	0.005	3.964
				1	100	5.000	3.964

(The losses in block 5 have been neglected). The indicated losses are per meter of magnet length. The adjacent resistance between strands have been varied between two extremes values. The lowest value of 1 $\mu\Omega$ could correspond to sintered strands after full reaction.

Fig. 8 Inter-strands coupling losses Pc per meter of magnet length (through crossing resistance only) for $Rc = 100\mu\Omega$ (design CK6_opt)

The higher inter-strand losses are located in the first 2 blocks of the inner layer.

3.4.4 Overall Characteristics of the 88 mm, two layers, base line design

Layer design: keystone cable Cable: 40x1.25 mm\$

Field [T]	L	E/m	Max	Fx,	Pc - 100μΩ-	Pa - 1μΩ-	Overall
/			pressure	result.	0.1T/s	0.1T/s	diameter
Current [A]	[mH/m]	[kJ/m]	[MPa]	[MN/m]	[W/m]	[W/m]	[mm]
14.42							
/ 28660	4.4	1810	148	15.8	3.964	5	1004

3.4.5 Considerations on the mechanical design

As already mentioned, the approach for the mechanical design is similar to the one used for the MFRESCA magnet [4].

One of the major items is to keep the horizontal gap closed when the magnet is powered. The iron is designed with a horizontal gap of $\sim 230 \ \mu m$ [9].

After welding the shrinking cylinder with an azimuthal stress of ~ 160 MPa, the iron gap is closed at its external radius over 70 mm. The mating pressure does not exceed the iron Yield Strength. At cold temperature, the yoke is fully closed and stays closed under the action of the magnetic forces.

This entire scheme depends strongly on the values of the elastic modulus of the coils at room temperature and at cold conditions, and depends also on the integrated thermal expansion of the coils. The values taken for the estimations are:

- coil elastic modulus at room temperature of 33 GPa
- coil elastic modulus at cold conditions of 45GPa
- coil integrated thermal contraction of 0.0039 [10].

The magnet is then built with an interference of 65 μ m between yoke and collars at room temperature. The anti-ovalization of the collars is of 150 μ m.

The average coil stresses vary from 22 MPa at room temperature, 80 MPa after yoking, to 50 MPa at cold conditions.

At 15 T, the coil has lost stresses at the upper conductor of the layer but the 150 MPa of the magnetic forces are added to the mid-plane conductor, which sees then an average compression of 200 MPa. The maximum local stress on the inner radius of the layer can be 20 % higher.

In conclusion of the pre-mechanical analysis based on the MFRESCA design, it appears that the layer design could lead to a high compression stress of \sim 240 MPa.

The magnetic stresses are added to the pre-stress in the coils in the layer design. The question remains: how much pre-stress do we need? Do we accept the loss of contact at the upper conductor of the layer by reducing the pre-stress in the coils?

3.5 A 88 mm dipole with 2 types of cables

The annex II describes a 88mm dipole having 2 types of cable, one for the inner layer and another one for the outer layer.

The cable for the inner layer consists of 34 strands of 1.35mm diameter and a copper to non-copper of 1.25.

The cable for the outer layer consists of 40 strands of 1.15 mm diameter and a copper to non-copper of 1.8.

This design having more copper in the outer layer could be interesting for the quench protection. It makes also a better use of the superconducting material.

This case has not been considered for the NED program since it would have involved the development of 2 types of cables.

The quenching bore field of 14.45 T and the electro-magnetic characteristics are similar to the design with the same cable in the 2 layers.

The pressures on the conductors are increased up to 14% due to the reduction in height of the conductors.

3.6 Base line design for a two layer, 130 mm bore dipole

The cable used here is cable CK6:

cable	strand	strand	Cu/		width	width		Jc_str at 15T,	Jc_cab at
name	diam.	number	non_Cu	height	inner	outer	insulation	4.2K	15T, 4.2K
	[mm]			[mm]	[mm]	[mm]	[mm]	$[A/mm^2]$	$[A/mm^2]$
CK6	1.25	40	1.25	26	2.175	2.375	0.2	666.67	417.1

The coil configuration is kind of homothetic to the 88 mm aperture design CK6. The iron yoke is 500 mm thick, and its internal radius is 145 mm.

The outer cylinder is 37 mm thick.

Fig. 9 Layer design, 130 mm – aperture, cross section (design CK11)

ſ									copper current
	Central field	Ι	b1	b3	b5	b7	L	E/m	density
	at 4.2K [T]	[A]	-	-	-	-	[mH/m]	[kJ/m]	$[A/mm^2]$
Ī	14.31	26310	10000	-4.981	-0.033	0.003	8.71	3013.38	964.8

3.6.1 Magnetic aspects of a 130 mm layer design dipole

The reference radius for the multipole calculation is 10 mm.

The coil configuration has not been optimized to decrease the multipole levels.

Block number	Peak field	% on load line	Peak/Central
	[T]	[%]	[%]
1	13.98	92.6	97.7
2	14.25	94.1	99.6
3	14.87	97.6	103.9
4	15.29	100.0	106.8
5	5.83	46.6	40.7
6	8.81	63.4	61.6
7	12.40	83.7	86.6

Fig. 10 Magnetic induction distribution (design CK11)

The residual magnetic field on the mid-plane just outside the shrinking cylinder is 0.03 T.

3.6.2 Electro-magnetic force aspects of a 130 mm layer design dipole

Fig. 11 Magnetic forces distribution (design CK11) -(Only the 3rd digit is significant).

P_inner	P_outer	P_1	Sum Fx
[MPa]	[MPa]	[MPa]	[MN/m]
-214.871	-170.815	99.642	20.9

3.6.3 Conductor losses in a 130 mm layer design dipole

3.6.3.1 Hysteretic losses

For the cable used in design CK11, we have:

d_{f}	h	<w></w>	Cu/non_Cu
[µm]	[mm]	[mm]	-
50	26	2.275	1.25

Taking the parameterisation described in Annex 1 for the superconductor critical density and assuming a cycle from 0.01 to 14 T and back to 0.01 T, we get for the whole magnet:

 $Q_hyst = 21278 J/m/cycle$

For 50 cycles from 11 T to 11.5 T and back to 11T, we get for the whole magnet: $Q_hyst = 10084 \text{ J/m}$

3.6.3.2 Inter-filament losses

Cu/non_Cu	L _{p,f}	$ ho_{eff}$	RRR
-	[mm]	$[\Omega.m]$	-
1.25	30	6.80E-11	250

Here $\rho_{eff} = \rho_{matrix}$: we assume that half of the filaments contribute to the transverse resistivity of the matrix. (see 3.4.3.2)

For a field ramp rate of 0.1 and 0.5 T/s we get respectively in one-meter long magnet:

Fig. 12 Inter-filaments losses in each conductor (ramp rate of 0.1 T/s)(design CK11)

3.6.3.3 Inter-strands coupling losses

For a field ramp rate of 0.1 T/s we have per meter of magnet length:

Lp,s	h	<w></w>	strand number	Ra	Rc	P_a	P_c
[mm]	[mm]	[mm]	-	[µohm]	[µohm]	[W/m]	[W/m]
182	26	2.275	40	1000	100	0.006	9.011
				1	100	6.818	9.011

And for a field ramp rate of 0.5 T/s we have per meter of magnet length:

Lp,s	h	<w></w>	strand number	Ra	Rc	P_a	P_c
[mm]	[mm]	[mm]	-	[µohm]	[µohm]	[W/m]	[W/m]
182	26	2.275	40	1000	100	0.170	225.270
				1	100	170.467	225.270

(The losses in block 5 have been neglected).

Fig. 13 Inter-strands coupling losses (through crossing resistance only, for a 0.5 T/s field ramp rate and $Rc = 100 \mu \Omega$) (design CK11)

3.6.4 Overall Characteristics of the 130 mm, two layers, base line design

Field [T]	L	E/m	Max	Fx,	Pc - 100μΩ-	Pa - 1μΩ-	Overall
/			pressure	result.	0.1T/s	0.1T/s	diameter
Current [A]	[mH/m]	[kJ/m]	[MPa]	[MN/m]	[W/m]	[W/m]	[mm]
14.3							
/ 263100	8.7	3013	215	20.9	9	6.8	1364

Layer design:keystone cableCable:40x1.25 mm\$

3.7 Base line design for a two layers, 160 mm bore dipole

The cable used here is cable CK6:

cable	strand	strand	Cu/		width	width		Jc_str at 15T,	Jc_cab at
name	diam.	number	non_Cu	height	inner	outer	insulation	4.2K	15T, 4.2K
	[mm]			[mm]	[mm]	[mm]	[mm]	$[A/mm^2]$	$[A/mm^2]$
CK6	1.25	40	1.25	26	2.175	2.375	0.2	666.67	417.1

The coil configuration is kind of homothetic to the 88 and 130 mm aperture designs. The iron yoke is 640 mm thick, and its internal radius is 160 mm. The outer cylinder is 44 mm thick.

Fig. 14 Layer design, 160 mm – aperture, cross section (design CK16)

3.7.1 Magnetic aspects of a 160 mm layer design dipole

								copper current
Central field	Ι	b1	b3	b5	b7	L	E/m	density
[T]	[A]	-	-	-	-	[mH/m]	[kJ/m]	$[A/mm^2]$
14.19	24810	10000	-5.071	-0.012	-0.001	13.18	4056.79	909.8

The reference radius for the multipole calculation is 10 mm.

The coil configuration has not been optimized to decrease the multipoles levels.

Block number	Peak field	% on load line	Peak/Central
	[T]	[%]	[%]
1	13.76	90.6	96.9
2	14.10	92.5	99.3
3	14.87	96.8	104.8
4	15.43	100.0	108.7
5	5.78	45.5	40.8
6	8.62	61.5	60.7
7	12.83	85.3	90.4

Fig. 15 Magnetic induction distribution (design CK16)

The residual magnetic field on the mid-plane at the shrinking cylinder edge is 0.015 T.

3.7.2 Electro-magnetic force aspects of a 160 mm layer design dipole

Fig. 16 Magnetic forces distribution (design CK16) -(Only the 3rd digit is significant).

P_inner	P_outer	P_1	Sum Fx
[MPa]	[MPa]	[MPa]	[MN/m]
-252.126	-201.065	92.875	24.56

3.7.3 Conductor losses in a 160 mm layer design dipole

3.7.3.1 Hysteretic losses

For the cable used in design CK16, we have:

d _f	h	<w></w>	Cu/non_Cu
[µm]	[mm]	[mm]	-
50	26	2.275	1.25

Taking the parameterisation described in Annex 1 for the superconductor critical density and assuming a cycle from 0.01 to 14 T and back to 0.01 T, we get for the whole magnet: Q hyst = 26083 J/m/cycle

For 50 cycles from 11 T to 11.5 T and back to 11T, we get for the whole magnet: $Q_hyst = 12361 \text{ J/m}$

3.7.3.2 Inter-filament losses

Cu/non_Cu	L _{p,f}	ρ_{eff}	RRR
-	[mm]	$[\Omega.m]$	-
1.25	30	6.80E-11	250

Here $\rho_{eff} = \rho_{matrix}$: we assume that half of the filaments contribute to the transverse resistivity of the matrix.

For a ramp rate for the field increase of 0.1 and 0.5 T/s we get respectively:

P_if = 23.59 W/m and 589.71 W/m

 $\tau_{if} = 211$ ms (time constant of the inter-filaments coupling currents)

Fig. 17 Inter-filaments losses in each conductor (ramp rate of 0.1 T/s)(design CK16)

3.7.3.3 Inter-strands coupling losses

For a ram	p rate for the	magnetic t	field increase	e of 0.1	T/s we have:

Lp,s	h	<w></w>	strand number	Ra	Rc	P_a	P_c
[mm]	[mm]	[mm]	-	[µohm]	[µohm]	[W/m]	[W/m]
182	26	2.275	40	1000	100	0.008	11.585
				1	100	8.397	11.585

And for a ramp rate for the magnetic field increase of 0.5 T/s we have:

Lp,s	h	<w></w>	strand number	Ra	Rc	P_a	P_c
[mm]	[mm]	[mm]	-	[µohm]	[µohm]	[W/m]	[W/m]
182	26	2.275	40	1000	100	0.209	289.625
				1	100	209.914	289.625

(The losses in block 5 have been neglected).

Fig. 18 Inter-strands coupling losses (through crossing resistance only, for a 0.5 T/s field ramp rate and $Rc = 100\mu\Omega$) (design CK16)

3.7.4 Overall Characteristics of the 160 mm, two layers, base line design

Layer design:keystone cableCable:40x1.25 mm\$

Field [T]	L	E/m	Max	Fx,	Pc - 100μΩ-	Pa - 1μΩ-	Overall
/			pressure	result.	0.1T/s	0.1T/s	diameter
Current [A]	[mH/m]	[kJ/m]	[MPa]	[MN/m]	[W/m]	[W/m]	[mm]
14.2							
/ 24810	13.2	4056	252	24.5	11.6	8.4	1688

4. SLOT DESIGN

4.1 Magnet general layout

Fig. 19 Magnet cross section (slot design)

In this design, the rectangular conductors are located in radial notches machined in a metallic structure.

The winding is performed by inserting the cables in the metallic structure, positioned horizontally, with the notches in position open upwards.

The ends are rather difficult to wind since the cable sees there a hard bending. Passing from one notch to the other will occur in the ends where the conductor from the top of a notch goes to the bottom of the other notch.

This kind of winding in an open structure and not on a mandrel has already been made at BNL (Isabelle) for a single layer design. A magnet using the slot design type has already been built at CEA Saclay [11], [12] with a NbTi cable.

It needs a good and clever tooling. This type of approach could be made with the Nb₃Sn cables, which seem to be less "nervous" than the NbTi cables.

After winding, the reaction and the impregnation could be performed in the same metallic structure, which becomes a mechanical support for the electro-magnetic forces. Due to the volume expansion of the Nb₃Sn at reaction, the conductor, located in the closed volume of the notch could need less prestress at assembly. Bladders could be incorporated in the notches to introduce a pre-stress if needed. The external mechanical structure would be the same as for the layer design. The two poles are associated by a lateral welding. The yoke is split horizontally and contained in a shrinking cylinder.

Cooling of the conductors in the notches could be made with copper drains.

CARE-Report-05-023-NED

A difficulty could be the quench protection for long magnets, which would require quench heaters incorporated in the notches. In this design, the inter-strand losses are reduced since the field is \sim parallel to the broad face of the cables. The quench back effect is then reduced except if the adjacent resistance between the strands of the cables is small.

Picture 1 shows a model magnet investigated at CEA Saclay [11]:

Picture1 Model magnet built at CEA Saclay

The advantages of the slot design compared to layer design are: more free space on the mid-plane, and about twice more margin in field on the block closest to the mid-plane with respect to the upper block as in layer magnets, which could be interesting for beam losses. The field margins are calculated at the short sample limit on the field load line.

For the slot designs considered here, the magnet aperture is 44 mm. There is 3 mm space between two adjacent blocks (wound with the same cable). The magnet is made of three blocks placed in radial notches for a 88mm dipole.

A minimum thickness of 25mm is maintained between coil and yoke

As an approach for the design, the different lengths of blocks (or notches) are correlated to get approximately an ellipsoidal shape.

4.2 Conventions and naming for the electro-magnetic force calculations

Fig. 20 Notch cross section, definition of calculated pressures.

P+ is the pressure given by the sum of all radial components of magnetic forces acting on the conductors of the notch and oriented towards the outside. P- is the same but for blocks with forces oriented towards the inside off the structure. The introduction of P+ and P- as defined in Fig 20 allows to calculate the localization of maximum pressure between two conductors in the block structure.

In all the designs investigated P + > P-, this means that conductors are pushed towards the bottom of the notch. F_notch is the resulting magnetic force on the bottom of the notch. This force is always oriented towards the outside of the structure.

Pa is the pressure given by the sum of all azimuthal components of magnetic forces acting on all the conductors of the notch (they are all oriented towards the mid-plane of the magnet).

All calculations are made both with software Roxie [6] and by analytical means [7].

4.3 Variations of design parameters for slot magnets

Annex III, IV and V present the results of parametric studies for slot designs of 88 mm and 160 mm aperture.

The critical current density of the Nb₃Sn used is again assumed to be 1500 A/mm² at 15 T, 3000 A/mm² at 12 T, at 4.2 K.

The strand diameter is 1.25 mm and the copper to non-copper ratio is 1.25.

The insulation thickness is 0.2 mm.

Several parameters, such as notch angle, notch length, number of notches, cable height, are varied in order to draw some general conclusions about the slot design type. The main difficulty is that most of these parameters are not independent, yet it is possible to catch a glimpse of the potentiality of the slot design.

4.3.1 Impact of the number of conductors

The number of conductors in each notch of the design is increased, while the angles of the notches, the cable used (CR2) and the magnet aperture (88mm) are kept identical (Annex III).

For the various design investigated in this section, the number of conductors in each notch are correlated in such a way that the overall shape of the coils can be approached with ellipses. For all the designs, the ellipses are homothetic: they have the same eccentricity: e = 0.777).

Fig. 21 homothetic growth of a slot design (3 notches with cable CR2)

The saturation in the main field curve, in the previous graph, shows that the conductors at the bottom of the notches are less effective than the ones closer to the aperture.

4.3.2 Impact of notch angle and notch length

The angle of a single notch in the design, or its length, is now changed, while the other notches are kept identical (Annex IV).

The study is made for a slot design of 88 mm aperture with 3 notches of cable CR2, and the iron yoke is modelled as infinite and of infinite permeability.

4.3.2.1 Variation of the angle of one notch (Annex IV, IV.2.1.)

The numbers of conductors in blocks are respectively 33, 25,15 for notches 1, 2, 3.

A variation of 10 degrees in the angle of any of the three notches gives a relatively low variation of the main field:

- a variation of 10 degrees of notch 1 angle gives a bore field reduction of 2.8% and an increase by 16% of the maximum pressure on the conductor in notch 1.

- a variation of 10 degrees of notch 2 angle gives a bore field reduction of 5.2% and an increase by 20% of the maximum pressure on the conductor in notch 2.

- a variation of 10 degrees of notch 2 angle gives a bore field increase of 0.1% and an increase by 20% of the maximum pressure on the conductor in notch 3.

As shown in the tables of Annex IV, the multipole harmonics are very sensitive to these angle changes. In particular the B3 and B7 coefficients are very sensitive to variation of notch 2 angle: a variation of 10 degrees (+33.3%) of the notch 2 angle gives a 660% increase of the B3 coefficient and a 3272% increase of the B7 coefficient.

The B5 coefficient is more sensitive on a variation of the notch 1 angle: 458% increase for 10 degrees variation in notch 1 angle, compared to 25% for the same variation on notch 2 angle.

4.3.2.2 Variation of the length of one notch (Annex IV, IV.2.2.)

The length of a notch, that is to say the number of conductors in the notch, is changed, while the two other notches are kept identical.

Notches angles are kept constant and are respectively 10, 30 and 50 degrees for notches 1, 2 and 3.

The tables show a low sensitivity of the main field to the notch length (this refers to the saturation shown in Fig. 21):

- Passing from 28 to 43 conductors in notch 1, the bore field increases by 2% with a number of conductors in notches 2 and 3 of 25 and 15.

The inner radius of the iron yoke is determined by the length of the longer notch, which here is always notch 1. The inner radius of the iron yoke passes from 140 to 179 mm.

- Passing from 22 to 31 conductors in notch 2, the bore field increases by 2.2% with a number of conductors in notches 1 and 3 of 35 and 15.

The inner radius of the iron yoke is 153 mm.

- Passing from 12 to 21 conductors in notch 3,the bore field decreases by 6.5% with a number of conductors in notches 1 and 2 of 35 and 15.

The inner radius of the iron yoke is 153 mm.

The multipoles coefficients are less sensitive to the notch length than to the notch angle: the variations are all below 65% for B3, B5 and B7.

The B3 coefficient is sensitive mostly to variation in the length of notch 1 and 3, and especially notch 3. Coefficients B5 and B7 show sensitivities below 10% for a variation, of at maximum 50%, of the length of any of the 3 notches.

4.3.3 Impact of notch width

The varying parameter is now the notch width, that is to say the height of the cable.

The impact study of the notch width (or cable height) on a 88 mm aperture magnet (Annex IV, IV.2.3.) is not significant enough since the variation range of the cable height is limited to 20% because of the little space available between notches in the 88 mm design.

The same study is carried out on a magnet with 160 mm aperture (and a finite iron yoke of 640 mm thick) (Annex V, V.2.).

The magnets have all 3 notches of angles 12, 34 and 56 degrees.

The total amount of superconductor in the design is kept constant.

Doubling the cable height gives a 10% increase of the main field while the self-inductance is divided by a factor 3.5 (and the quench current is approximately doubled).

Increasing the cable height gives less long notches, the main field benefits from the fact that the iron yoke is closer and that the conductors are more efficiently used (closer to the aperture).

Increasing the cable height allows also to decrease the number of conductors and so the self-inductance, which can be an issue for protection aspects.

Concerning the magnetic forces aspects, P+ decreases (-37% from 196.7 to 122.4 MPa) due to a lower cable width; on the contrary P-azi increases from -17.1 to -44.2 MPa due to larger cable height.

4.3.4 Impact of notch number

The varying parameter is the number of notches of the magnet, while the total number of conductors remains unchanged (Annex V, V.1.).

The cable used here is CR2 (with 10% critical current degradation due to cabling). The aperture of the magnet is 160 mm and the iron yoke thickness is 640mm

Passing from a design with 3 notches to 5 notches (with the same cable CR2) gives a 3.3% increase of the main field, the self-inductance remaining the same.

Increasing the number of notches gives less long notches, the main field benefits a little from the fact that the iron yoke is closer and that the conductors are more efficiently used (closer to the aperture).

Concerning the magnetic forces aspects, passing from 3 to 5 notches gives a decrease of about 48% of the maximum pressure (on a conductor) in the structure (from 205.5 to 111.7 MPa). The maximum force transmitted to the bottom of a notch in the design is also decreased by a factor 2. Increasing the number of notches allows to better distribute the magnetic forces in the structure and so helps decreasing Pmax and F notch max.

4.4 Base line design of a slot type dipole of 88 mm aperture

The cable used is CR4.

We assume a degradation of the cable critical current due to cabling of 10%.

CARE-Report-05-023-NED

cable	strand	strand	Cu/				Jc_str at 15T,	Jc_cab at
name	diam.	number	non_Cu	height	width	insulation	4.2K	15T, 4.2K
	[mm]			[mm]	[mm]	[mm]	$[A/mm^2]$	$[A/mm^2]$
CR4	1.25	24	1.25	15.6	2.175	0.2	666.67	428.9

The notches 1, 2 and 3 have respectively 38, 27 and 16 conductors; their angles are 12, 36 and 60 degrees.

The iron yoke thickness is 350 mm. The outer cylinder is 28 mm thick

4.4.1 Magnetic aspects of a 88 mm slot design dipole

								copper current
Central field	Ι	b1	b3	b5	b7	L	Em	density
at 4.2 K[T]	[A]	-	-	-	-	[mH/m]	[kJ/m]	$[A/mm^2]$
13.76	16905	10000	-24.045	-0.041	0.020	13.28	1897.8	1033.2

The reference radius for the multipole calculation is 10 mm.

Fig. 22 Magnetic induction distribution (design CRT4_opt)

conductor number	Peak field	% on load line	Peak/Central	
	[T]	[%]	[%]	
1	13.27	89.54	96.4	
39	13.71	92.03	99.6	
66	15.12	100.01	109.8	

Block 1, 39 and 66 are the inner most blocks of notches 1, 2 and 3.

Fig. 23 Transfer function (design CRT4_opt)

The difference between the central field actually obtained in the magnet and the linear extrapolation of the low field load line is of 5.31 % at the quench field of 13.76 T in the bore.

4.4.2 Electro-magnetic forces aspects of a 88 mm slot design dipole

Fig. 24 Magnetic forces (design CRT4_opt) -(Only the 3rd digit is significant).
Notch	P+	P-	P -azi	Sum Fx	F_notch
	[MPa]	[MPa]	[MPa]	[Tonnes/m]	[MN/m]
1	135.30	-17.59	-14.53	418.42	1.836258
2	97.02	-10.22	-42.19	563.76	1.353955
3	49.48	-3.15	-69.41	568.19	0.722792
				1550.37	

Below (Fig. 25) is shown the distribution of the azimuthal pressure acting on each conductor of each notch, with respect to the average pressure for the whole notch.

Fig. 25 Azimuthal pressure distribution (with respect to the average value for the notch) (design CRT4_opt)

For notches 1, 2, 3 the average azimuthal pressures are respectively -17.20 MPa, -49.95 MPa and -82.18 MPa.

(Here the insulation surface is not taken into account for the pressure calculation).

The shear stress between two adjacent conductors in a notch is given by the difference between the azimuthal components of the forces acting on the two blocks, and divided by the height of the cable.

The distribution of the shear stresses between conductors is shown in Fig. 26.

Fig. 26 Shear stress distribution (design CRT4_opt)

The shear stresses, acting mainly on the insulation, are acceptable.

4.4.3 Conductor Losses of a 88 mm slot design dipole

4.4.3.1 Hysteretic losses

For the cable used in design CRT4_opt, we have:

d _f	h	W	Cu/non_Cu
[µm]	[mm]	[mm]	-
50	15.6	2.175	1.25

Taking the parameterisation described in Annex 1 for the superconductor critical density and assuming a cycle from 0.01 to 14 T and back to 0.01 T, we get for the whole magnet:

$$Q_hyst = 15946 J/m/cycle$$

4.4.3.2 Inter-filament losses

Cu/non_Cu	L _{p,f}	$ ho_{eff}$	RRR
-	[mm]	$[\Omega.m]$	-
1.25	30	6.80E-11	250

Here $\rho_{eff} = \rho_{matrix}$: we assume that half of the filaments contribute to the transverse resistivity of the matrix.

The ramp rate for the magnetic field increase is 0.1 T/s. We then get:

 $P_{if} = 10.67 \text{ W/m}$ $\tau_{if} = 211 \text{ ms}$ (time constant of the inter-filaments coupling currents)

Fig. 27 Inter-filament coupling losses in each conductor (design CRT4_opt)

4.4.3.3 Inter-strands coupling losses:

The ramp rate for the magnetic field increase is 0.1 T/s.

Lp,s	h	W	strand number	Ra	Rc	P_a	P_c
[mm]	[mm]	[mm]	-	[µohm]	[µohm]	[W/m]	[W/m]
110	15.6	2.175	24	1000	100	0.002	0.681
				1	100	2.392	0.681

Fig. 28 Inter-strands losses in each conductor of the 3 notches for $Ra = 1000\mu\Omega$ and $Rc = 100 \mu\Omega$ At a ramp rate of 0.1 T/s(design CRT4_opt)

4.4.4 Overall Characteristics of the 88 mm, base line slot design

Layer design: rectangular cable Cable: 24x1.25 mm\$

	E/ 111	Max	Fx,	Pc - 100μΩ-	Pa - 1μΩ-	Overall
/ Current [A] [mH/	m] [kJ/m]	pressure [MPa]	result. [MN/m]	0.1T/s [W/m]	0.1T/s [W/m]	diameter [mm]
13.7	1000	125	15.5	0.7	2.4	1000

4.5 Base line designs for a slot type dipole of 130 mm aperture

The cable used is CR4:

cable	strand	strand	Cu/				Jc_str at 15T,	Jc_cab at
name	diam.	number	non_Cu	height	width	insulation	4.2K	15T, 4.2K
	[mm]			[mm]	[mm]	[mm]	$[A/mm^2]$	$[A/mm^2]$
CR4	1.25	24	1.25	15.6	2.175	0.2	666.67	428.9

We now have 4 notches per quadrant in the structure. The notches 1, 2, 3 and 4 have respectively 40, 32, 22 and 14 conductors; their angles are 9, 25, 41 and 57 degrees. The iron yoke inner radius is 193 mm and its thickness is 500mm.

The outer cylinder is 37 mm thick.

4.5.1 Magnetic aspects of a 130 mm slot design dipole

								copper current
Central field	Ι	b1	b3	b5	b7	L	E/m	density
[T]	[A]	-	-	-	-	[mH/m]	[kJ/m]	$[A/mm^2]$
14.03	15825	10000	0.863	-0.223	0.003	27.15	3439.0	967.15

The reference radius for the multipole calculation is 10 mm.

Block number	Peak field	% on load line	Peak/Central
	[T]	[%]	[%]
1	13.84	91.84	98.6
41	14.08	93.20	100.3
73	14.43	95.17	102.8
95	15.28	100.00	108.9

Fig. 29 Magnetic induction distribution (design CRT9)

4.5.2 Electro-magnetic force aspects of a130 mm slot design dipole

Fig. 30 Magnetic forces on conductors (design CRT9) -(Only the 3rd digit is significant).

notch	P+	Р-	P -azi	Sum Fx	F_notch
	[MPa]	[MPa]	[MPa]	[MN/m]	[MN/m]
1	140.44	-23.11	-11.10	4.16	1.830294
2	115.86	-16.29	-33.54	5.16	1.553256
3	79.49	-6.89	-53.35	5.68	1.13269
4	44.96	-1.65	-71.97	5.09	0.67558
				20.09	

Below is shown the distribution of the azimuthal pressure acting on each conductor of each notch, with respect to the average pressure for the whole notch:

Fig. 31 Azimuthal pressure distribution (with respect to the average value for the notch) (design CRT9)

For notches 1, 2, 3 and 4 the average azimuthal pressures are respectively: -13.14 MPa, -39.71 MPa, -63.16 MPa and -85.20 MPa. (Here the insulation surface is not taken into account for the pressure calculation).

The shear stresses between conductors are presented in Fig 32.

Fig. 32.Shear pressure distribution (design CRT9)

4.5.3 Conductor Losses in a 130 mm slot design dipole

4.5.3.1 Hysteretic losses

For the cable used in design CRT9, we have:

d _f	h	W	Cu/non_Cu
[µm]	[mm]	[mm]	-
50	15.6	2.175	1.25

Taking the parameterisation described in Annex 1 for the superconductor critical density and assuming a cycle from 0.01 to 14 T and back to 0.01 T, we get for the whole magnet: Q hyst = 21261 J/m/cycle

For 50 cycles from 11 T to 11.5 T and back to 11T, we get for the whole magnet: Q hyst = 10076 J/m

4.5.3.2 Inter-filament losses

Cu/non_Cu	L _{p,f}	$ ho_{eff}$	RRR
-	[mm]	$[\Omega.m]$	-
1.25	30	6.80E-11	250

Here $\rho_{eff} = \rho_{matrix}$: we assume that half of the filaments contribute to the transverse resistivity of the matrix.

For a ramp rate for the field increase of 0.1 and 0.5 T/s we get respectively:

P_if = 17.57 W/m and 439.37 W/m τ if = 211 ms (time constant of the inter-filaments coupling currents)

Fig. 33 Inter-filaments losses in each conductor of the 4 notches (field ramp rate of 0.1 T/s) (design CRT9)

EU contract number RII3CT-2003-506395

4.5.3.3 Inter-strands coupling losses

For a ramp rate for the magnetic field increase of 0.1 T/s we have for the whole magnet:

Lp,s	h	W	strand number	Ra	Rc	P_a	P_c
[mm]	[mm]	[mm]	-	[µohm]	[µohm]	[W/m]	[W/m]
110	15.6	2.175	24	1000	100	0.004	1.189
				1	100	4.173	1.189

And for a ramp rate for the magnetic field increase of 0.5 T/s we have:

Lp,s	h	W	strand number	Ra	Rc	P_a	P_c
[mm]	[mm]	[mm]	-	[µohm]	[µohm]	[W/m]	[W/m]
110	15.6	2.175	24	1000	100	0.104	29.736
				1	100	104.32	29.736

Fig. 34 Inter-strands losses for each conductor (for a field ramp rate of 0.5 T/s and Ra = 1000 $\mu\Omega$, Rc = 100 $\mu\Omega$) (design CRT9)

4.5.4 Another design, with larger cable, of a 130 mm slot type dipole

It appears that using a cable of 24 strands leads to a rather high value of self-inductance, which can make the protection in case of a quench more difficult. Using a larger cable will reduce the self-inductance.

The cable used is now CR7:

cable	strand	strand	Cu/				Jc_str at 15T,	Jc_cab at
name	diam.	number	non_Cu	height	width	insulation	4.2K	15T, 4.2K
	[mm]			[mm]	[mm]	[mm]	$[A/mm^2]$	$[A/mm^2]$
CR7	1.25	32	1.25	20.8	2.175	0.2	666.67	431.62

We now have only 3 notches per quadrant in the structure.

The notches 1, 2, and 3 have respectively 39, 27 and 15 conductors; their angles are 9, 25 and 41 degrees.

The iron yoke inner radius is 191 mm and its thickness is 500mm. The outer cylinder is 37 mm thick. This gives the following magnetic field distribution:

Fig. 35. Magnetic field distribution of a 130 mm slot design (design CRT9_31)

								copper current
Central field	Ι	b1	b3	b5	b7	L	E/m	density
[T]	[A]	-	-	-	-	[mH/m]	[kJ/m]	$[A/mm^2]$
13.92	21000	10000	-1.192	-0.217	0.003	15.22	3356.25	962.57

The reference radius for the multipole calculation is 10 mm.

conductor number	Peak field	% on load line	Peak/Central
	[T]	[%]	[%]
1	13.85	91.85	99.5
40	14.24	94.04	102.3
67	15.30	100.05	109.9

The electromagnetic forces in the structure are:

P+	Р-	P -azi	Sum Fx	F_notch
[MPa]	[MPa]	[MPa]	[MN/m]	[MN/m]
139.02	-21.87	-19.36	5.58	2.436738
98.82	-11.85	-56.99	7.40	1.809121
50.04	-2.37	-89.87	6.82	0.991691
			19.80	

Fig. 36. Magnetic forces distribution (design CRT9 31) -(Only the 3rd digit is significant).

Below is shown the distribution of the azimuthal pressure acting on each conductor of each notch, with respect to the average pressure for the whole notch:

Fig. 37.Azimuthal pressure distribution (with respect to the average value for the notch) (design CRT9_31)

For notches 1, 2 and 3 the average azimuthal pressures are respectively: -22.92 Mpa, -67.47 Mpa, and -106.40 Mpa. (Here the insulation surface is not taken into account for the pressure calculation).

The shear stresses between conductors are presented in Fig 38.

Fig. 38 Shear stress distribution (design CRT9_31)

For the calculations of the conductor losses, we assume the following parameters for the cable and strands:

df	L _{p,f}	L _{p,s}	Cu/non Cu	$ ho_{eff}$	RRR
[µm]	[mm]	[mm]	-	[Ω.m]	-
50	30	146	1.25	6.80 E-11	250

This then gives:

Hysteretic losses:

field cycle	number of cycle	Q_hyst
[T]	-	[J/m]
0.01 -> 14 -> 0.01	1	21261.5
11 -> 11.5 -> 11	50	10076.1

Inter-filament coupling losses:

τ_if	field ramp rate	P_if
[ms]	[T/s]	[W/m]
211	0.1	17.63
211	0.5	440.69

Inter-strands coupling losses:

field ramp rate	Ra	Rc	P_a	P_c
[T/s]	[µohm]	[µohm]	[W/m]	[W/m]
0.1	1000	100	0.727	3.696
0.1	1	100	7.266	3.696
0.5	1000	100	0.182	92.404
0.5	1	100	182.652	92.404

	cable	number		number	iron yoke	iron yoke	overall
name	name	of notches	notches angles	of conductors	inner radius	thickness	radius
-	-	-	[deg]	-	[mm]	[mm]	[mm]
CRT9	CR4	4	9, 25, 41, 57	40, 32, 22, 14	193	500	718
CRT9_31	CR7	3	9, 25, 41	39, 27, 15	191	500	716

4.5.5 Comparison of the two 130 mm slot design CRT9 and CRT9_31

cable	strand	strand	Cu/				Jc_str at 15T,	Jc_cab at
name	diam.	number	non_Cu	height	width	isolation	4.2K	15T, 4.2K
	[mm]			[mm]	[mm]	[mm]	$[A/mm^2]$	$[A/mm^2]$
CR4	1.25	24	1.25	15.6	2.175	0.2	666.67	428.9
CR7	1.25	32	1.25	20.8	2.175	0.2	666.67	431.62

name	Central field	current	L	E/m	copper current density	P_if (0.1T/s)	$\frac{P_c}{(Rc = 100m\Omega, 01T/s)}$
-	[T]	[A]	[mH/m]	[kJ/m]	[A/mm ²]	[W/m]	[W/m]
CRT9	14.03	15825	27.15	3438.99	967.15	17.575	1.189
CRT9_31	13.92	21000	15.22	3356.25	962.57	17.627	3.696

				Sum Fx	
name	P+ max	P- max	P -azi max	total	F_notch max
-	[MPa]	[MPa]	[MPa]	[MN/m]	[MN/m]
CRT9	140.44	-23.11	-71.97	20.09	1.830294
CRT9_31	139.02	-21.87	-89.87	19.8	2.436738

4.6 Base line designs for a slot type dipole of 160 mm aperture

The cable used is CR4:

cable	strand	strand					Jc_str at 15T,	Jc_cab at
name	diam.	number	Cu/non_Cu	height	width	insulation	4.2K	15T, 4.2K
	[mm]			[mm]	[mm]	[mm]	$[A/mm^2]$	$[A/mm^2]$
CR4	1.25	24	1.25	15.6	2.175	0.2	666.67	428.9

We now have 5 notches per quadrant in the structure.

The blocks 1, 2, 3, 4 and 5 have respectively 38, 33, 25, 18 and 12 conductors; their angles are 8, 21.5, 35, 48.5 and 62 degrees.

The iron yoke inner radius is 203 mm and its thickness is 500mm. The outer cylinder is 44 mm thick.

EU contract number RII3CT-2003-506395

4.6.1 Magnetic aspects of a 160 mm slot design dipole

								copper current
Central field	Ι	b1	b3	b5	b7	L	E/m	density
[T]	[A]	-	-	-	-	[mH/m]	[kJ/m]	$[A/mm^2]$
13.97	15420	10000	-1.518	-0.074	0.001	37.37	4443.4	942.4

The reference radius for the multipole calculation is 10 mm.

Fig. 39. Magnetic induction distribution (design CRT14)

	conductor number	Peak field	% on load line	Peak/Central
		[T]	[%]	[%]
ſ	1	13.70	90.71	98.1
	39	13.92	91.97	99.7
	72	14.11	93.05	101.0
	97	14.46	95.02	103.5
	115	15.35	100.03	109.9

4.6.2 Electro-magnetic force aspects of a 160 mm slot design dipole

notch	P+	Р-	P -azi	Sum Fx	F notch
	[MPa]	[MPa]	[MPa]	[MN/m]	[MN/m]
1	135.34	-22.56	-8.95	3.73	1.759409
2	117.44	-19.82	-28.51	4.62	1.522868
3	88.64	-11.20	-45.42	5.34	1.208090
4	58.71	-5.18	-60.13	5.29	0.835132
5	32.75	-1.42	-74.34	4.52	0.488760
				23.50	

Fig. 40. Magnetic forces on conductors (design CRT14) -(Only the 3rd digit is significant).

Below is shown the distribution of the azimuthal pressure acting on each conductor of each notch, with respect to the average pressure for the whole notch.

Fig. 41 Azimuthal pressure distribution (with respect to the average value for the notch) (design CRT14)

For notches 1, 2, 3, 4 and 5; the average azimuthal pressures are respectively: -10.59 MPa, -33.76 MPa, -53.78 MPa, -71.19 MPa and -88.02 MPa.

The shear stresses between conductors are presented in Fig. 42.

Fig. 42 Shear stress distribution (design CRT14)

4.6.3 Conductor Losses in a 160 mm slot design dipole

4.6.3.1 Hysteretic losses

For the cable used in design CRT14, we have:

d_{f}	h	W	Cu/non_Cu
[µm]	[mm]	[mm]	-
50	15.6	2.175	1.25

Taking the parameterisation described in Annex 1 for the superconductor critical density and assuming a cycle from 0.01 to 14 T and back to 0.01 T, we get for the whole magnet: $Q_hyst = 24804 \text{ J/m/cycle}$

For 50 cycles from 11 T to 11.5 T and back to 11T, we get for the whole magnet: $Q_hyst = 11755 J/m$

4.6.3.2 Inter-filament losses

Cu/non_Cu	L _{p,f}	$ ho_{eff}$	RRR
-	[mm]	$[\Omega.m]$	-
1.25	30	6.80E-11	250

Here $\rho_{eff} = \rho_{matrix}$: we assume that half of the filaments contribute to the transverse resistivity of the matrix.

For a ramp rate for the field increase of 0.1 and 0.5 T/s we get respectively:

P_if = 21.87 W/m and 546.85 W/m $\tau_if = 211$ ms (time constant of the inter-filaments coupling currents)

Fig. 43. Inter-filaments losses in each conductor of the 5 notches (field ramp rate of 0.1 T/s) (design CRT14)

4.6.3.3 Inter-strand coupling losses

For a ramp rate for the magnetic field increase of 0.1 T/s, we have for the whole magnet:

Lp,s	h	W	strand number	Ra	Rc	P_a	P_c
[mm]	[mm]	[mm]	-	[µohm]	[µohm]	[W/m]	[W/m]
110	15.6	2.175	24	1000	100	0.005	1.526
				1	100	5.350	1.526

And for a ramp rate for the magnetic field increase of 0.5 T/s we have:

Lp,s	h	<w></w>	strand number	Ra	Rc	P_a	P_c
[mm]	[mm]	[mm]	-	[µohm]	[µohm]	[W/m]	[W/m]
110	15.6	2.175	24	1000	100	0.133	38.154
				1	100	133.759	38.154

Fig. 44. Inter-strands losses for each conductor (for a field ramp rate of 0.5 T/s and Ra = 1000 $\mu\Omega$, Rc = 100 $\mu\Omega$) (design CRT14)

4.6.4 Another design, with larger cable, of a 160 mm slot type dipole

The cable used is now CR7:

cable	strand	strand	Cu/				Jc_str at 15T,	Jc_cab at
name	diam.	number	non_Cu	height	width	insulation	4.2K	15T, 4.2K
	[mm]			[mm]	[mm]	[mm]	$[A/mm^2]$	$[A/mm^2]$
CR7	1.25	32	1.25	20.8	2.175	0.2	666.67	431.62

We now have only 4 notches per quadrant in the structure.

The notches 1, 2, 3 and 4 have respectively 30, 23, 14 and 8 conductors; their angles are 9.5, 26.5, 43.5 and 60.5 degrees.

The iron yoke inner radius is 183 mm and its thickness is 640mm.

EU contract number RII3CT-2003-506395

This gives the following magnetic field distribution:

Fig. 45. Magnetic field distribution of a 160 mm slot design (design CRT14_31)

								copper current
Central field	Ι	b1	b3	b5	b7	L	E/m	density
at 4.2 k [T]	[A]	-	-	-	-	[mH/m]	[kJ/m]	$[A/mm^2]$
13.87	23670	10000	3.935	-0.079	0.001	14.13	3958.78	1084.95

The reference radius for the multipole calculation is 10 mm.

Block number	Peak field	% on load line	Peak/central
	[T]	[%]	[%]
1	14.11	95.03	101.7
31	14.22	95.68	102.5
54	14.25	95.85	102.8
69	15.00	100.08	108.2

The electromagnetic forces in the structure are:

Block	P+	P-	P -azi	Sum Fx	F_notch
	[MPa]	[MPa]	[MPa]	[MN/m]	[MN/m]
1	128.77	-25.92	-19.94	4.73	2.139464
2	98.45	-16.43	-59.44	6.21	1.705936
3	57.03	-4.83	-89.37	6.02	1.085730
4	25.29	-0.90	-111.69	4.51	0.507338
				21.48	

Fig. 46. Magnetic forces distribution (design CRT14 31) -(Only the 3rd digit is significant).

Below is shown the distribution of the azimuthal pressure acting on each conductor of each notch, with respect to the average pressure for the whole notch:

Fig.47. Azimuthal pressure distribution (with respect to the average value for the notch) (design CRT14 31)

For notches 1, 2, 3 and 4 the average azimuthal pressures are respectively: -23.61 Mpa, -70.38 Mpa, -105.81 Mpa and -132.23 Mpa.

(Here the insulation surface is not taken into account for the pressure calculation).

The shear stresses between conductors are presented in Fig. 48.

Fig. 48. Shear stress distribution (design CRT14_31)

For the calculations of the conductor losses, we assume the following parameters for the cable and strands:

df	L _{p,f}	L _{p,s}	Cu/non Cu	ρ_{eff}	RRR
[µm]	[mm]	[mm]	-	$[\Omega.m]$	-
50	30	146	1.25	6.80E-11	250

This then gives:

Hysteretic losses:

field cycle	number of cycle	Q_hyst
[T]	-	[J/m]
0.01 -> 14 -> 0.01	1	19686.61
11 -> 11.5 -> 11	50	9329.7

Inter-filament coupling losses:

τ_if	field ramp rate	P_if
[ms]	[T/s]	[W/m]
211	0.1	18.56
211	0.5	463.9

Inter-strands coupling losses:

field ramp rate	Ra	Rc	P_a	P_c
[T/s]	[µohm]	[µohm]	[W/m]	[W/m]
0.1	1000	100	0.008	3.988
0.1	1	100	7.837	3.988
0.5	1000	100	0.196	99.700
0.5	1	100	195.937	99.700

EU contract number RII3CT-2003-506395

	cable	number		number	iron yoke	iron yoke	overall
name	name	of notches	notches angles	of conductors	inner radius	thickness	radius
-	-	-	[deg]	-	[mm]	[mm]	[mm]
			8, 21.5, 35,	38, 33, 25,			
CRT14	CR4	5	48.5, 62	18, 12	203	640	868
			9.5, 26.5,	30, 23,			
CRT14_31	CR7	4	43.5, 60.5	14, 8	183	640	848

4.6.5 Comparison of the two 160 mm slot design CRT14 and CRT14_31

cable	strand	strand	Cu/				Jc_str at 15T,	Jc_cab at
name	diam.	number	non_Cu	height	width	insulation	4.2K	15T, 4.2K
	[mm]			[mm]	[mm]	[mm]	$[A/mm^2]$	$[A/mm^2]$
CR4	1.25	24	1.25	15.6	2.175	0.2	666.67	428.9
CR7	1.25	32	1.25	20.8	2.175	0.2	666.67	431.62

name	Central field	current	L	F/m	copper	P_{if}	$\frac{P_c}{(Rc = 100m\Omega, 01T/s)}$
-	[T]	[A]	[mH/m]	[kJ/m]	[A/mm ²]	[W/m]	[W/m]
CRT14	13.97	15420	37.37	4443.37	942.4	21.874	1.526
CRT14_31	13.87	23670	14.13	3958.78	1084.95	18.556	3.988

				Sum Fx	
name	P+ max	P- max	P -azi max	total	F_notch max
-	[MPa]	[MPa]	[MPa]	[MN/m]	[MN/m]
CRT14	135.34	-22.56	-74.34	23.50	1.759409
CRT14_31	128.77	-25.92	-111.69	21.47	2.139464

5. COMPARISON OF SLOT AND LAYER DESIGNS AS A FUNCTION OF APERTURE

cable	strand	strand	Cu/			,	Jc_str at 15T,	Jc_cab at
name	diam.	number	non_Cu	height	width	insulation	4.2K	15T, 4.2K
	[mm]			[mm]	[mm]	[mm]	$[A/mm^2]$	$[A/mm^2]$
CK6	1.25	40	1.25	26	2.275	0.2	666.67	417.06
CR4	1.25	24	1.25	15.6	2.175	0.2	666.67	428.92
CR7	1.25	32	1.25	20.8	2.175	0.2	666.67	431.62

The cables used in the various designs investigated are:

The cable CK6 is a keystone cable; the width reported above is the mid-width of the cable (the inner and outer width are respectively 2.175 and 2.375mm).

Geometrical dimensions for layer designs:

		cable	number of	iron yoke	iron yoke	overall
name	aperture	name	conductors	inner radius	thickness	radius
-	[mm]	-	-	[mm]	[mm]	[mm]
CK6_opt	88	CK6	45	124	350	502
CK11	130	CK6	62	145	500	682
CK16	160	CK6	76	160	640	844

Geometrical dimensions for slot designs:

		cable	number of	number of	iron yoke	iron yoke	overall
name	aperture	name	notches	conductors	inner radius	thickness	radius
-	[mm]	-	-	-	[mm]	[mm]	[mm]
CRT4_opt	88	CR4	3	38, 27, 16	167	350	545
CRT9_31	130	CR7	3	39, 27, 15	191	500	728
CRT14_31	160	CR7	4	30, 23, 14, 8	183	640	867

Magnetic field aspects for layers designs:

		central				copper	
name	aperture	field	current	inductance	stored energy	current density	peak field
-	[mm]	[T]	[A]	[mH/m]	[kJ/m]	$[A/mm^2]$	[T]
CK6_opt	88	14.42	28530	4.43	1803.67	1046.18	15.09
CK11	130	14.31	26310	8.71	3013.38	964.77	15.29
CK16	160	14.19	24810	13.18	4056.79	909.77	15.43

		Central				copper	peak field
name	aperture	field	current	inductance	stored energy	current density	on conduct.
-	[mm]	[T]	[A]	[mH/m]	[kJ/m]	$[A/mm^2]$	[T]
CRT4_opt	88	13.76	16905	13.28	1897.78	1033.16	15.12
CRT9_31	130	13.92	21000	15.22	3356.25	962.57	15.30
CRT14_31	160	13.87	23670	14.13	3958.78	1084.95	15.00

Magnetic field aspects for slot designs:

Electro-magnetic forces aspects for layer designs:

name	aperture	Sum P -azi inner layer	Sum P -azi outer layer	Pressure Block 1	Sum Fx
-	[mm]	[MPa]	[MPa]	[MPa]	[MN/m]
CK6_opt	88	-147.830	-141.226	111.068	15.85
CK11	130	-214.871	-170.815	99.642	20.89
CK16	160	-252.126	-201.065	92.875	24.56

Electro-magnetic forces aspects for slot designs:

		maximum	maximum	maximum	
name	aperture	P +	P -azi	F notch	Sum Fx
-	[mm]	[MPa]	[MPa]	[MN/m]	[Tonnes/m]
CRT4_opt	88	135.299	-69.41	1.836	15.5
CRT9_31	130	139.022	-89.87	2.437	19.8
CRT14_31	160	128.774	-111.69	2.139	21.5

Conductor losses aspects for layer designs:

			0		
		Q_hyst	P_if	P_a	P_c
name	aperture	0.01->14->0.01 T	at 0.1 T/s	Ra = $1\mu\Omega$, at 0.1T/s	$Rc = 100\mu\Omega$, at 0.1T/s
-	[mm]	[J/m/cycle]	[W/m]	[W/m]	[W/m]
CK6_opt	88	15444	12.47	5.000	3.964
CK11	130	21278	18.67	6.818	9.011
CK16	160	26083	23.59	8.397	11.585

Conductor losses aspects for slot designs:

		Q_hyst	P_if	P_a	P_c
name	aperture	0.01->14->0.01 T	at 0.1T/s	Ra = 1 mW, at $0.1 T/s$	Rc = 100 mW, at 0.1T/s
-	[mm]	[J/m/cycle]	[W/m]	[W/m]	[W/m]
CRT4_opt	88	15946	10.67	2.392	0.681
CRT9_31	130	21261	17.63	7.266	3.696
CRT14 31	160	19686	18.56	7.837	3.988

EU contract number RII3CT-2003-506395

6. MULTIPOLE OPTIMISATION IN THE SLOT DESIGN

The following paragraph shows that it is possible to optimize the multipole harmonics in the slot design by inserting spacers in the blocks.

The calculations are made for a 88mm dipole with a conductor of 20 strands (CR2) but the principle is valid for all the designs.

(It is the magnet called CRT2_315 in Annex IV).

	total number	block	iron yoke
cable name	of conductors	angle	internal radius
-	-	[deg]	[mm]
CR2	80	15, 40, 65	172

						r	
Central							copper
C 1 1	*	1.0		1 -	-		
field	I	b3	b5	b7	L	E/m	current density
	F A 3	F10-47	F10-47	F10-41	Г ТТ/ Л	F1 T/ 1	
at 4.2 K[1]	[A]	[10]]	[10]	[10]	[mH/m]	[KJ/m]	[A/mm ⁻]
12.01	16470	11 1571	0 2011	0.0120	12 42	1694.05	1207.80
12.01	104/0	-44.43/1	0.2011	-0.0139	12.42	1004.05	1207.89

The following graphs show the variation of 3, b5 and b7 when a conductor is replaced by a dummy; the current is kept at 16470A in all other conductors.

The dummy number or dummy position (X-axis in Fig. 49, 50 and 51) is the position of the conductor in the notch, which is replaced by a dummy (conductor 1 is the closest conductor to the aperture).

b3 is influenced by dummy conductors in notches 1 and 3, (Fig. 49):

Fig. 49 Variation of b3 for dummy conductor in notches 1, 2 and 3

b5 is influenced by dummy conductors in notches 2 and 3, (Fig. 50):

Fig. 50. Variation of b5 for dummy conductor position in notches 1, 2 and 3

b7 is influenced by dummy conductors in notches 1 and 2, (Fig. 51):

Fig. 51. Variation of b7 for dummy conductor position in notches 1, 2 and 3

7. MULTIPOLE COMPENSATION AT LOW FIELD

The Nb₃Sn strands developed for high field magnets have a higher magnetisation due to a larger effective filament diameter (50 μ m instead of 6 μ m for NbTi).

It is possible to compensate this effect by introducing in the coils spacers made of ferromagnetic material.

The following graphs (Fig. 42 and 43) show the influence of replacing the copper wedge between to adjacent blocks by an iron wedge in the 88mm layer magnet (design CK6).

Five positions of the iron wedge are investigated:

- pos. 1 is between blocks 1 and 2 of the inner layer
- pos. 2 is between blocks 2 and 3 of the inner layer
- pos. 3 is between blocks 3 and 4 of the inner layer
- pos. 4 is between blocks 1 and 2 of the outer layer
- pos. 5 is between blocks 2 and 3 of the inner layer

All wedges, in the 5 positions, have the same cross section surface (the one of the smallest wedge in the design: 122.8mm²).

The reference radius for the multipole calculation is 10 mm.

Fig. 52. Variation of b3 as a function of the iron wedge position

Fig. 53. Variation of b5 as a function of the iron wedge position

It is also possible to modulate the influence of the iron wedge by changing its surface as shown below for the b3 variation (Fig.54):

Fig. 54. Variation of b3 as a function of the iron wedge surface (iron wedge in pos. 5)

(The surfaces are given in mm^2)

8. CONCLUSIONS

8.1 The preliminary magnet designs, made for 2 types of magnet concept, have shown that a Nb₃Sn strand of 1.25 mm Φ and a copper to non-copper of 1.25 was suitable to reach 15 T on the conductor in high field and large bore dipoles, if a critical current density of 1500 A/mm² in the non-copper part is obtained at 15 T and 4.2 K.

8.2 At 4.2 K, the bore field obtained in the 2 types of magnet concept is around 14 T for 15 T quenching on the conductor. To reach 15 T, at 4.2 K in the bore field, the critical current density should be increased by 10 %. At 1.9 K, the bore fields can attain 15 T.

8.3 In the layer design, the fields are around 14.3 T with a 26 mm wide cable for the 3 studied apertures of 88, 130, 160 mm. The layer design magnet is limited for apertures larger than 88 mm by the high transversal pressures (150-200 MPa) on the cable leading to a supplementary current degradation of the cable in brittle materials. The mechanical design of the layer structure foresees a pre-stress of the coils before energization. The value of the pre-stress depends on the coil mechanical characteristics (Apparent Young's modulus, differential contraction).

8.4 In the slot design, the field values calculated are around 13.9 T with cable width of 15.6 and 20.8 mm. The slot design uses rectangular cables and presents smaller pressures on the cables. This design seems more adapted to large bore dipoles. Opposed to the layer design, which is limited vertically in the number of conductors, the slot design has no lateral limitation. But the conductors are more distant from the bore and the design has a less efficient transfer function. The self-inductance can be modulated by the choice of the height of the cable.

The mid-plane is free of conductors on a 4 mm gap. The temperature margin of the cable close to the mid-plane is larger in the layer design. These characteristics are interesting since the beam losses have a major horizontal distribution.

It has been shown that the multipole contents can be controlled in the slot design by an appropriate choice of the notch angle or by inserting inert conductors (spacers) in the slots. The sc cable losses are lower due to a field distribution more parallel to the cable broad face.

Due to the cable hard bend in the coil ends, the coil winding stays a challenge and would need R&D.

8.5 For the NED dipole having an aperture of 88 mm, the layer design is then more appropriate.

8.6 It has been shown in the present report that the high magnetisation of the filaments leading to high multipole content up to 2 T can be compensated by the insertion of ferromagnetic material in the magnet design. The average filament size of 50 μ m can be accepted in the strand specification from the multipole point of view.

REFERENCES

- [1] CARE ref : <u>http://esgard.lal.in2p3.fr/Project/Activities/current/CARE</u>
- [2] "High Field Accelerator Magnet R&D in Europe"
 A. Devred, D.E. Baynham, L. Bottura, M. Chorowski, P. Fabbricatore, D. Leroy, A. den Ouden, J.M. Rifflet, L. Rossi, O. Vincent-Viry and G. Volpini IEEE Trans. Appl. Supercond., Vol.14 No.2, pp.339-344, 2004.
- [3] "The USA experience on Nb₃Sn and Bi-based superconductors and future plans" *R. Scanlan* HHH-AMT WAMS (Workshop on Accelerator Magnet Superconductors), 22-24 March 2004, Archamps, France.
 <u>http://amt.web.cern.ch/amt/activities/workshops/WAMS2004/</u>
- "Design and Manufacture of a Large Bore 10 T Superconducting Dipole for the CERN Cable Test Facility"
 D. Leroy, G. Spigo, A. Verweij, H. Boschmann, R. Dubbeldam, J. Gonzalez-Pelayo IEEE Trans. Appl. Supercond., Vol 10, No.1. pp178, March 2000.
- "Construction of a 56 mm Aperture High-Field Twin-Aperture Superconducting Dipole Model Magnet for the LHC"
 J. Ahlbaeck, D. Leroy, L. Oberli, D. Perini, J. Salminen, M. Savalainen, J. Soini, G. Spigo IEEE transactions on Magnetics, Vol.32, No 4, pp.2097, July 1996.

"Design Features and Performances of a 10 T Twin Aperture Model Dipole for LHC" D. Leroy, L. Oberli, D. Perini, A. Siemko, G. Spigo Proceedings of the 15 th International Conference on Magnet Technology, Beijing, China (1997), Science Press.

- "ROXIE: Routine for the optimization of magnet X-sections, inverse field calculation and coil end design"
 S. Russenschuck
 Proceedings of the first international Roxie users meeting and workshop, 16-18 March 1998, CERN, Switzerland
- [7] "2D Magnetic induction analytical calculation"
 O. Vincent-Viry
 CERN/AT/MAS Internal Note 2003-10, November 2003
- [8] "Electrodynamics of superconducting cables in accelerator magnets" *A. P. Verweij* PHD Thesis, Twente University, The Nederlands, 1995
- [9] G.Spigo Private communication
- "Characterization of the Thermo-Mechanical Behaviour of Insulated Cable Stacks representative of Accelerator Magnet Coils"
 M. Reytier, A. Devred, M. Durante, C. Gourdin, P. Vedrine IEEE Trans. Appl. Supercond., Vol.11 No. 1, pp.3066-3069, 2001

- [11] "First Results of Slot Dipole at Saclay A. Patoux, J. Perot
 III International ICFA Workshop, Protvino, USSR (1981)
- [12] "Test of New Accelerator Superconducting Dipole suitable for high Precision Field" *A.Patoux, J.Perot, J.M.Rifflet* IEEE Transaction on Nuclear Science, Vol. NS-30, No 4, August 1983, pp3681.

9. ANNEX I

Fit for the critical current density J_c of Nb_3Sn as a function of field B, temperature T and stress ${\bm \epsilon}$

$$Jc(B,T,\varepsilon) = \frac{C_{Nb3Sn}(\varepsilon)}{\sqrt{B}} \left[1 - \frac{B}{B_{C2}(T,\varepsilon)}\right]^2 \left[1 - \left(\frac{T}{T_{C0}(\varepsilon)}\right)^2\right]^2$$

 $C_{Nb3Sn}(\varepsilon) = C_{Nb3Sn,0} (1 - \alpha_{Nb3Sn} |\varepsilon|^{1.7})^{0.5}$

$$\frac{B_{C2}(T,\varepsilon)}{B_{C20}(\varepsilon)} = \left[1 - \left(\frac{T}{T_{C0}(\varepsilon)}\right)^2\right] \left\{1 - 0.31 \left[\frac{T}{T_{C0}(\varepsilon)}\right]^2 \left[1 - 1.77 \ln\left(\frac{T}{T_{C0}(\varepsilon)}\right)\right]\right\}$$
$$B_{C20}(\varepsilon) = B_{C20m} \left(-\alpha_{Nb3Sn} |\varepsilon|^{1.7}\right)$$
$$T_{C0}(\varepsilon) = T_{C0m} \left(-\alpha_{Nb3Sn} |\varepsilon|^{1.7}\right)^3$$

 $\alpha_{Nb3Sn} = 900 \text{ for compressive stress } (\varepsilon < 0)$ = 1250 for tensile stress

 $B_{c20m}\xspace$ is the secondary critical induction at 0K and no stress

 $B_{c20m} = 24T$ for binary compounds

= 28T for ternary compounds

 $T_{c0m}\xspace$ is the critical temperature at 0T and no stress

 $T_{c0m} = 16K$ for binary compounds

= 18K for ternary compounds

 C_{Nb3Sn} is an interpolation factor For example $C_{Nb3Sn} = 48000 \text{ A.T}^{0.5} \text{mm}^{-2}$ for Jc = 3000 A/mm² a 12T, 4.2K

Reference:

"Supraconducteurs à basse température critique pour électro-aimants" *A.Devred* Rapport CEA –R-6011 CEA Saclay

Fig. I-1 Comparison of various fits for the Nb3Sn critical current density (for a ternary compound under a tensile deformation of 0.003)

- Jc [Sum.] is the Summers' parameterisation
- Jc [Kim] is the Kim parameterisation
- Jc [linear] is a linear approximation
- Jc [fit] is the fit used for losses calculation in this report.

10. ANNEX II

88 mm layer dipole with 2 types of cables

II.1.Cables characteristics:

cable	strand	strand	Cu/non_		width	width		Jc_str at	Jc_cab at
name	diam.	number	Cu	height	inner	outer	insul.	15T, 4.2K	15T, 4.2K
	[mm]			[mm]	[mm]	[mm]	[mm]	$[A/mm^2]$	$[A/mm^2]$
CK1_i	1.35	34	1.25	23.868	2.349	2.565	0.2	666.67	421.2
CK1_o	1.15	40	1.8	23.92	2.001	2.185	0.2	535.71	330.4

The iron yoke thickness is 300 mm.

II.2.Magnetic aspects:

Fig. II-1 Magnetic induction distribution (design CK1)

								copper current
central field	Ι	b1	b3	b5	b7	L	E/m	density (i / o)
[T]	[A]	-	-	-	-	[mH/m]	[kJ/m]	$[A/mm^2]$
14.45	28230	10000	-2.68	0.02	0.008	4.45	1772.8	1044.1 / 1056.9

The reference radius for the multipole calculation is 10 mm.

This structure has not been optimized to decrease the multipole components levels.

EU contract number RII3CT-2003-506395

Block number	Peak field	% on load line	Peak/Central
	[T]	[%]	[%]
1	14.26	95.3	98.7
2	14.28	95.4	98.9
3	14.76	98.1	102.2
4	15.09	100.0	104.5
5	6.63	59.0	45.9
6	9.24	74.2	64.6
7	12.45	91.8	86.2

II.3.Mechanical aspects:

Fig. II-2 Magnetic forces distribution (design CK1) -(Only the 3rd digit is significant).

	P_inner [MPa]		P_outer [MPa]	· F [N	P_1 [MPa]		Fx m]	
	-154	.20	-161.68	10	5.51	15.6	6	
Block		1	2	3	4	5	6	7
P_perp	[MPa]	7.64	35.05	46.85	42.12	24.26	61.64	73.56

11. ANNEX III

Parametric study for a slot design dipole of 88 mm aperture, with finite iron yoke

III.1.Cable design:

The critical current density of the Nb₃Sn used is assumed to be 1500 A/mm² at 15T, 3000 A/mm² at 12T, at 4.2K.

The strand diameter is 1.25 mm and the copper to non-copper ratio is 1.25.

The insulation thickness is 0.2 mm.

The geometrical dimensions of cables are taken as following to insure a good mechanical stability [2]:

$$height = 1.04 \frac{nbr_str}{2} \phi_{str}$$

$$width = 2 * 0.8 / \phi_{str}$$

where ϕ_{str} is the strand diameter and *nbr_str* the number of strands in the cable.

The cable used here is CR2, its cable critical current density is assumed to have a 10% degradation due to cabling.

III.2.Variation of the number of conductors in the design:

The aperture of the magnet is 88 mm, the iron yoke is finite and made of iron with Ms = 2.11T, its thickness is 350mm.

The number of notches is 3.

The numbers of conductors in each notch of a design are correlated to approach an elliptic overall shape. For all cases considered in this section, the ratio b/a of the ellipse is 0.777.

name	block 1 ncond	block 2 ncond	block 3 ncond	ncond total	iron yoke internal radius
-	-	-	-	-	[mm]
CRT2_311	11	6	2	19	100
CRT2_312	18	11	5	34	116
CRT2_313	25	16	8	49	134
CRT2_314	32	21	11	64	152
CRT2_315	40	26	14	80	172

CARE-Report-05-023-NED

EU contract number RII3CT-2003-506395

	central							copper
name	field	Ι	b3	b5	b7	L	E/m	current density
-	[T]	[A]	$[10^{-4}]$	$[10^{-4}]$	$[10^{-4}]$	[mH/m]	[kJ/m]	[A/mm2]
CRT2_311	10.00	34100	11.9522	-0.9311	-0.0306	0.94	547.14	2500.85
CRT2_312	11.40	25345	-25.1015	-0.1920	-0.0223	2.65	852.18	1858.77
CRT2_313	12.04	20885	-37.6458	0.0583	-0.0182	5.12	1116.91	1531.68
CRT2_314	12.47	18275	-42.7717	0.1591	-0.0157	8.29	1383.99	1340.26
CRT2_315	12.81	16470	-44.4571	0.2011	-0.0139	12.42	1684.05	1207.89

notch 1							
name	P+	P-	P -azi	Sum Fx	F_notch		
-	[MPa]	[MPa]	[MPa]	[MN/m]	[MN/m]		
CRT2_311	90.12	-20.59	-30.52	2.18	0.904		
CRT2_312	110.84	-20.11	-22.37	2.81	1.179		
CRT2_313	125.31	-18.97	-17.89	3.27	1.382		
CRT2_314	138.82	-18.16	-15.25	3.68	1.569		
CRT2_315	153.45	-18.02	-13.49	4.12	1.761		

notch 2								
name	P+	P-	P -azi	Sum Fx	F_notch			
-	[MPa]	[MPa]	[MPa]	[MN/m]	[MN/m]			
CRT2_311	45.36	-5.65	-47.79	2.52	0.516			
CRT2_312	65.16	-9.10	-40.32	3.54	0.729			
CRT2_313	79.71	-9.94	-34.24	4.23	0.907			
CRT2_314	91.96	-10.35	-30.23	4.83	1.061			
CRT2_315	103.29	-10.23	-26.70	5.39	1.210			

notch 3								
name	P+	P-	P -azi	Sum Fx	F_notch			
-	[MPa]	[MPa]	[MPa]	[MN/m]	[MN/m]			
CRT2_311	8.80	0.00	-20.82	1.17	0.114			
CRT2_312	20.62	-1.72	-26.80	2.47	0.246			
CRT2_313	31.15	-2.06	-26.48	3.41	0.378			
CRT2_314	38.71	-2.79	-25.37	4.19	0.467			
CRT2 315	45.80	-2.82	-23.52	4.86	0.559			
12. ANNEX IV

Parametric study for a slot design dipole of 88 mm aperture, with infinite iron yoke of infinite permeability

IV.1.Cable designs:

The critical current density of the Nb₃Sn used is assumed to be 1500 A/mm² at 15T, 3000 A/mm² at 12T, at 4.2K.

The strand diameter is 1.25 mm and the copper to non-copper ratio is 1.25.

The insulation thickness is 0.2 mm.

The geometrical dimensions of cables are taken as following to insure a good mechanical stability [2]:

$$height = 1.04 \frac{nbr_str}{2} \phi_{str}$$
$$width = 2 * 0.87 \phi_{str}$$

where ϕ_{str} is the strand diameter and *nbr_str* the number of strands in the cable.

Here the degradation of the cable critical current density due to cabling is taken as 0%. The different cables designs investigated are:

				Jc (cable + insul.)
name	strand number	height	width	at 4.2K, 15T
	-	[mm]	[mm]	$[A/mm^2]$
CR2	20	13	2.175	474.21
CR3	22	14.3	2.175	475.50
CR4	24	15.6	2.175	476.58

IV.2.Parametrical study:

The magnet structures investigated in this section are of block-motor type, with 3 notches. The iron yoke is modelled as infinite and of infinite permeability.

IV.2.1.Impact of notch angle:

Notch 1 is the one closer to the mid-plane of the magnet. The numbers of conductors in blocks are respectively 33, 25 and 15 for notches 1,2 and 3. The cable used is CR2.

EU contract number RII3CT-2003-506395

IV.2.1.1.Notch 1:

	notch 1									
	angle	central f	ĩeld	b3	b5		b7	inductan	ce stor	ed energy
	[deg] / [%]	[T]/[%	%] [10 [·]	^{.4}] / [%]	[10 ⁻⁴]/[%	5] [10	⁴]/[%]	[mH/m] /	[%] [kJ/	/m] / [%]
	10	-13.22	2 -1	39.13	6.89	2	1.89	11.56	1	574.01
	+50	-1.13	3 4	1.83	-212.70	-5	59.48	-4.07		-4.76
	+100	-2.78	3 9	7.82	-458.53	-1	10.72	-2.22		-2.46
ſ	notch 1									
	angle	P+(1)	P-(1)	P-azi (1) P+(2)	P-(2)	P-azi ((2) $P+(3)$	P- (3)	P-azi (3)
		[MPa] /	[MPa] /	[MPa]	/ [MPa] /	[MPa]	/ [MPa]	/ [MPa]/	/[MPa] /	[MPa] /
	[deg] / [%]	[%]	[%]	[%]	[%]	[%]	[%]	[%]	[%]	[%]
	10	163.84	-6.09	-13.63	102.39	-8.23	-38.70	0 57.86	-2.66	-67.53
	+50	-10.72	54.38	-7.33	1.59	1.63	0.98	2.12	-4.35	0.14
	+100	-15.87	72.21	-25.09	3.82	3.96	2.33	0.92	-1.74	0.12

Angles for notches 2 and 3 are respectively 40 and 60 degrees, we then get:

IV.2.1.2.Notch 2:

Angles for notches 1 and 3 are respectively 10 and 60 degrees, we then get:

notch 2						
angle	B1	b3	b5	b7	inductance	stored energy
[deg] / [%]	[T] / [%]	[10 ⁻⁴] / [%]	[10 ⁻⁴] / [%]	[10 ⁻⁴]/[%]	[mH/m] / [%]	[kJ/m] / [%]
30	-13.95	24.86	9.25	-0.15	12.57	1752.79
+16.67	-2.40	-334.02	-49.46	-1364.31	-4.11	-5.14
+33.33	-5.21	-659.58	-25.48	-3272.34	-8.01	-10.20

notch 2									
angle	P+(1)	P- (1)	P-azi (1)	P+ (2)	P- (2)	P-azi (2)	P+(3)	P-(3)	P-azi (3)
	[MPa] /	[MPa] /	[MPa] /	[MPa] /	[MPa] /	[MPa] /	[MPa] /	[MPa] /	[MPa] /
[deg] / [%]	[%]	[%]	[%]	[%]	[%]	[%]	[%]	[%]	[%]
30	167.76	-11.79	-14.95	127.67	-6.64	-44.25	55.14	-2.60	-66.86
+16.67	-3.36	-12.30	2.00	-10.12	6.37	-6.51	2.08	1.21	0.43
+33.33	-2.34	-48.33	-8.81	-19.80	23.88	-12.55	4.92	2.19	1.01

EU contract number RII3CT-2003-506395

IV.2.1.3.Notch 3:

	notch 3						
	angle	b1	b3	b5	b7	inductance	stored energy
	[deg] / [%]	[T]/[%]	[10 ⁻⁴] / [%]	[10 ⁻⁴] / [%]	[10 ⁻⁴]/[%]	[mH/m] / [%]	[kJ/m] / [%]
	50	-13.94	58.59	-18.47	1.98	13.39	1725.21
	+10	0.94	-43.08	-75.10	-15.88	-3.11	2.39
	+20	0.10	-57.57	-150.10	-107.78	-6.16	1.60
-							
F	notch 3						

Angles for notches 1 and 2 are respectively 10 and 30 degrees, we then get:

notch 3									
angle	P+(1)	P-(1)	P-azi (1)	P+ (2)	P- (2)	P-azi (2)	P+(3)	P-(3)	P-azi (3)
	[MPa] /	[MPa] /	[MPa] /	[MPa] /	[MPa] /	[MPa] /	[MPa] /	[MPa] /	[MPa] /
[deg] / [%]	[%]	[%]	[%]	[%]	[%]	[%]	[%]	[%]	[%]
50	156.02	-11.18	-13.59	119.01	-6.88	-39.60	68.22	-1.51	-64.59
+10	5.37	4.07	6.58	5.49	-1.05	7.59	-8.39	38.19	2.96
+20	7.53	5.47	9.96	7.27	-3.37	11.76	-19.17	72.27	3.51

IV.2.2.Impact of notch length:

The varying parameter is now the number of conductors in each notch. Notches angles are kept constant and are respectively 10, 30 and 50 degrees for notches 1, 2 and 3. The cable used is CR2.

IV.2.2.1.Notch 1:

The number of conductors in notches 1 and 2 are 25 and 15.

notch 1						
conductor	Central					
number	field	b3	b5	b7	inductance	stored energy
		[10 ⁻⁴]/			[mH/m] /	
- / [%]	[T]/[%]	[%]	[10 ⁻⁴]/[%]	[10 ⁻⁴] / [%]	[%]	[kJ/m] / [%]
28	-13.83	51.28	-19.17	2.03	11.80	1579.63
+17.86	0.79	14.25	-3.65	-2.53	13.48	9.22
+35.71	1.45	23.13	-6.61	-4.92	27.92	18.56
+53.57	2.05	28.67	-9.13	-7.13	43.32	28.15

The inner radius of the iron yoke is determined by the length of the longer notch, which here is always notch1. The inner radiuses of the iron yoke are, for the 4 previous cases, respectively 140, 153, 166 and 179 mm.

notch 1									
conductor									
number	P+(1)	P-(1)	P-azi (1)	P+ (2)	P- (2)	P-azi (2)	P+(3)	P- (3)	P-azi (3)
	[MPa]	[MPa]	[MPa] /	[MPa]	[MPa]	[MPa] /	[MPa]	[MPa]	[MPa] /
- / [%]	/ [%]	/ [%]	[%]	/ [%]	/ [%]	[%]	/ [%]	/ [%]	[%]
28	144.47	-9.02	-12.85	116.80	-7.98	-38.61	68.73	-1.73	-65.06
+17.86	8.00	23.93	5.77	1.89	-13.83	2.55	-0.74	-12.82	-0.72
+35.71	15.49	37.86	9.58	3.85	-27.77	3.82	-1.08	-30.59	-1.60
+53.57	23.10	42.18	11.94	5.72	-43.24	4.35	0.08	-48.09	-2.52

IV.2.2.2.Notch 2:

notch 2						
conductor	central					
number	field	b3	b5	b7	Inductance	Stored energy
		[10 ⁻⁴]/			[mH/m] /	
- / [%]	[T]/[%]	[%]	[10 ⁻⁴] / [%]	[10 ⁻⁴] / [%]	[%]	[kJ/m] / [%]
22	-13.83	60.63	-18.79	2.06	12.28	1667.34
+13.64	0.77	-3.36	-1.71	-3.89	9.09	3.47
+27.27	1.48	-6.42	-3.68	-7.26	18.68	7.03
+40.91	2.17	-9.25	-5.76	-10.26	28.80	10.73

The inner radius of the iron yoke is 153 mm.

notch 2									
conductor									
number	P+(1)	P-(1)	P-azi (1)	P+ (2)	P- (2)	P-azi (2)	P+ (3)	P- (3)	P-azi (3)
	[MPa] /	[MPa] /	[MPa] /	[MPa] /	[MPa] /	[MPa] /	[MPa] /	[MPa] /	[MPa] /
- / [%]	[%]	[%]	[%]	[%]	[%]	[%]	[%]	[%]	[%]
22	153.30	-12.41	-14.55	112.31	-5.91	-41.06	67.26	-2.28	-65.43
+13.64	1.78	-9.94	-6.60	5.96	16.36	-3.57	1.42	-33.87	-1.28
+27.27	3.79	-20.61	-12.23	11.48	32.37	-7.13	3.92	-62.05	-2.65
+40.91	6.14	-33.70	-16.95	17.69	33.29	-10.56	5.33	-77.55	-4.00

IV.2.2.3.Notch 3:

notch 3						
conductor						
number	central field	b3	b5	b7	Inductance	Stored energy
- / [%]	[T]/[%]	[10 ⁻⁴]/[%]	[10 ⁻⁴] / [%]	[10 ⁻⁴] / [%]	[mH/m] / [%]	[kJ/m] / [%]
12	-13.90	80.67	-18.51	1.95	12.62	1713.90
+25.00	0.25	-27.37	-0.21	1.71	6.13	0.66
+50.00	0.52	-47.60	-1.22	1.34	12.62	1.82
+75.00	0.90	-63.02	-2.62	0.09	19.44	3.49

The inner radius of the iron yoke is 153 mm.

EU contract number RII3CT-2003-506395

notch 3									
conductor									
number	P+(1)	P- (1)	P-azi (1)	P+ (2)	P-(2)	P-azi (2)	P+ (3)	P- (3)	P-azi (3)
	[MPa] /	[MPa] /	[MPa] /	[MPa] /	[MPa] /	[MPa] /	[MPa] /	[MPa] /	[MPa] /
- / [%]	[%]	[%]	[%]	[%]	[%]	[%]	[%]	[%]	[%]
12	160.84	-11.94	-14.48	120.69	-7.15	-42.47	60.62	-0.32	-68.54
+25.00	-2.99	-6.37	-6.16	-1.39	-3.79	-6.76	12.53	376.25	-5.75
+50.00	-5.25	-11.04	-11.47	-1.91	-2.60	-12.44	23.44	892.54	-10.99
+75.00	-6.51	-16.88	-15.99	-1.39	-8.85	-17.08	33.42	1437.7	-15.64

IV.2.3.Impact of notch width:

The numbers of conductors in blocks are respectively 33, 25 and 15 for notches 1, 2 and 3. The notches angles are respectively 10, 35 and 65 degrees.

The only varying parameter is the cable height: cables CR2, 3 and 4 are compared.

cable height	strand number	central field [T]/	b3	b	5	b7	induct	ance	stored energy [kJ/m]/
[mm]/ [%]	-	[%]	[10 ⁻⁴] / [%	6] [10 ⁻⁴]	/ [%]	[10 ⁻⁴]/[%]	[mH/m]	/ [%]	[%]
13.00	20	-13.61	-58.18	4.	68	1.95	12.0)5	1662.64
+10	22	2.05	-0.87	-1.	.60	-3.15	-0.1	5	4.10
+20	24	3.92	-1.80	-3.	.31	-6.49	-0.2	29	7.92
cable heigh	t $P+(1)$	P-(1)	P-azi (1)	P+(2)	P- (2) P-azi (2)	P+ (3)	P-(3)	P-azi (3)
_	[MPa] /	[MPa] /	[MPa] /	[MPa] /	[MPa]	/ [MPa] /	[MPa] /	[MPa] /	[MPa] /
[mm]/ [%]	[%]	[%]	[%]	[%]	[%]	[%]	[%]	[%]	[%]
13.00	162.12	-10.34	-15.24	114.74	-7.07	-41.37	56.29	-2.63	-67.15
+10	-5.55	-5.88	4.33	-5.73	-5.54	4.29	-5.60	-11.77	4.33
+20	-10.36	-12.81	8.39	-10.58	-13.4	3 8.29	-10.51	-21.87	8.38

13. ANNEX V

Parametric study for a slot design dipole of 160 mm aperture, with finite iron yoke

V.1.Variation of the number of notches:

The cable used here is CR2 (with 10% critical current degradation due to cabling). The aperture of the magnet is 160 mm and the iron yoke thickness is 640mm

The total number of conductors is the same for all designs (77 conductors).

name	notches number	ncond	block angle [deg]	iron yoke internal radius [mm]
CRT2_321 CRT2_322	3 4	37, 26, 14 26, 22, 27, 12	10, 32.5, 55 10, 25, 10, 55	200 172
CRT2_323	5	22, 19, 16, 12, 8	10, 22.5, 35, 47.5, 60	162

								copper
name	Main	Ι	b3	b5	b7	L	E/m	current density
-	[T]	[A]	[10 ⁻⁴] -	[10 ⁻⁴] -	[10 ⁻⁴] -	[mH/m]	[kJ/m]	$[A/mm^2]$
CRT2_321	11.90	20575	4.7826	-0.0585	0.0016	15.27	3232.24	1508.94
CRT2_322	12.08	19310	2.3633	-0.1860	0.0010	15.31	2853.61	1416.17
CRT2_323	12.29	19155	-1.8473	-0.1887	0.0006	15.02	2756.03	1404.80

				Sum Fx	
name	P+ max	P- max	P -azi max	total	F_notch max
-	[MPa]	[MPa]	[MPa]	[MN/m]	[MN/m]
CRT2_321	205.51	-29.95	-35.11	16.68	2.282302
CRT2_322	134.33	-22.05	-37.38	16.18	1.459580
CRT2_323	111.74	-20.14	-37.12	16.53	1.190832

F_notch max is the maximum force obtained in any notch of the structure.

V.2. Variation of cable height:

The aperture of the magnet is 160 mm and the iron yoke thickness is 640mm. The magnets have all 3 notches of angles 12, 34 and 56 degrees.

The cable used here are CR2, CR5, CR6. They use the same strand. The total amount of strands is the same in all the designs (1560 strands).

	1.1			11 11	iron yoke
name	cable name	strand number	cable height	cable width	internal radius
-	-	-	[mm]	[mm]	[mm]
CRT2_341	CR2	20	13	2.175	200
CRT5_342	CR5	30	19.5	2.175	172
CRT6_343	CR6	40	26	2.175	160

name	central field	Ι	b3	b5	b7	L	E/m	copper current density
-	[T]	[A]	[10 ⁻⁴] -	[10 ⁻⁴] -	[10 ⁻⁴] -	[mH/m]	[kJ/m]	$[A/mm^2]$
CRT2_341	-11.77	20390	-0.3771	-0.0884	0.0012	15.12	3143.40	1495.37
CRT5_342	-12.28	28805	4.8272	-0.1016	0.0011	7.11	2950.32	1408.35
CRT6_343	-13.00	38350	13.2493	-0.1120	0.0006	4.22	3103.81	1406.27

	notch 1							
name	P+	Р-	P -azi	Sum Fx	F_notch			
-	[MPa]	[MPa]	[MPa]	[MN/m]	[MN/m]			
CRT2 341	196.72	-28.05	-17.09	4.97	2.193			
CRT5_342	140.90	-26.33	-28.25	5.17	2.234			
CRT6_343	122.39	-27.07	-44.17	5.87	2.478			

notch 2								
name	P+	P-	P -azi	Sum Fx	F_notch			
-	[MPa]	[MPa]	[MPa]	[MN/m]	[MN/m]			
CRT2_341	134.69	-18.31	-33.99	6.13	1.513			
CRT5_342	89.42	-12.81	-51.08	6.30	1.494			
CRT6_343	72.37	-9.84	-75.72	7.28	1.626			

notch 3								
name	P+	P-	P -azi	Sum Fx	F_notch			
-	[MPa]	[MPa]	[MPa]	[MN/m]	[MN/m]			
CRT2_341	65.83	-6.54	-30.02	5.61	0.771			
CRT5 342	36.62	-3.27	-39.04	5.08	0.650			
CRT6_343	19.15	-0.27	-39.35	4.14	0.491			