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Abstract

This report presents the activity developed on laser pulse shaping argument in years 2004-
2005 by Milano-INFN within the framework of CARE /JRA2 “Charge production with Photo-
injectors” second task “Pulse Shaping”. A dedicated laser system with the relative diagnostic
tools have been developed. A liquid crystal programmable spatial light modulator(LCP-SLM)
shaper have been studied and arranged for the generation of different waveforms. The shaper
is integrated in the laser system for an automatic generation of the target waveforms via the
insertion of a computer which drives the system by means of a software developed for this
purpose. The system can be programmed to generate any target waveform compatible with
the spectral bandwidth of the laser system and some examples are presented. The following
issues are treated: (i) the operational stability as function of perturbations of the set-up
parameters, (ii) the design of the shaper for the SPARC project, (iii) a new shaper concept
for the generation of long target waveforms and (iiii) the rectangular pulse generation at the
second harmonic.

1 Introduction

High brilliance radiofrequency electron guns (rf-gun) are driven by UV laser pulses [1]. Exper-
imental tests reported in Ref. [2] showed that the e-beam emittance depends on the temporal
laser pulse characteristics and the emittance reached a minimum with a rectangular pulse. A sub-
picosecond Gaussian-like laser pulse is transformed into a rectangular one by a shaping system
properly arranged. A typical laser system incorporating a shaper is shown in Fig. 1.
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Figure 1: System layout with a pulse shaper insertion.

The technology for manipulating sub-picosecond pulses in order to generate ultrafast pulses
according to user specifications has already been developed [3, 4]. We apply the basic ideas devel-
oped for narrowing laser pulses (from picosecond to femtosecond range) for generating relatively
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long (around 10 picosecond) rectangular pulses with fast rise time (less than a picosecond). The
principle of pulse shaping is based on the phase and amplitude modulation of the pulse spectral
components. A rectangular pulse with a sub-picosecond rise time can be obtained from a femtosec-
ond laser pulse thanks to its high frequency content. However, the basic physics and properties of
a shaping system capable of providing 10 ps rectangular pulses can be tested with a picosecond
laser pulse, that is with a laser of the previous generation (therefore not so much expensive). In
the framework of developing shaping techniques for relatively long waveforms, we have designed
and developed a common actively mode-locked Nd:YAG delivering pulses of 90 ps at 100 MHz
with an average power of 5 W, followed by a 500 m monomodal optical fiber for broadening the
spectral bandwidth of a factor higher than 100, passing from 0.02 to 3 nm. We have also developed
the diagnostic tools, that is an autocorrelator and a spectrometer, for on-line pulse profile and
spectrum measurements. The liquid crystal programmable spatial light modulator(LCP-SLM)
shaper (also called 4f-system) [3] was selected for its capability to provide long laser pulses. It
was configured for phase modulation of the spectral components. This shaper and the diagnostic
tools are connected to a computer in a feed-back loop for autoconsistent operation. This system
configuration is compulsory because the powerful lasers used to drive rf-guns (most commonly,
Ti:Sa lasers operating at the third harmonic [1]) are multi-component systems (with amplifiers
and harmonic converters) having inherent configurational perturbations and therefore some in-
stability in the output waveform. This instability connected to the shaper sensitivity to it leads
quite naturally to set the entire laser system in a self-organized mode of operation towards the
generation of a target output pulse, see Fig. 2, as we have developed.

L
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Figure 2: Schematic of the laser system complete of shaping system and the fundamental diag-
nostics.

This paper is organized in the following manner: (a) Section one treats the hardware (laser
and diagnostic tools) designed and built for the experimental tests, (b) section six presents the
tests on the generation of rectangular, double and multi-pulse profiles, (c) section seven treats
the the problem of the operational stability as function of apparatus perturbations, (d) section
eight presents the shaper designed for the SPARC project, (e) section nine presents a shaper of
new concept tailored to the generation of long target waveforms and (f) section ten develops the
physics of the rectangular pulse generation at the second harmonic.
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2 The laser and the diagnostic tools designed for the laser

pulse shaping studies

This section reports the content of the INFN S. Cialdi, I. Boscolo and F. Castelli “An Optical
System Developed for Target Laser Pulse Generation” report INFN-BE-05-2.pdf, www.lnf.infn.it-
LNF-SIS Publications [5].

2.1 The Nd:YAG oscillator

The Nd:YAG oscillator has been designed for actively mode-locked operation at 100 MHz and
single TEM00 transverse mode.

AOMrod

600 mm

1450 mm

Figure 3: Schematic of Nd:YAG oscillator with its components: OC = Output Coupler, RM =
Rear Mirror, BP = Beam Splitter and the relative photo.

The design of the cavity was done exploiting the matrix propagation of the light beam through
the optical components. The constrains of 100 MHz frequency, fundamental TEM00 mode and an
optimized trade-off between the output power and the pulse length guided the choices (shown in
Fig. 3 ) of cavity length, laser rod position, radius of the rear reflector mirror and transmittance
of the flat output coupler.

Fig. 4 shows the train and the single pulse shape detected by a 30 ps rise-time photodiode
placed at the rear mirror and a 12.5 GHz sampling scope. The depicted pulse has a length of 93
ps. The best observed result was 70 ps. This was obtained with fine tuning of AOM configuration
(alignment along the three axes, RF-tuning and high modulation), fine tuning of the cavity length
(the output mirror is submicrometrically positioned) and fine alignment of the laser rod.

Bandwidth broadening by a 500 m optical fiber insertion

A guided optical wave propagating in a single mode fiber experiences a uniform self-phase
modulation which broadens the spectrum. We have coupled the Nd:YAG laser to a 500 m long
single mode, polarization preserving optical fiber for extending the spectrum of our laser pulse
from the initial 0.02 to a final 2 nm, see Figs. 5 and 6.

The equation governing the complex amplitude A of the wave is
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Figure 4: Output pulses: Frame a shows the train of pulses a good stability; Frame b shows the
single pulse width (the overshoot at the end of the pulse is due to the pick-up monitor.

Figure 5: Scheme of the optical components and the fiber added to the laser oscillator for spectrum
broadening. The spectrometer is also depicted.

Figure 6: Frame a, simulated spectrum at the output of the optical fiber and the relative phase
function. Frame b, the upper curve is again the simulated spectrum but convolved with a proper
Gaussian curve, the power signal is the relative measured spectrum function.
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Figure 7: Photo of otical fiber and spectrum analyzer.

with β the propagation constant (in our fiber β = 17 ps2/km) and α the the loss factor (α =
2.2 dB/km). The first term of the equation is the loss term, the second term is the dispersion
term (the longer the wavelength the faster the wave runs) and the third term governs the self-
phase modulation. The quantity LNL, called non-linear length, signs the starting of the non-linear
action. The spectrum broadening ∆ωout from Eq. 1 comes out to be

∆ωout =
Lfiber
Lnl

∆ωin ∝ P Lfiber ∆ωin ∝ PM · ∆T

∆τ
Lfiber ·

1

∆τ
(2)

where PM is the average power, ∆T is the the round trip time (in our cavity 10 ns) e ∆τ the
pulse temporal length. Once given the laser pulse power and the fiber characteristics the spectrum
broadening depends on the fiber length. Eq. (1) has been solved numerically by the split stop
Fourier method and the output spectrum obtained for our laser beam and optical fiber parameters
is shown in Fig. 6. As expected when the output pulse of the laser is Gaussian, the smoothed phase
function has a parabolic shape (that one of chirped pulses). Superimposed to the parabola there
is a small fast oscillation of the phase. This oscillation is in correspondence of the power spectrum
oscillation as shown by the figure. Frame b of Fig. 6 shows the measured power spectrum and the
relative power spectrum calculated taking into consideration the resolution of the spectrometer.

2.2 Oscillator operation with SESAM insertion

Aiming to enlarge the bandwidth up to 8-10 nm for arriving to a subpicosecond pulse, we projected
and did some tests on the oscillator with a semiconductor saturable modulator (SESAM). The
best result was about 25 ps, as shown in Fig. 8 while the normal output was about 40 ps. The
result is determined by the fact that the company does not produce the SESAM tailored to our
laser.

2.3 The spectrum analyzer as powerful diagnostic tool

We have designed and built a spectrum analyzer tailored to the characteristics of our laser pulse,
see Fig. 5: the grating of 1714 lines/mm is coupled to a lens of 400 mm focal length so to obtain
a spatial dispersion of 0.68 nm/mm.

The linear enhancement of the spectrum bandwidth with the average laser power, as predicted
by Eq.(2), is experimentally reproduced in Fig. 9, where the four spectra relative to 100-200-300-
400 mW power are reported. In Frame b the variation of the spectrum which occurred within half
an hour is depicted: it covers an interval amplitude of about 4 %.
We note that the spectrum acquisition is fast, thus it is exploited for the measurement of the
temporal pulse length and its profile because the spectrum characteristics are strictly related to
the laser pulse characteristics.
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Figure 8: The autocorrelation pulse of the Nd:YAG oscillator after the insertion of a SESAM of

Figure 9: Frame a: set of measured spectra as function of the output average power, namely 100,
200, 300 and 400 mW respectively from bottom to top. Frame 2: jitter of the spectrum width in
half an hour.

2.4 The autocorrelator for the pulse profile measurement

The common tool for the laser pulse profile measurement is a cross correlator. But a cross-
correlator can be used only in conjunction with a laser pulse much narrower than the pulse to
be diagnosed. Our laser does not allow to exploit that technique owing to its long output pulse.
Therefore we have built an autocorrelator for the laser pulse measurement. We are aware that there
is not a strict correspondence between the autocorrelation pulse and the temporal pulse. However,
the profile of the pulse can be derived from the autocorrelation output for a certain class of pulses
as Gaussian, rectangular, multi-Gaussian, and others. Since these are the pulses of our interest,
an autocorrelator can be positively considered. For completeness, we are developing a numerical
code, as PICASO [7], capable of producing the temporal pulse profile from the autocorrelation
and spectrum signals.

2.4.1 The beam profiler

The temporal modulation of the laser pulse by the mask (which is what we must do) results
coupled to a spatial modulation. We designed and built a laser beam profiler for detecting the
profile distortions introduced by the mask.

The basic components of the tool are (i) a pair of lenses of magnification 1/4 for fitting the
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Figure 10: Photo of the autocorrelator.

transverse dimension of the beam to that of the sensitive screen of the CCD camera, (ii) an intensity
modulator consisting of a half-wavelength-plate, a thin film polarizer and a filter sequence. A Lab-
View program was developed for the acquisition of the front and side profiles.

2.5 The LCP-SLM shaping system

The operational principle of the system, the computer program developed for the simulations with
its performance and the configuration for an autoconsistent operation are discussed. The main
parameters are presented in Ref. [6].

The pulse shaping is a linear filtering process. In the time domain the filter action of the shaper
is represented by an impulse response function h(t), while in the frequency domain the filter action
is represented by its Fourier transform H(ω). The output waveform eout(t) is the convolution of
the input waveform ein(t) and the impulse response function h(t)

eout(t) = h(t) ∗ ein(t) (3)

In the frequency domain we may write

Eout(ω) = H(ω) · Ein(ω) (4)

In general H(ω) will be a function of the type

H(ω) = T (ω) · e−iψ(ω) (5)

Appropriate amplitude T (ω) and phase ψ(ω) modulations lead to any kind of output signal.
However, in problems where the demand is limited to the temporal intensity profile only, as is the
case of rf-guns, a phase-only modulation can be applied. In fact, the time domain intensity (and
amplitude) is specified but the temporal phases are free.

2.5.1 Operations of the shaping system

The optical components of a 4f-setup are two gratings and two lenses placed at the focal distances
with a filter mask placed at the center focus plane, as shown in Fig. 11. In this system the
spatial dispersion is done by a simple lens-and-grating pair, the filtering is made by an array of
liquid-crystal-spatial-light-modulators (LC-SLM), called in short mask, see Fig. 13, and the ray
components are recombined by a second lens-and-grating pair. The system is called 4f-system
because the five optical components are set at the focal distances one another (so to produce
positive group velocity dispersion). There is a programmable acousto-optic modulator which can
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Figure 11: Scheme of the 4f-shaping system, top view. The light polarization lays on the plane of
the figure (that is the plane of the optical table.

operate as dispersive filter (AOPDF) [4]. The mask is an array of rectangular pixels interlived
by small transparent gaps.The task of the mask is to introduce definite phase retardations (or
amplitude modulations) onto the spectral components. We analyze and discuss the experimental
results of the mask as phase-filter. The output waveform is determined by the patterned phase
function set at the mask in conjunction with the dispersion strength (i.e. the dimension of the 4f-
system) of the grating-lens apparatus. We analyze the behavior of the 4f-system with the purpose
of finding the limits of the operation for getting a shaped waveform with good fidelity.
The temporal resolution of the shaped waveform is limited by the bandwidth of the input pulse
and the spatial resolution of the mask limits the temporal range of the shaped waveforms.

mask

ωx  = α ω

w in

ow

f
oω

F(ω)

f(t)

f

x,

iθ θd

Figure 12: The input θi and diffracted θd angles by the grating of 4f-system. The mask and the
grating are placed at the distance f from the lens. The Gaussian Fourier spectrum is depicted
at the mask. The spectral components of the input light beam are separated by the grating and
focused at the mask by a lens with a beam waist w0.

The mask of an LCP-SLM system is an array of pixels interleaved with small gaps, see Fig. 13.
The chosen mask is the Jenoptik model SLM-S 640/12 mask (JENOPTIK Laser, Optik, System
GmbH, Jena, Germany). The dimensions of the pixels and gaps are respectively 97µm and 3µm
wide and the number of pixels is 640.
The spectral dispersion follows, in first approximation, a linear law

x ' αω (6)

The frequency ω is referred to the central frequency ω0 of the spectral domain spanned by the
signal. The filter function H(ω) is related to the physical transmission function of the mask. We
observe that the field just after the mask, calling HSLM (x) the physical transmittance of the mask,
is given by

Eout(x, ω) ∼ HSLM (x) e
−

(x−αω)2

w2
0 Ein(ω) (7)
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Figure 13: Schematic diagram of an electronically addressed LCP-SLM. A thin layer of nematic
liquid crystal is sandwiched between two peaces of glass. The inside surface of each piece of glass
is coated with a thin, transparent conducting film of indium tin oxide patterned as an array of
pixels.

2.6 Configuration of the 4f-system

The configuration of the 4f-system is determined by the grating law and the equation of the beam
waist w0 at the mask pixel [6]

λ = d(sin θi + sin θd) (8)

w0 =
cos θi
cos θd

· λ f
π wi

(9)

In the above equations f is the focal length, λ is the wavelength, θd and θi are the diffracted and
incident angles of the central frequency respectively (see Fig. 12) and wi is the input beam waist
at the grating.
The guidelines for the 4f-system configuration design are: (i) the spectral dispersion should be
maximized so to exploit the maximum number of mask pixels and (ii) the beam waist at the pixel
must be smaller-equal to the 100 µm pixel dimension. Since the larger the dispersion the larger is
the waist at the mask, the best trade-off must be found. We note also that the waist at the mask
w0 is inversely proportional to the waist wi at the grating.
In our system we ended up to the following parameters: gratings with 1740 lines/mm, achromatic
lenses of 50 cm focal length, 65o degree input angle, wi = 2.3 mm and w0 ≤ 100 µm. In this
configuration each nm of spectrum bandwidth covers 27 pixels of our mask.

2.6.1 The driving of the mask

The mask pattern configuration (filter function) is set by a computer through a serial gate. A
voltage applied to the electrodes sandwiching the liquid crystal of a pixel drives the crystal orien-
tation. The voltage ranges in the interval 0-8 V with a step resolution of 12 bit (corresponding to
4096 possible voltage values). The principal axis of the crystal lays on the table plane x-z. This
decides the polarization of the light coming from the grating for the highest efficiency.

The mask must be calibrated before starting the operation. This calibration operation is done
putting, in front of the mask, an amplitude modulator whose transmittance T depends on the
voltage applied to the pixel. In this way we can build the curve T versus V. The amplitude
modulator arranged in the Lab was made by a simple half-wave-plate set in front of the mask
which rotates the polarization of 45o and a polarizer set in the back of the mask at 90o with
respect the input polarization of the light. The transmittance T is given by
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T = sin2

(

∆φ

2

)

(10)

thus

∆φ =
2π d

λ
[ne(V ) − n0] (11)

Figure 14: Curve of pixel voltage versus phase variation obtained in the calibration process.

The curve of the voltage, that is of the corresponding number, versus the phase modulation
obtained with the apparatus is shown in Fig. 14. From the curve we get that the maximum
de-phase on a spectral component (for our 1064 nm radiation) is higher than 2π but minor than
4π.
It is wise to select a zone of 2π variation and possibly linear. Therefore, we chose the interval 0.5-
2.5 rad/π. This means that we have 300 possible voltage values. We did the fit which transforms
the voltage number into the phase modulation.

2.7 A feedback arrangement of the shaping system for automatic oper-

ation

An analytical calculation of the response function HSLM does not exist, it is found by a numerical
calculation via an adaptive algorithm. The solution is implemented in the laser system by a proper
setting of the shaping system. A computer, running the adaptive algorithm, can drive the system
towards the right optical configuration of the mask.
The appropriate modulation (phase) function is calculated with an iterative procedure: the spec-
tral patterned function is updated according to a Genetic stochastic optimization Algorithm (GA)
[8]; a cost− function C is calculated with the new signal obtained from the autocorrelator after
the application at the mask of a phase function

C =

∫

|Atarget(τ) −Ameasured(τ)| dτ ; (12)

if the cost − function results minor than the best cost − function found in previous cycles, the
updated spectral patterned function is accepted, otherwise it is rejected and a new cycle starts with
a fresh spectral pattern function. The iterations are stopped when the value of the cost−function
arrives to saturation. The final phase pattern is transferred to the mask. The complex spectral
field E(ω) of the input pulse, that is its spectral amplitude A(ω) and phase Φ(ω)) and the temporal
amplitude Etarget(t) of the target pulse are given as inputs. The calculation procedure is illustrated
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Figure 15: Flow chart of the numerical program for the simulation of the calculation of the phase
function .

in Fig. 15. The initial trial phase vector Φ has all the phases at the pixels set at zero value and
the value of the cost function is fixed very high.
We have followed two different numerical approaches. In one the phase function is written as a
power expansion

Φrnd(ω) = arnd ω
2 + brnd ω

3 + crnd ω
4 + . . . , (13)

The adaptive algorithm searches for the appropriate phase filter function varying randomly the
coefficients of the expansion and applying the iterative calculation up to the achievement of the
best target profile [8]. In the second numerical approach the phase function is written as the sum
of a function counter-fitting the main component of the curve representing the phase function of
the input signal and a spectral patterned randomly searched function δψRND(ω)

Φ(ω) = f(ω) + δψRND(ω). (14)

In each iteration a random phase change δψi is generated according to δψi = R where R is a
random variable uniformly distributed in a definite interval. The index i refers to the i-th pixel.
This second approach for our case of input pulse after the optical fiber, means that the function
f(ω) is a parabola, that is the phase function will be

Φ(ω) =
1

2
αrnd ω

2 + δψRND(ω). (15)

The parabola counter-acts the parabolic phase generated by the self phase modulation effect within
the optical fiber.
The first procedure does not give a positive result when the phase profile of the output pulse
is complex. In fact, a phase function with fast oscillations requires many terms in the power
development (13). The same consideration holds transform limited input pulses.
The succession of operations occurring in the system in each iteration are: a random variation of
the phase function (by a computer), its application to the mask, re-orientation of the mask pixels
(in about half a second) and a consequent generation of a new (varied) output pulse, measurement
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of the autocorrelation signal (the computer starts to acquire from the autocorrelator the formed
signal after 0.5 s from the releasing of the phase function), acquisition and renormalization (to
unity) of its area, comparison of the signal with the target one via the cost-function and a new
cycle starts.

2.8 Results and discussion

In this section we discuss the generation of four different waveforms shaped having as input pulse
the chirped Gaussian-like pulse of about 110 ps provided by our laser system (oscillator and optical
fiber). The system arrangement for the pulse modulation had to take into consideration a notable
diffraction effect observed when the velocity of variation of the phase introduced for obtaining
a new waveform was higher than a certain value. This effect is, therefore, treated in the next
subsection in connection with the discussion of the first searched waveform. In our laser system
we have to compare the autocorrelated target pulse with the autocorrelated output pulse from the
4f-system (instead of the direct temporal pulse).

2.8.1 Pulse compression to 2 ps length and diffraction provided by the mask

The input pulse can be compressed setting a parabolic phase function to the mask which coun-
teracts the phase modulation introduced by the fiber. The pulse, as shown in Fig. 16 Frame a, is
compressed from the initial 110 ps to few ps. Frame b shows the phase function that the computer
sent to the mask. The parabolic function is many-folded in order to maintain the phase variation
among the pixels within the interval −π÷+π. The values of the phase function are converted in
numbers that are sent to the mask. The replica pulses due to the patterned configuration of the

Figure 16: Frame a: the lower trace is the input 100 ps pulse and the upper trace is the 3 ps
compressed pulse by the 4f-system; Frame b shows the phase function at the mask pixel.

mask with pixels interlived with gaps are eliminated by the proper choice of the waist dimension
onto the mask pixel [6]. Remarkably, the output signal has two evident side pulses at a distance
of about 100 ps from the main pulse. These pulses come out to be due to the fast slope of the
parabolic phase curve (at the sides) necessary for the strong compression, which, in turn, means a
large phase variation between two adjacent pixels. The effect is amplified by increasing both the
slope and the mis-alignment. We have observed on a screen set just at the back of the mask, in
fact, the appearance of two bright spots at the sides of the central spot starting from a certain
slope. Looking at the position of the spots in relation to the phase curve, see Fig.17, we could see
the correspondence between the bright spot and the smooth phase variation and, complementary,
the dark place and the strong phase variation between the pixels.
Systematic observations lead to find the following empirical limit of the phase variation between
two adjacent pixels
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Figure 17: Intensity of the output signal obtained at a screen placed at 7 cm from the mask, upper
trace, and the corresponding phase function, lower signal.

Figure 18: Frame a: the upper and the lower autocorrelation traces of the input pulse respectively
without the iris in front of the mask (the laser pulse) and with the iris. Frame b: the two
corresponding pulses compressed by the shaping system. The compressed pulse obtained with the
iris insertion is much more neat.

∆φmax
∆ωpixel

=
π/3

δωpixel
. (16)

in order to avoid the diffraction action (remembering that the delay time between the frequency
ω and the central frequency ω0 is: τ(ω) = ∂φ(ω)/∂ω). This condition gives the maximum com-
pression ∆τmax that can be obtained without meeting pulse deformation due to diffraction. In
our system the maximum compressible pulse length comes out to be 40 ps. The check was done
reducing the pulse length simply cutting the wings of the pulse at the mask site with an iris and
then compressing that pulse. The result is shown in Fig. 18. The two 100 ps and 40 ps pulses
after compression are compared in Frame b: the second pulse is much more neat compared with
the other. This mask behavior limits the shaping possibility because only a limited spectrum
bandwidth is accepted with a pulse of that length. Therefore, the diffraction effect of the mask
limits the rise time of a target rectangular profile.
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2.8.2 A rectangular profile

The autocorrelation signal of a rectangular pulse has a triangular profile. The target pulse to be
built was a rectangular one of 10 ps length. In this case the power expansion procedure requires
only the second and the forth terms because of the parabolic profile of our input phase function.
In Fig. 19 the two autocorrelation pulses, the target and the experimental one, are reported. In
Frame b the cost function behavior with the number of iterations is reported. The two target and
experimental signals overlap quite well, and the result is obtained in only 30 iterations. The rise
time is about 3 ps because of the relatively narrow spectral bandwidth.
We would remark the good result with a relatively fast convergence in spite of the particular form
of the input signal. In the most common case of a transform limited pulse (obtained for instance
from a Ti:Sa laser) the number of necessary terms for obtaining a rectangular pulse would be
not more than eight. Fig. 20 shows the result obtained applying the second procedure: the

Figure 19: Frame a: the two target and measured autocorrelation signals of the rectangular pulse;
Frame b: the number of iterations required for obtaining the final signal.

Figure 20: As previous Fig. 19 but the numerical simulation followed the second procedure. Frame
a: the two target and measured autocorrelation signals of the rectangular pulse; Frame b: the
number of iterations required for obtaining the final signal.

two signals do not match as in the previous operation and the number of iterations required
is about a factor three higher. This is explained by the different calculation procedure: in the
previous procedure only two coefficients were varied randomly, while in the second procedure all
the phases of a patterned function relative to the array of pixels had to vary randomly. Moreover,
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the very good fit obtained in the first procedure was due to the peculiar spectral function after
the interaction within the fiber.

2.8.3 A double-pulse profile

The generation of a pair of pulses (pump-probe pulses) is another result interesting for several
applications. The target pulse is a pair of pulses of 4 ps width and 12 ps interdistance. The result
is shown in Fig.21. Again the output pulse reproduces quite well the target pulse. The proper
procedure for this case was the second one and the number of iterations was higher than the
previous case. Two remarks are worth doing: one is that the initial value of the cost-function was
set at a much lower level than in the previous cases and the second one is that there is a proper
temporal window for the integral of the cost-function. The initial low value of the cost-function
is due to the relatively large width of the autocorrelation target pulse (not far from that of the
input pulse). The temporal interval of integration cannot be too large because the integral would
be affected by the numeral noise and would lead to a low value of the cost-function. It cannot be
too short, on the other side, because the information on the shape of the whole pulse would be
lost.

Figure 21: Frame a: the two target and measured autocorrelation signals of a double pulse profiles;
Frame b: the number of iterations required for obtaining the final signal.

2.8.4 A multi-pulse profile

The spectral filtering technique can be used for generating high-repetition-rate pulse trains. A
pulse shape is the Fourier transform of the pattern transferred by the spatial filter onto the
spectrum [9]. In our approach we use a spectral phase filtering: the phase response of the mask
(filter) varies periodically with frequency, see Fig. 22. In this way the spectral bandwidth is
divided in N sub-bandwidths whose distance in frequency is ∆F . Each radiation sub-bandwidth
is conveyed into the relative pixel sub-array and will apply the same phase modulation. The
repetition rate of the train is the frequency periodicity ∆F . The output intensity profile I(t) is
related to the input waveform E(ω) as

I(t) =

(

1

2π

)2 ∫

ei ω tdω

∫

E∗(ω′)E(ω′ − ω) dω′ (17)

The intensity is the Fourier transform of the autocorrelation of the filtered spectrum. To obtain
a set of pulses under a smooth envelope by using a phase filter, we must make a phase response
with an autocorrelation that consists of a train of spectral peaks. Various pseudorandom phase
sequences can provide this sequence.
The pixel were grouped in bunches of 5. The phase mask consisted of the repetition of the sequence
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ω

∆F

Figure 22: Generation of a pulse train by a phase spectral filtering. The various shaded rectangles
denote the pixels with different phases.

[10010] where the logic 1 corresponded to ∆φ = 0.7π. The phase mask is sufficiently wide to pass
the entire input bandwidth; consequently, the pulses in the shaped train are as short as the input
pulses, ' 3ps FWHM. Figure 23 shows the auto-correlation measurement of of the pulse train.

Figure 23: Auto-correlation measurement of the pulse train produced by phase periodical filtering.
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3 System sensitivity to perturbations of the apparatus pa-

rameters

We report here the paragraph 4 of the article “Features of a phase-only shaper set for a long
rectangular pulse” J.Opt.Soc.Am. 21, 1693 (2004).

We present now the variations on the output signals brought about by the deviations of the
input signal parameters, that is pulse length, beam alignment, beam shape and finally mask posi-
tion. The simulations are done applying to the different cases the spectral patterned function Φ(ω)
found for the reference input pulse (100 fs and Gaussian shape) and reference shaper parameters
w0 = 20µm and centered light beam at the mask. The shift of the central frequency (due to a
possible laser instability) is roughly equivalent to the shift of the mask along the x-axis direction.
The results of the simulation, depicted in Figs. 24 and 25, are here listed.

3ω 3ω

Figure 24: a1, b1, Variation of the output pulse (calculated after the conversion to the third
harmonic) versus the variation of the pulse length, and b1, and shift from the centered position of
the mask, right frame. a2, b2 Relative behavior of the the spiking amplitude over the mean value,
i.e. (Imax− Imin)/Iaverage, as function of deviations in the length and in the position of the mask.

• Pulse length deviation of 5 fs. If the pulse length changes down to 95 or up to 105 fs, the
spiking amplitude (Imax − Imin)/Iaverage on the third harmonic at the flat top increases
from 20 % to ∼ 80%.

• Shift of the mask of 0.5 mm with respect the central position. The spiking enhancement
arrives up to ∼ 70%.

• Shift of the incident angle θi. Since a variation of θi induces a variation on α (because of the
grating action the spatial dispersion α depends on the diffracted angle θd, which in turn is a
function of θi, i.e. α ∝ 1/cos θd(θi) [3]) the spectral bandwidth hitting the mask is changed.
This can easily seen looking at the expression of the spectral intensity at the mask

I(x) = e
−

τ2

2·(1.177)2
·

x2

α2 (18)
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1ω 3ω

Figure 25: Left and right, output pulses for the fundamental and the third harmonics, respectively,
assuming a hyperbolic secant function instead of a Gaussian function for the input pulse. In the
signals, we may say that the flatness is practically lost.

where τ is the time pulse width. A small variation of α about the reference value induces
a variation on the spectral intensity I(x) analogous to that induced by the variation of the
pulse length τ . Therefore, the previously seen results relative to the pulse length deviation
can be extended to the case of θi small deviation: The 30 % spiking enhancement means a
2 % α variation.

• Change of the input pulse shape. In passing from the Gaussian shape to the hyperbolic secant
shape (as possible for a mode locked oscillator) the reduction of the flatness is dramatic, see
Fig. 25.

Figure 26: Left, variation of the plateau’s flatness with the perturbation of the pulse length for the
reference 30π rad/ps through the mask (curves with circles) and for a reduced acceptance of 3/4
of that reference acceptance (curves with squares). The latter is less sensitive to the perturbation.
The curves at the right refer to the perturbations of the mask position. No sensible change occurs

Some comments are in order. The sensitivity of the shaper to perturbations, see Fig. 26, is
related to both the phase-only filtering and the wide spectral acceptance. In fact, we have checked
that the wider is the spectral acceptance the smoother the pulse flatness but also the higher the
system sensitivity to any variation. It could be devisable for a lowering of the sensitivity to pulse
length deviations to choose a less portion of the spectral bandwidth accepting a bit worse flatness
. The spectral components relative to the signal tails turn out to be effective for smoothing down
the roughness of the pulse plateau but the configuration of the spectral phases results so strict
that a perturbation leads to a substantial pulse deformation.
The strong variation of the output signal with the change of the input signal profile comes as
consequence of the relatively high variation of the amplitude of the spectral components. To
reduce the sensitivity, an amplitude modulation besides a phase modulation should be applied.
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4 The LC-SLM project for SPARC

We report here the paragraph 3 of the article “A laser pulse shaper for low-emittance radiofrequency
SPARC electron gun” Nucl. Instrum. Meth. Phys. Res. A 526 (2004) 239.

The system configuration is largely determined by the angular dispersion α of the spectral
components and is related to the system parameters by

α =
λ2

0 f

d 2π c cos[θd(λ0)]
(19)

In the above equation f is the focal length, λ the wavelength, c the speed of light, θd the diffracted
angle of the central frequency (Fig. 12). The equation comes from the grating law mλ = d(sin θi+
sin θd) with m=1. As we want efficient diffraction into the first order, for good spectral separation
the grating period d should be as small as possible. The grating presented in brochures as having
2000 grooves/mm (d = 0.5µm) can provide the required dispersion of a few centimeters, at a
distance of about half a meter for a 100-fs pulse with a carrier wavelength of 800 nm.
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Figure 27: (a) Curve of the focal length as a function of the incident angle. (b) Angular deviation
as a function of the incident angle θi for different focal lengths (in order from the top 700, 600,
500 and 400 mm). A trade off between θi and f must be done: the longer the focal length the
lower the sensitivity to θi perturbation. As low sensitivity is needed, θi must be greater than 50o.
The dotted line in (b) represents the possible incident angles for α slowly varying with angle.

The dispersion α remains fixed by the mask dimension ∆x and the spectral bandwidth ∆ω
selected for the system, since α = ∆x/∆ω. With the selected spectral portion of ∆ω = 30π
rad/ps we get α = 0.68mm · ps/rad. Once α is fixed, Eq. (19) relates the focal length to the
input angle (Fig.27a). We looked at the variation in α with θi, (Fig. 27 b), to get a trade-off
between the focal length and the input angle, so as to have a sufficiently low sensitivity of α to
θi perturbations, combined with reasonable apparatus dimensions (that is a focal length). We
propose a focal length f = 700 mm and, consequently, an input angle θi = 62.76o.

Mask and beam waist. The response function from Eq. (7), taking into account the finite
number of pixels and the finite dimensions of the beam waist w0, is

H(ω) =

√

2α2

π w2
0

HSLM (ω) ∗ e
− 2 α2

w2
0

ω2

(20)

We have already seen that the filter function HSLM (ω) is step-shaped. The steps are smoothed

by convolution with the Gaussian envelope function e− 2α2ω2/w2
0 originated by the Gaussian spot

of each spectral component at the mask. To conserve good spectral resolution (essential for a long
flat pulse), the beam waist must be well below the pixel dimensions.

19

EU contract number RII3CT-2003-506395 CARE-Report-05-027-PHIN



Taking the output pulse as a function of different beam waists, we ended up with a beam waist
of w0 = 20µm [8]. This value seems feasible for the chosen focal length and the foreseen input
spot size. The beam waist w0 after simple calculations is

w0 =
cos θi
cos θd

· λ f

π win
(21)

where win is the waist of the input beam at the grating. Having fixed all the parameters but the
input waist, this win is 5.8 mm.

As for the choice of the spectral bandwidth ∆ω, note that the frequency interval ∆ω is relevant
to the rise time and plateau roughness of the rectangular pulse and also to the shaper dimensions.
The bandwidth of 30π rad/ps comes from a trade-off among the three requirements of fast rise
time, flat plateau and reduced mechanical dimensions.

4.1 The stability of operation as function of parameter’s perturbation

Figure 28: (a) Variation of the signal plateau flatness at the third harmonic for different values
of ∆α/α. (b) A 20 % enhancement of the plateau roughness occurs for an angular dispersion
variation of about 2 %. The flat-top noise was calculated by (Imax − Imin)/Iaverage.
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∆α
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Figure 29: Sensitivity of dispersion α versus input angle θi at a fixed focal length of 700 mm.
Continuous lines: percentage variations of 4, 3, 2 and 1% respectively. Dotted lines: negative
variations in θi. Note that ∆α/α is not symmetric with respect to the two side variations and also
that ∆α/α > 0 when ∆θi < 0 and vice versa.

We investigated via simulations the system sensitivity to variations in the input pulse length,
the dispersion (incident angle) and the input pulse profile. The sensitivity of the shaper to per-
turbations depends on the spectral acceptance, once the type of modulation has been fixed. In
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fact, we verified that the wider the spectral acceptance, the higher the system sensitivity to any
variation, but also the smoother the pulse flatness at the optimized filter pattern. A pulse length-
ening of a couple of femtoseconds leads to a 10% increase in roughness. It could be advisable to
choose a smaller portion of the spectral bandwidth and, hence, accept a lower flatness in order to
obtain a lower sensitivity to pulse-length deviations. The increase in plateau roughness because of
perturbation of the spatial dispersion (due to the variation in the incident angle) is shown in Fig.
28: its variation with ∆α/α is slow. The reason for the output change is that a variation in α
produces a variation in the spectral components hitting the mask pixels. This leads to a spectral
phase pattern that is no longer optimized for a flat output.
It is apparent from Fig. 28b that, accepting an enhancement of the roughness of up to 30%, the
acceptable extent of the α variation is 2%. Note that the variation is not left-right symmetric
about the centre. The parametric curves reported in Fig.29 present the percentage variation of
α at the different input angles. The parameter of the curves is the percentage variation of the
input angle as indicated in the figure. The line ∆α/α = 2% shows that the allowed variation of
the input angle is about 2% at the chosen θi ' 63o. This perturbation of the input angle can be
easily controlled in an optic system.
To round off, we also performed simulations with the iterative Fourier transform (Gerchberg-
Saxton) algorithm [13]. The simulated signal-output was notably worse than that obtained with
our program based on the genetic algorithm.
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5 A new concept of shaper for long laser target waveforms

We report here the article “A shaper for providing long laser target waveforms” Nucl. Instrum.
Meth. Phys. Res. A 538 (2005) 1-7, except for the abstract and introduction.

Long rectangular pulses required by rf-guns indicate that the shaping system must both greatly
enlarge the laser pulses and transform them from Gaussian-like to rectangular form. The shaping
system we present here is tailored for long pulse generation. Its operation is based on an amplitude
spectral modulation, made by the so-called 4f-system, followed by a linear space dispersion made
by 2-grating stretcher (2g-stretcher). Our shaping problem is conveniently separated into a) the
transformation of a short pulse into a long pulse and b) the transformation of a Gaussian form
into a target form. The first task can be obtained by a 2g-stretcher which does a linear dispersion
of the pulse spectral components. In fact, it provides a linear delay time among the spectral
components

τ(ω) = αω referred to the central frequency ω0 (22)

thus obtaining the spectral phase function

φ(ω) =

∫ ω

0

τ(ω′)dω′ =
1

2
αω2. (23)

The latter task implies a proper spectral amplitude modulation. In mathematical terms an op-
erator H(ω) has to act on the input amplitude spectral function Ai(ω) in such a way to get the
wanted output spectral function Ao(ω)

Ao(ω) = H(ω)Ai(ω) (24)

Therefore, we must add a proper amplitude modulator to the 2g-stretcher. The shaping apparatus

x   = α ω

mask
input pulse

x

z

amplitude-modulator
kω

ω 0

output pulse

Stretcher

Figure 30: Sketch of the new shaping system for long pulses. The amplitude modulator sub-part
is a 4f-system, the second sub-part is the usual 2-grating apparatus for a linear time delay of the
spectral components.

we are proposing consists of a 4f-system followed by a pair of diffraction gratings as shown in Fig.
30. The 4f-system, arranged in the configuration known as “zero dispersion pulse compressor”, has
the shaping mask at the focal plane [3] (center plane of the system) programmed as an amplitude
modulator. The grating pair is set in a dispersive configuration so to behave as a stretcher with
a linear time delay of the pulse spectral components. We call this shaper, composed with the two
items, 4f-2g-system. The amplitude and phase modulations are decoupled from one another, as
are Eqs. (22) and (24). The amplitude modulating function H(ω) in Eq. (24) is called filtering
function.
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5.1 The operation of a 4f-system as amplitude modulator

The operation of a 4f-system is described in details in reference [6]. Briefly, the spectral components
of a pulse are first individually focused at the mask pixels, see Fig. 13, and then filtered according
to the mask filtering function H(ω). The spectral focalization (by a lens) in connection with the
insertion within the system of a proper mode filter select out of the mask the lowest TEM00 mode
[3, 14]. Hence, the filter function has the following expression

H(ω) =

√

2

π w2
0

∫

mask

M(x) e
−2

(x−βω)2

w2
0 dx (25)

Here w0 is the beam waist of the focused beam at the masking plane (typically 20-100 µm), M(x)
is the physical masking function and β is the spatial dispersion of the pulse spectral components
introduced by the grating coupled with the lens, that is x(ω) = β ω.
When w0 is less than the pixel dimension ∆x, the following approximation holds [3]

H(ω) ∼M [x(ω)] (26)

that is the filtering function H(ω) is equal to the physical function M(x) of the mask. We choose
this operating condition for our system.
The output intensity Io(t) is found by performing the inverse Fourier transform

Io(t) =

∣

∣

∣

∣

∫

H(ω)Ai(ω) ei
α
2 ω

2

e−i ωt dω

∣

∣

∣

∣

2

(27)

When the output pulse length is much longer than the input pulse length, which means a large
α, the integral in Eq. (27) can be written as

Io(t) ≈ {H[ω(t)]Ai[ω(t)]}2 = Ĩo[ω(t)] (28)

where ω(t) = t/α. We observe that the two functions H(ω) and Ai(ω) are real. From this
Eq. (28) we get that the temporal profile of the pulse Io(t) is equal to the power spectrum
Ĩo(ω) profile. We can see that the stretcher simply transfers the spectral amplitude profile into
the temporal amplitude profile. This occurs because a 2g-stretcher establishes a linear relation
between frequency and time.

ω (rad/ps)
-30 -20 -10 0 10 20 30

Figure 31: The upper curve is the output spectral amplitude Ao(ω), the lower curve is the
RE{exp[i (α/2)ω2 − iωt]} function. the fast oscillating behavior of this second curve everywhere
but the center explains the non-null contribution to the integral (27) only at the center coordinate
t/α.

The result of Eq. (28) can be understood observing that the term exp[i (α/2)ω2 − iωt] of Eq. (27)
is fast oscillating when ω is far from the value t/α, it is, instead, relatively smooth around t/α,
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see Fig. 31. Thus, that term operates, in a certain sense, as a δ(ω − t/α) function. This holds
when Ao(ω) is smooth enough compared with that exponential term. In fact, the integral where
the function is fast oscillating is near zero. This implies a short input pulse (i.e. wide Ao(ω)) and
a long output pulse (i.e. large α ).

5.2 Some useful cases and sensitivity considerations

We discuss some practical cases with the aim of gaining a deeper insight into the physics of the
4f-2g-shaping-system. From Eq. (28) the filtering function turns out to be

H(ω) =

√

Ĩo(ω)

Ai(ω)
=
Ao(ω)

Ai(ω)
. (29)

The equation suggests that the equality of Ĩo(ω) (the target spectral intensity profile) with Io(t)
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Figure 32: Left frame shows the input Ai(ω) (upper curve) and the output Ao(ω) (inside curve)
spectrum amplitudes. Ai(ω) is a 100 fs wide Gaussian curve and Ao(ω) has the expression Ao(ω) =
B exp(− (ω/γ)n) with n=12 (which means fast rise time). B and γ parameters are chosen to
minimize the energy loss. The right frame shows the relative filter function H(ω).
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Figure 33: Left frame depicts the set of output pulses obtained through Eq. (27) with the Ao(ω)
of the previous figure and with different arrangements of the stretcher so to get the pulse durations
marked in the curves (∆t = 10 − 2 ps). Right frame shows the 10 ps long pulse converted to the
third harmonic. The rise time (from 10 % to 90 % of the total pulse height) is less than 1 ps.

(the target temporal intensity) implies to design this target profile inside the spatial frequency
spectrum Ai(ω) curve. We start considering a rectangular target pulse (important for rf-guns) and
a transform limited Gaussian input pulse with spectral amplitude Ai(ω). The Fourier spectrum
in frequency of both the input and output signals is depicted in Fig. 32 left frame. In looking for
an ∆t wide pulse out from the stretcher, the relative α parameter after Eq. (22), must be
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α =
∆t

∆ω
. (30)

Here ∆ω is the Ao(ω) bandwidth as shown in Fig. 32. Five numerically calculated signals out from
the stretcher arranged for having lengths in the interval 2-10 ps (the input signal is the one of Fig.
32) are shown in Fig. 33. We see that the pulse must be longer than 6 ps for having a good flat
top. The third harmonic profile is calculated through the cube intensity I3 of the fundamental.
We tested that the six-power field E(t)6 = [Acos[ωt − φ(t)]]6 did not have important envelope
fluctuations during the pulse timewidth. We see from the figure that the rise time is less than 1
ps, as required by a class of rf-guns [1].
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Figure 34: The figure shows both the input Ai(ω) and the output Ao(ω) amplitude spectra (with
the Gaussian input pulse) for generating a ramp pulse, frame (a), and a train of three pulses,
frame (b), as shown in the next Fig. 35.
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Figure 35: The figure shows the two output pulses obtained with the amplitude modulation of
Fig. 34.

We apply the procedure to the relevant case of the ramp pulse [15]. As a third example we
report also the case of the generation of a sequence of three pulses, with the aim of showing the
power of our shaping system. As done in the previous case we have to program a mask filtering
function M(ω) leading the target Ao(ω) to be a ramp (in the first case) and the sequence of pulses
(in the second case) inside the input Gaussian spectrum profile Ai(ω), see Fig. 34. Then, once
chosen the value of the α parameter, we have to solve Eq. (27). The result is depicted in Fig. 35.
We chose for this last case an α value such that the output pulse turns out to be as long as 30 ps,
with the aim of showing that this shaping system can easily deliver long pulses.

We must remark here that the amplitude modulating mask in laser systems with amplifiers
and harmonic generators should be programmable with the aim at compensating the distortions
introduced into the pulse by the non-linearities of the amplification and harmonic generation
processes. This is the reason of the proposal of the 4f-system with a liquid crystal programmable
spatial light modulator (LCP-SLM) in conjunction with a stretcher. The LCP-SLM device can
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be replaced by an optical window with the transmissivity profile found with the above LCP-
SLM device, that is a transmission optical element tailored to the specific laser system. The
transmissivity will have a super Gaussian profile with the modifications proper for recovering the
distortions introduced in the amplification and frequency conversion processes.
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Figure 36: In left frame (a) the two spectral pulses shifted one another of 0.15 nm are depicted.
Inside the input spectrum Ai(ω) the output spectral amplitude Ao(ω) is shown. The change of
the output intensity waveform (at the third harmonic) due to the central frequency shift is shown
in the frame (b). The amplitude percentage variation results about 20%.

A couple of considerations about the system sensitivity to perturbations are worth doing. One is
that the 2f-2g-system is relatively insensitive to parameter perturbations. We observe, incidentally,
that it is easy to calculate the effect of the input pulse variations. In fact, once known H(ω), for a
given modified input Am(ω) the output intensity pulse is simply Im(ω(t)) = (H(ω(t))Am(ω(t)))2.
The change of the output signal profile because of a 0.15nm shift of the central frequency of the
laser pulse (a value roughly estimated as possible in Ti:Sa laser) is smooth, as shown in Fig. 36.
The correspondent variation (Imax − Imin)/Iaverage at the third harmonic is about 20%. This
variation is four times less than that obtained with a 4f-system with phase-only-modulation [8].
The sensitivity of the system is reduced by minimizing the spectral interval ∆ω selected for the
output pulse. We notice that the filtering function will be reprogrammed in the laser operation
on the base of the deformations observed experimentally on the output pulse.
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Figure 37: The figure shows the behavior of the parameter α as function of the input angle
having set the distance between the two gratings ` = 5 cm and the period of the gratings 1740
grooves/mm. The dotted line indicates the values which must have the parameter α in order to
get a a pulse length of 10 ps assuming 10 nm of frequency interval.

A second consideration is addressed to the perturbation of the input angle θi into the stretcher.
From the expression of the dispersive coefficient
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α =
λ3

0`

πc2d2

[

1 −
(

λ0

d
− sin θi

)2
]3/2

(31)

graphically shown in Fig. 37, we can figure out that choosing a configuration with an input angle
greater than fifty degrees the stretcher is practically insensitive to input angle θi perturbations.
In the above equation λ0 is the central wavelength, ` is the distance of the two gratings (as shown
in Fig. 30), c is the speed of light and d is the grating period. We notice that a large input angle
in the stretcher means small non-linear terms in the dispersion, thus the delay time τ(ω) is linear
with frequency to a very good approximation.

5.3 Considerations

This new conceptual design of a shaping system tailored for relatively long target pulses is impor-
tant for shaping the rectangular pulses to be applied to radiofrequency electron guns. Simulations
show that the system is very efficient for the goal, having it a simple arrangement, a very low
sensitivity to parameters perturbation and being it able to provide easily variable waveforms.
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6 Pulse shaping at the second harmonic generation

We report here the article “Rectangular Pulse Formation in a Laser Harmonic Generation” Appl.
Phys. B (2005) except abstract and introduction.

In this section we investigate beam propagation and harmonic generation in the common KDP
crystal, using a suitable numerical model. Moreover, we analyze and discuss the modification of
the pulse profiles, both in time and frequency domain, on the base of a simplified and clarifying
analytical theory. We conclude with some considerations about the experimental setup.

6.1 Beam propagation within a non-linear crystal: the model and the

results

For the analysis of the nonlinear interaction leading to second harmonic generation in birefringent
χ2 media, we consider the propagation of quasi-monochromatic electromagnetic fields, with the
electric components E1 at the fundamental angular frequency ω1 (the ordinary ray in our case),
and E2 at the harmonic frequency ω2 = 2ω1 (the extraordinary ray) written as

Ei(z, t) = Ai(z, t) exp [i(kiz − ωit)] + c.c , (i = 1, 2), (32)

where Ai are complex amplitudes, ki are the corresponding wave vectors, z is the propagation
axis. We neglect the transverse variation of the fields. In the framework of the slowly varying
amplitude approximation, the interaction between co-propagating fields can be described by the
coupled differential equations [17]

∂A1

∂z
+

1

vg1

∂A1

∂t
= i

2ω1 deff
c n1

A2A
∗

1 e
i∆k z (33)

∂A2

∂z
+

1

vg2

∂A2

∂t
= i

ω2 deff
c n2

A2
1 e

−i∆k z

where vgi and ni are the group velocity and the refraction index relative to the field Ei, deff
is the effective second order susceptibility, and ∆k = k2 − 2 k1 is the phase mismatch. The
proper value of deff is determined by the angles χ and φ defining the propagation direction
with respect to the principal optical axis of the selected material. The propagation direction is
determined by the condition of maximum interaction efficiency, which corresponds to the condition
of perfect phase matching ∆k = 0 [18]. On the other hand, the values of the group velocities
and refraction indexes depend on the propagation direction and are calculated by the so-called
Sellmeier dispersion equations [19]. In this model we retain the effect of group velocity differences
(i.e. the temporal walk-off), but neglect the group velocity dispersion, which has effect only for
pulse durations well below the ps of our interest [20]. We do not consider, in addition, the effects
of higher nonlinearities, which introduce a small phase mismatch and turn out to be relevant only
for very energetic short pulses [21, 22]. The spatial walk-off due to the small angle between the
directions of energy flux and wave vector within the extraordinary ray of birefringent crystals is
neglected under the assumption of a broad transverse area of the pulse.

The coupled equations (33) are used to numerically calculate the second harmonic pulse emerg-
ing from the non-linear crystal at z = L, being L the crystal length. The complex field amplitudes
at z = 0 are respectively A1(0, t) for the first harmonic and A2(0, t) = 0 for the second harmonic.
A1(0, t) represents the envelope of the incident pulse at fundamental frequency. It will have a
profile suitable for obtaining the target profile after the interaction, and is created by a shaper.
A brief description of the numerical method, which has a global second order accuracy, is given
in the Appendix. In all the simulations we have selected for definiteness the condition of perfect
phase matching ∆k = 0, which guarantees the minimum deformation of the pulses during the
interaction.

With the aim of generating a harmonic rectangular pulse of 10 ps, we take into consideration
as input pulses for the up-conversion within the non-linear crystal, the two pulses generated by the
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shaper of Fig 30. The source laser pulse entering the shapers is assumed to have a Gaussian-like
profile with a time FWHM of 100 fs, that is a bandwidth of about 500 GHz. This relatively wide
spectral bandwidth is necessary for creating a rectangular laser pulse with fast rise time.

The crystal considered for the harmonic generation is a KDP with a length L = 500µm, and the
maximum intensity of the input signal is chosen below the threshold for damage (which depends
on the temporal length of the pulse). The selected length turns out to be a good compromise
between the second harmonic conversion efficiency and pulse profile maintenance, as shown by the
shape of the output intensity I2 = 2ε0n

2
2vg2|A2|2 of the up-converted pulses for different crystal

lengths depicted in Fig. 38. The intensity profile of the second harmonic increases with the crystal
length, but the top evolves from the flat to a hilled fashion. A simple theoretical explanation is
discussed in the next section.
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Figure 38: The graphs from 1 to 5 are the harmonic output pulses I2(t) obtained by Eqs. (33)
for crystal lengths spanning the values 200-400-600-800-1000 µm, respectively. The dashed graph
is the input signal intensity I1(t) obtained with the 4f-2g shaping system arranged for that target
pulse.

Let us now consider the two shapers.
(1) Input pulse generated by a 4f-2g shaper
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Figure 39: The picture depicts the spectral pulse profile performed by the spectral amplitude
modulation. This laser pulse then enters the stretcher (second section of the shaping system) and
afterwards enters the non-linear crystal for the second harmonic generation.

We consider first the 4f-2g-shaping system. The amplitude modulation performs a square
profile of the pulse power spectrum as depicted in Fig.39. We have run the propagation equations
with a set of five input pulses shaped with progressively increased temporal width up to 10 ps.
Fig. 40 shows the second harmonic output pulses I2(t), central column, and the corresponding
power spectra I2(ω), right column. All the output pulses have the same 10 ps temporal length
because the lacking length after the first un-complete stretching (before the SHG, second harmonic
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generation) is completed by a second stretcher set just after the SHG crystal. The maximum
intensity of the input signal profile I1(t) is selected to obtain near equal values for the intensity
maxima of the output pulse, roughly following the simple rule I1(max) ×

√
∆t ≈ const, where

∆t is the input pulse FWHM. These pictures show that a rectangular SHG target pulse can be
accomplished only with suitable shaping and stretching of the input pulse, before entering the
crystal. Moreover, the power spectrum profile in the right column result very similar to the
temporal intensity profile for all the input different temporal pulses, in contrast with the behavior
of the fundamental harmonic. This fact was discussed in [16], and is theoretically explained in the
following section.
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Figure 40: The left column shows the temporal profiles of the input pulses after spectral amplitude
modulation and a partial chirping; the center column shows the temporal profiles of the output
second harmonic pulses after completing the chirping up to 10 ps length; the right column shows
the corresponding normalized power spectra.

(2) Input pulse generated by a 4f-shaper with phase-only modulation
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We have run Eqs. (33) also with the input pulse obtained by a 4f-system whose mask is arranged
for obtaining a 10 ps pulse with phase-only modulation. The appropriate phase function H(ω) =
exp[iΦ(ω)] is found by a numerical calculation via an adaptive algorithm. We have followed two
different numerical approaches: in one the adaptive algorithm searches for the appropriate phase
filter function patterned at the mask pixels which again provides at best the target profile [8]; in
the second numerical approach we expanded the phase function in power series

Φ(ω) = aω2 + b ω4 + c ω6 + . . . (34)

and the adaptive algorithm searches the coefficients of the series for obtaining an output profile
approaching at best the target one.

The output SHG pulses obtained by Eqs. (33) with the two phase functions found along the
two lines of calculations are depicted in Fig. 41. The final pulses come out dramatically different
in the two cases: the line of the power expansion leads to a fairly smoothed pulse, whereas the
line of the direct calculation of the phase of the pixels leads to an output pulse profile flat on the
average, but with a lot of superimposed fast spikes.
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Figure 41: Frame (a): the upper curve is the input signal with a phase-only modulation calculated
by an adaptive algorithm directly for the pattern of the mask pixels. The lower curve is the
calculated second harmonic output after the interaction within the non-linear crystal. Frame (b):
the upper curve is the temporal pulse profile shaped by a phase-only modulation calculated via
the optimization of a power expansion coefficients of the phase function by an adaptive algorithm.
The lower curve is the up-converted pulse.

6.2 A simplified theory of second harmonic generation with laser pulses

with different profiles

In this section we present an approximated theoretical view, which leads to a simplified evolution
equation for the second harmonic generated field. This equation allows a picture of the problem
which enlightens the physics underlying the observed features of the SHG laser pulses.

Assuming low up-conversion efficiency in crossing the SHG crystal, we can neglect the right
hand side in Eq. (33); therefore the slowly varying amplitude of the input pulse A1 propagate
along the crystal remaining practically undepleted. As a straightforward consequence, A1 can be
written as a function depending on the variable t− z/vg1 only. The relevant propagation equation
for the second harmonic slowly varying amplitude A2 now reads

∂A2

∂z
+

1

vg2

∂A2

∂t
= iγ [A1(t− z/vg1)]

2
e−i∆k z , (35)

having put ω2 deff/c n2 = γ. A more useful equation is obtained by changing the time frame of
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reference with t′ = t− z/vg2

∂A2

∂z
= iγ

[

A1

(

t′ +
z

vg2
− z

vg1

)]2

e−i∆kz ≡ iγ [A1(t
′ + βz)]

2
e−i∆kz , (36)

where β = 1/vg2 − 1/vg1 is the group velocity mismatch parameter. In absence of this mismatch
(i.e. β = 0) the solution of this equation at the end facet of the crystal is well known [18] and
reads

A2(L) = i γ A2
1

e−i∆k L − 1

− i∆k
, (37)

showing that A2(t) ∝ A1(t)
2, and the maximum intensity of the second harmonic is obtained when

the phase matching condition ∆k = 0 is fulfilled. Assuming the validity of this condition for all
the spectral components Ã2(ω, z) of the generated light pulse, we may perform the transformation
into the frequency domain of Eq. (36), obtaining

∂Ã2

∂z
= iγ e−i βzω Ã1(ω) ⊗ Ã1(ω) , (38)

where Ã1(ω) is the incident pulse in the frequency domain, and the symbol ⊗ indicates a convo-
lution integral

Ã1(ω) ⊗ Ã1(ω) =

∫

Ã1(ω
′) Ã1(ω − ω′) dω′ . (39)

Solving Eq. (38) with zero initial condition, we get the final expression

Ã2(ω, z) = i γ z

(

e−i βzω − 1

−i βzω

)

· Ã1(ω) ⊗ Ã1(ω) , (40)

This equation (in the frequency domain) indicates that the up-converted pulse is given by the
convolution of the input pulse with itself multiplied by a modulation factor.

It is now clear that the non-linear crystal will couple the spectral components of the input
pulse at frequencies ωi and ωj satisfying the matching condition ωi + ωj = ωSHG. Therefore

the observed intensity I2(ω) ∝ |Ã2(ω)|2 of the second harmonic will result from the contribution
of all the input spectral components complying with the matching condition. The intensity is
modulated by a factor sinc

2(x), where x = βzω/2. This factor defines the frequency bandwidth
over which the SHG intensity is significantly different from zero. The bandwidth is progressively
reduced with the crystal length as shown in Fig. 42 by the graphs of the quantity CN = I2(ω)/L2
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Figure 42: Profiles of the quantity CN in the frequency domain for a set of different crystal lengths
spanning the values 200-400-600-800-1000 µm respectively, as in Fig. 38. The dashed line is the
contribution of the convolution term.

(normalized power spectrum divided by length squared) versus the crystal length. The pulse
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profile evolves from flat to round with the increase of the crystal length L due to the fact that the
flat entering pulse is convolved (see the discussion in the next paragraph) with a sinc function in
the interaction. Note that the spectral content of the output pulse is determined substantially by
the sinc function bandwidth as the crystal reaches the length of 1000 µm. This effect comes from
the higher losses at higher frequencies. This leads to the same rounding effect on the temporal
profile, as shown in Fig. 38.

We analyze now the results obtained in the two cases of 4f-2g and 4f-systems on the base of
previous considerations, at the fixed crystal length selected for keeping an appropriate frequency
bandwidth.

(1) Input pulse for SHG crystal generated by a 4f-2g shaper
The pulse to be transformed is assumed to be a transform limited Gaussian pulse. A rectangular

spectrum profile A1(ω) (as depicted in Fig. 39) is generated by a proper amplitude modulation.
When no chirp is applied the expected result of the convolution integral (39) is simply a simil-
triangular shaped SHG pulse. This result is, in fact, obtained by the complete equation system
(33) as shown by the first frame second row of Fig. 40.

Let us consider, then, the case with some chirping (that is with the phase modulation Φ(ω) =
(1/2)αω2). The new amplitude A1(ω) will assume the form

A1(ω) = S1(ω) ei
1
2 αω

2

(41)

where S1(ω) =
√

I1(ω), with I1(ω) the power spectrum of the first harmonic. The amplitude of
the second harmonic in the frequency domain will have the expression (discarding the immaterial
modulation factor)

A2(ω) ∝
∫

S1(ω
′)S1(ω − ω′) ei

1
2 α[(ω−ω′)2+ω′2] dω′ . (42)

The exponential function

ei α( 1
2ω

2
−ω ω′+ω′2) (43)

is a fast oscillating function for all ω′ except at the frequency coordinate ω′ = ω/2; the larger is the
coefficient α (that is the longer the stretching), the sooner starts the fast oscillation. Therefore, if
α is large enough, the integral turns out to be near zero everywhere except at ω′ = ω/2, i.e. that
term operates as a δ-function. The integral (42) can be approximately written as

A2(ω) ≈
∫

S1(ω
′)S1(ω − ω′) ei α( 1

2ω
2
−ω ω′+ω′2) δ

(

ω′ − ω

2

)

dω′

≈ S2
1

(ω

2

)

ei α (ω/2)2 (44)

From this equation we deduce that the spectrum width of the second harmonic is two times larger
than that of the first one, and that the spectral profile is similar (squared) to the profile of the
first harmonic when the stretching is strong enough. These results reproduces almost exactly
those obtained by the simulations with Eqs. (33) as depicted in the right column of Fig. 40.
Furthermore, we observe that the delay times of the spectral components for the first and second
harmonics are respectively

τ1(ω) =
dΦ1

dω
= αω τ2(ω) =

dΦ2

dω
=

1

2
αω . (45)

This result comply with the fact that the temporal width of the second harmonic tends to be the
same as the temporal width of the completed stretched first harmonic, as one can see in Fig. 40.

(2) Input pulse generated by a 4f-shaper with phase-only modulation
We must consider only the case of the input pulse formed by the phase function obtained by a

power expansion. The pulse entering the crystal is already fairly shaped. From the mathematical
point of view we have to treat again with a convolution integral of the type (44), with the expo-
nential phase function even faster oscillating than that considered in the first shaper with a simple
chirping. Therefore, the conclusion outlined above is immediate. Incidentally, we could end up
straightforward to this conclusion observing that, being the input pulse already formed, we could
directly exploit Eq. (37) in the temporal domain.
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6.3 Some experimental considerations

The response function for the generation of a target pulse comes out as numerical solution via an
adaptive algorithm. This solution is implemented in the laser system by a proper setting of the
shaping system. A computer, running the adaptive algorithm, can drive the system towards the
right optical configuration of the shaper, being it inserted in a feedback loop between the output
of the harmonic generator and the shaping system. In this configuration the detected output pulse
is sent to the computer as input set of data and compared with the target pulse in terms of a cost
function [8] and then the shaping system configuration is updated.

However, the operation of the laser system in relation to the pulse profile (provided with the
shaper) is very sensitive to mechanical and optical perturbations [8]. Since perturbations (in a
large laser system) are un-avoidable, and since a shaping system is capable of bringing off the
requested profile counter-reacting to perturbations with a proper re-setting, the laser system must
be arranged in an self-controlled configuration. The output pulse is continuously measured, sent
to a computer for comparison with the target pulse and the computer drives the shaping system
to the right spectral amplitude and/or phase re-modulation (depending on the shaping system
type): the operational stability implies an adaptive behavior.
In connection with the operation of measuring the output pulse profile and with the operation
of computer-assisted setting of the shaping system, we remark that: the detection of a spectrum
by a spectrum analyzer is immediate, whereas the detection of a temporal pulse is complicate
and difficult. This later operation is customary done by a cross-correlation. In our system the
cross-correlation technique cannot be exploited because of the 10 Hz repetition rate. In fact, this
low repetition rate leads to a system resetting time of about half an hour. About the technique of
the single-shot autocorrelation, we observe that, even if it would be enough fast, for extracting the
temporal profile from the autocorrelation graph a numerical de-correlation calculation must be
done, and, this calculation needs also a spectrum measurement [24]. These considerations lead to
conclude that a 4f-2g shaping system allows an easier handling because a system re-setting is done
(i) by measuring the spectrum of output pulse at each shot and (ii) by connecting the spectrum
data to a computer which does the rest (that is compares the output and the target profiles (in
our case of 10 ps the profile of the last figure in center column in Fig. 40) and organizes the proper
spectral variations).

6.4 Considerations

A relatively long and powerful second harmonic laser pulse, efficiently generated trough the inter-
action within a non-linear crystal, has a rectangular temporal profile only if the profile of the input
pulse is properly designed. The production of a proper input pulse requires the implementation in
a laser system of a shaping system capable of giving to laser pulses (via spectral amplitude and/or
phase modulation) profiles of smooth rectangular-swallow-tailed forms.

Appendix

Eqs (33) are conveniently solved with a second order finite difference scheme, appropriate for
studies on laser pulse propagation [23]. We first define dimensionless complex amplitudes with

C1 = A1e
−i∆kz/2

√

2ε0n1c

I0
; C2 = A2

√

2ε0n2c

I0
(46)

where I0 is a reference intensity, usually coincident with the maximum of the incident pulse. By
changing the independent variables with the relations

t̃ =

(

t− z

vg1

)(

1

vg2
− 1

vg1

)

−1

; z̃ = z (47)
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we get the reduced system of equations

∂C1

∂z̃
= iαC2C

∗

1 − i
∆k

2
C1 (48)

∂C2

∂z̃
+
∂C2

∂t̃
= iαC2

1

where

α = ω1deff

√

2I0
ε0c3n2n2

1

. (49)

The finite difference scheme is obtained by dividing the z̃ − t̃ plane into a grid with spacing
∆z̃ = ∆t̃, and making a second order Taylor expansion of C1(z̃, t̃), C2(z̃, t̃) about the grid points
(m,n); the second derivatives are calculated by differentiating the Eqs. 48 and substituting a first
order difference approximation for the simple derivatives. Therefore we obtain iterative expressions
giving the amplitudes at time advanced grid points Ci(m,n+1) as functions of the preceding time
and space values Ci(m−1, n+1), Ci(m,n) and Ci(m−1, n). This procedure is numerically stable
and has an overall truncation error of order (∆t̃)2.
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7 Conclusions

The relatively low-cost medium technology laser system built in the LAB has demonstrated to be a
good light source for research and development of shaping techniques. We tested the generation of
many pulse profiles and developed the relevant computer programs for driving the shaping system
as well as we could test the arrangements for optimized operations.

The up-grading of the laser source for the generation of dozen picosecond pulses is under
progress. The goal is pursued through the implementation in the oscillator of a SESAM [10]
(semiconductor saturable absorber). The foreseen pulse length of about 40 ps, instead of the
to-day 80 ps, would allow to increase of, at least, a factor four the spectral bandwidth of the pulse
with respect to the present bandwidth of 2 nm. The new feature of the light source will allow to do
tests on picosecond rise times of rectangular pulses. In addition, the cross correlation diagnostic
would become feasible.

We did the following tasks relevant for our JRA2-WP3:

1. the software based on a genetic algorithm governing the waveforms’ generation within a laser
system;

2. the design of the shaper based on a LC-SLM for the SPARC project;

3. the study of the sensitivity of the shaper to the perturbations of the laser system parameters;

4. the proposal of a shaper of new concept for the generation of long target waveforms;

5. the analysis of the non-linear action on a rectangular pulse profile in the second harmonic
generation;

6. the experimental tests of a laser system complete of a LC-SLM shaper generating many
waveforms.
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