

SRF

CARE deliverable report

WP 9 – software management

Calibration Parameters Database

Marcin Wójtowski
Mariusz Grecki

Technical University of Lodz, Department of Microelectronics and Computer Science

08/12/2005

Work supported by the European Community-Research Infrastructure Activity under the FP6
“Structuring the European Research Area” programme (CARE, contract number RII3-CT-
2003-506395).

EU contract number RII3-CT-2003-506395 CARE-Report-06-013-SRF

1

CARE deliverable report

WP 9 – software management

Calibration parameters database

Marcin Wójtowski
Mariusz Grecki

Technical University of Lodz, Department of Microelectronics and Computer Science

08/12/2005

EU contract number RII3-CT-2003-506395 CARE-Report-06-013-SRF

2

Introduction
The Low Level Radio Frequency (LLRF) subsystem of the VUV-FEL accelerator control system
has complex, distributed and networked nature. The accelerating cavities are supplied with RF
power from klystrons (Fig.1). The klystrons are controlled by DSP/FPGA based boards that get
information about electric field in the accelerating cavities through probes, down converters and
Analog to Digital Converters (ADCs). The output signals computed by DSP/FPGA drive klystron
through Digital to Analog Converters (DACs) and vector modulator. The DSP/FPGA boards are
controlled by VME embedded SUN computers. LLRF subsystem is a part of control system of
accelerator and consist of a number of modules. In the Fig.1 only one module of LLRF control
system is presented. The control computers communicate with each other and with other systems
(e.g. client control panels) through the distributed, networked DOOCS environment. DOOCS is a
software C++ library of classes for distributed control system and gives programmers API for
writing servers and clients [1]. Clients and servers communicate using properties – collections of
values stored in servers. Each property has a defined type. It can be a basic type like string or
numeric value and also complex types like structures. Each property has its own network address
that allows to read and write to property using C++ API functions. The bottom layer of DOOCS
based communication can be Remote Procedure Call (RPC) protocol, share memory, TINE or CA
(channel access). DOOCS is in a active development stage however suggestions of deep
modifications of DOOCS C++ classes are not welcomed by DOOCS developers.

Figure 1 LLRF block diagram

The algorithms realized by DSP/FPGA aim to keep stable (with given accuracy) amplitude and
phase of accelerating electric field in the cavity. These computations have to take into account many
parameters of the used hardware and their fluctuations in time, temperature etc. Parameters are
evaluated by DOOCS servers. Many computations depend on constant values – some of then are
calibration factors, other are physical parameters of electric and electronic equipments. Parts like

Power transmission line

 I

 Q

Vector
modulator

Timing

Circulator

coupler

Cavity 1

LO

1

DAC DSP/FPGA ADC

2-32

HV

Master
modulator

1,3 GHz

Down converter

Klystron

EU contract number RII3-CT-2003-506395 CARE-Report-06-013-SRF

3

ADCs, DACs, etc. have to be calibrated and their parameters (gain, offset, nonlinearities etc.) have
to be used in computations during system operation. The system calibration parameters are
identified in calibration process and stored for future use.
Unfortunately no version of DOOCS (including current) implements a unified method for storage of
calibration data. The DOOCS programmers handle this problem using “ad hoc” methods and store
calibration data in disk files (without using any standardized format) or as constants in server code.
These practice lead to many problems with data consistency (calibration data of the same device
stored in different DOOCS servers can be different), data exchange between DOOCS servers
(different DOOCS servers can use different format of data storage) and others (even loss of
calibration data in the case of server crash). DOOCS also lacks history of the changes of parameters
values since DOOCS properties correspond to current value of parameters and cannot store archival
data. Data management of many DOOCS properties is complicated – there is no build-in
mechanism to do that automatically and all changes have to be inserted and propagated in the
system manually. Data sets can be distributed across many DOOCS servers and access can be
unacceptable long.

Figure 2 Block diagram of DOOCS control system
(calibration parameters stored in configuration files and directly in server code)

Because of lack of unified method for calibration data storage in DOOCS a new system of data
storage was proposed (CDB - calibration parameters database). The features of the CDB should
overcome all the drawbacks of existing DOOCS system in the area of data storage. Many solutions
have been discussed – from local files storage of the parameters up to application of commercial
and “open source” database engine. Local files storage has many disadvantages – optimal design of
the internal structure of such files and implementation of fast search algorithms is complicated and
time consuming. There are also problems connected with scalability.
Finally the application of general purpose database engine has been chosen. Since the data
management is well handled in commercial database products it was decided to use commercial
database engine and equip it in specialized DOOCS interface. This solution gives benefits of using
standardized communication languages – SQL for relation oriented databases and OQL for object
oriented databases. There exist many many products having similar functionality but different in
many aspects (performance, concurrency, integrity, scalability, reliability etc.). Many of database

Sun hardware platform with Solaris operating system

DOOCS server

local filesystem

.......

Configuration file

DOOCS interface
properities

alghoritms

DOOCS server

V
M

E
 in

te
rfa

ce

Configuration file

DOOCS interface
properities

alghoritms

DOOCS server

VM
E

 in
te

rfa
ce

RPC

Embedded
calibration
parameters

Embedded
calibration
parameters

embedded in code

calibration parameters

stored in configuration file

EU contract number RII3-CT-2003-506395 CARE-Report-06-013-SRF

4

engines do not implement all type of queries, others have limitation on database size. Concerning
the data model (relational, hierarchical and network) it was decided to use relational one since
relation oriented database technology is well established for many years and the SQL language is
widely known. Using SQL language it is easy to get various combination of data. Servers do simple
queries – get last or previous value of data, but users applications may want to get more complex
sets of data. One of the most advanced commercial (and one of the most expensive in the term of
license fee) products fulfilling CDB requirements is ORACLE database engine [2]. Fortunately in
DESY ORACLE database is used for other purposes and its application in CDB does not generate
additional costs.

The first idea to connect DOOCS servers with CDB was to extend C++ DOOCS class and equip
C++ API with methods cdb_get_property and cdb_set_property that gets and sets respectively data
values from/in database. This direct implementation of CDB interface into DOOCS class (Fig. 3) is
flexible and very efficient but requires recompilation of all DOOCS servers that should be equipped
with CDB interface. It is required to add some code (discussed wider in IMPLEMENTATION
section that follows) to the DOOCS class API. There are several drawbacks of server recompilation
– the most important is the need to extensively test of all the recompiled servers and to check not
only whether they behave correctly storing and restoring data in CDB but also whether the CDB
interface does not affect other functions. Moreover, the CDB interface is different from typical
DOOCS client API and requires programmers to learn how to operate them. After presentation of
the features of this solution to DOOCS developers they strongly persuaded CDB developers to try
other methods.

Figure 3 Block diagram of DOOCS control system with direct API connection to CDB

After discussions with DOOCS development team it was decided to implement DOOCS interface to
CDB using external application. This method does not require modifications of server code. The
external application reads and writes calibration data using DOOCS properties mechanism. This
methods has also some drawbacks – the most important is that it is not possible to store in CDB

EU contract number RII3-CT-2003-506395 CARE-Report-06-013-SRF

5

data not exported as DOOCS properties (such data are not visible to external application). As a
result, data not related to any servers (ex. cable attenuations) can not be transferred through CDB
interface. The big advantage of this method is that it does not require recompilation and testing of
existing DOOCS servers. Only the interfacing application has to be extensively tested but this
demands much less work than testing many DOOCS servers. This way of CDB interface operation
was agreed to implement.

Figure 4 Software part of control system with indirect cdb connection by external application

Main prerequisites and requirements for the CDB and DOOCS-CDB interface are listed below:
• The database to store all calibration parameters from DOOCS system is needed.
• History of modification of calibration data should be available.
• Database interface should be compatible with DOOCS.
• Database should be easy to maintain – new data types may be added as required.
• The data access time should be short.
• Database should be reliable.
• CDB interfaces (API) to programing language (C/C++, Java) should be developed as well as

example applications.
• Data addressing scheme should correspond to the one used in DOOCS system.
• Implementation of database should be as simple as possible.

EU contract number RII3-CT-2003-506395 CARE-Report-06-013-SRF

6

Implementation

Database structure
To match many of CDB requirements a commercial database engine (ORACLE) has been chosen.
It implements mechanisms easily allowing to scale size of data, add indexes, have fast access to
data, restrict access to data, do backup and more. Fortunately it is also used in DESY for other
purposes so it has good support and its application does not require to invest money.

The structure of database has been divided into four tables:
structure_tbl - stores connections between devices (objects) and their locations. Each record stores
logical address of device, name (serial number) of device, operation made on location and
timestamp of the modification. This table stores current and archival data, however by default only
newest record with given location is restored on request.
objects_tbl –stores objects definitions. Records in other tables refer always to records in that one.
The structure_tbl and values_tbl refer to this table using serial number of the device (object) and
timestamp respectively. This mechanism allows changing whole element at specific location
without rewriting all device properties. It means that operator may prepare new device parameters
and then assign the device to the location in one step. This table stores object serial number, type of
object, operation made on object and timestamp.
values_tbl – stores values of devices properties. Records are built from names of properties,
numerical or text values, timestamp of object which value refers to, factor of numerical value (not
used for now), unit (not used for now), type of data stored (int as DOOCS), operation made on
value and its own timestamp.
access_history_tbl – stores information about access to the data. Each record consists location of
object, name of property, client (program) location, operation which is made on data (read/write)
and timestamp.

Detailed tables structure is included in APPENDIX C.

Figure 5: Database structure with relations

EU contract number RII3-CT-2003-506395 CARE-Report-06-013-SRF

7

All tables and columns have _tbl and _col suffixes respectively. In each table exists field
operation_col which informs whether record is added or removed (it can take values 'add' and 'del').
This allows to keep history of data insertion and removal.
There are two reference fields (the structure_tbl.object_serial_no is a reference to
objects_tbl.object_serial_no, and values_tbl.object_timestamp_col is a
reference to objects_tbl.timestamp_col) that match records from one table to another.
First reference matches record in structure_tbl having particular location_col value with
corresponding object in object_tbl. It is possible to have many objects with the same serial number
in objects_tbl for archival purposes. Reference connects only most recent record from objects_tbl
having the same object_serial_no as selected record in structure_tbl. The reference between
values_tbl and objects_tbl cannot work in the same way because values from values_tbl are
assigned to concrete instance of object. In order to establish this reference the unique field
(timestamp) is used. All timestamps field are unique in whole database.

Usage:
In order to put new property for device which does not exits in database first create new object in
objects_tbl and assign unique serial number of the device. The same should be performed for
non-existing location (create new object in structure_tbl with the same serial number). To move
device from one location to another it is needed to add two records for the same object serial
number to structure_tbl – one with the old location name and operation ‘del’, second with the new
location and operation ‘add’. To override location with the new object add new record with the
same location name but different object serial number.

Example.
To change value of output offset parameter of ADC located at address
'TTF2.RF/ADC/GUN1.SCOPE1/CH0.OFFSET' it is needed to:

1. Select latest record in structure_tbl with location_col equal to 'TTF2.RF/ADC/GUN1.SCOPE1'
2. Read value of object_serial_no from selected record
3. Select latest record in objects_tbl with corresponding object_serial_no read from structure_tbl
4. Read timestamp_col from this record
5. Add new record to values_tbl with property_name_col set to 'CH0.OFFSET', value_num_col

set to new value, type_col set to 2 (means DATA_FLOAT as defined in pvak_types.h header
file in DOOCS include path), operation set to 'add' and object_timestamp_col set to value got
in step 4.

Notice:
Currently CDB can handle DATA_INT (value_num_col), DATA_FLOAT (value_num_col),
DATA_BOOL (value_num_col), DATA_STRING (value_string_col), DATA_STRING16
(value_string_col), DATA_XML (value_string_col), DATA_IFFF (value_num_col,
value_num_2_col, value_num_3_col, value_num_4_col), DATA_IIII (value_num_col,
value_num_2_col, value_num_3_col, value_num_4_col) , DATA_TTII (value_num_col,
value_num_2_col, value_num_3_col, value_num_4_col) types.
New datatype for storing matrices of floats has been proposed to DOOCS developers.

Model of data flow
To access the CDB data application has to use one of available interfaces – programming language
API or execute other application which implements such API. Dependencies between CDB,
programing languages API and applications are shown on Fig 6. Currently the interfaces for C++
and Java are worked out and implemented. The C++ interface is used in t_db_doocs application

EU contract number RII3-CT-2003-506395 CARE-Report-06-013-SRF

8

(used to store/restore DOOCS properties in CDB). Java interface can be used by Matlab
applications.

Figure 6: Relations between CDB and other system components

Orange boxes represent interfaces to programming language, green high level batch application and
blue represents other applications (e.g. GUI for t_db_doocs).

Programming language interfaces

C++ interface
Notice:
All source codes can be obtained from DESY's CVS.

C++ interface has only one user class – cdb. To store data use method set of the object cdb. To
get data from database use get method of the same object. Their declarations are presented in
figure 7.

These methods are defined in cdb.h header file (appendix D). Their prototypes and method of use
are almost the same as in EqCall DOOCS object. Functions return 1 if function passes or 0 if fails.
Last parameter of get method determines which stored archival data should be retrieved (0 means
current, 1 - second newest, 2 – third newest etc.). The CDB directory includes object file cdb.o

int get(EqAdr *, const EqData *const src, EqData *dst, unsigned history=0);

int set(EqAdr *, EqData *const src, const EqData *const dst);

Figure 7: The cdb class public methods for store/restore data

EU contract number RII3-CT-2003-506395 CARE-Report-06-013-SRF

9

which should be linked with compiled program. Constructor of the cdb class requires name of the
client program. So, to add database storage functionality to application (e.g. DOOCS server/client)
it is required to perform following steps:

1. Add

#include “cdb.h”

at the begin of program.

2. Put

Cdb _cdb(“my_program”);

to initiate using of cdb object

3. Define other required objects

EqData src, dst;
EqAdr ea;

4. Put

double val;
ea.adr(“ttf2.diag/dose/und1.1l/dose.mean”);
_cdb.get (&ea,&src,&dst);

to get value of dose.mean property from location 'ttf2.diag/dose/und1.1l'.

5. Put

double val;
ea.adr(“ttf2.diag/dose/und1.1l/dose.mean”);
src.set_type(DATA_INT);
src.set(1);
_cdb_set(&ea,%src,&dst);

to put value of dose.mean property from location 'ttf2.diag/dose/und1.1l' to database.

6. Add ‘–I’ option with location of cdb header file as one of compiler’s parameters. Example
Makefile is included in appendix A.

7. Add '–L' option with location of cdb object as one of linker’s parameters as well as cdb.o
file to link program with. Example Makefile is included in appendix B. It may be necessary
to add additional options like ‘-L/opt2/oracle/db_client9i/lib -locci9 -lclntsh’
to use Oracle library (for DESY Solaris system).

8. Set ORACLE_HOME environmental variable to ‘/opt2/oracle/db_client9i/’ (for
DESY Solaris system)

EU contract number RII3-CT-2003-506395 CARE-Report-06-013-SRF

10

Application layer interface
The base functions of data management (comparison of data stored in database against values of
DOOCS properties, data synchronization between database and DOOCS) is realized by the
t_db_doocs application. This program can be run directly or through t_db_doocs.sh wrapper that
additionally sets few environmental variables before executing t_db_doocs (these variables may be
required to load libraries etc.). The t_db_doocs is batch application and can be used as part of other
programs - it reads data from command line and input file and write results to standard output.
Before execution this application the file containing locations (network addresses) of managed
DOOCS properties should be prepared. It may be done manually or by other program like
gtk_db_doocs (GUI front-end to t_db_doocs). The t_db_doocs application requires parameters
determining the mode of operation (c -compare, f -data transfer CDB->DOOCS, t -data transfer
DOOCS->CDB) and the the name of file containing locations. The –h parameter displays help on
t_db_doocs (the same result generates running program without any parameter). Standard input may
be used instead of file if ‘–‘ is given as filename. This feature allows to connect input/output
streams of parent/child processes and to use t_db_doocs in other programs.

Example.
t_db_doocs.sh -c ./locations.txt
This example compares data from DOOCS properties and corresponding CDB values. The list of
DOOCS properties to compare is contained in ./locations.txt file. Results of comparisons are written
to standard output or to to file using UNIX stream redirection mechanism. The source file and
compiled code of t_db_doocs application is located in cdb directory.

GUI application
The t_db_doocs can be used also through front-end GUI gtk_db_doocs application. It allows to
select locations just by clicking them as well as choose the operation mode from X Windows panel.
The gtk_db_doocs application generates the locations file automatically and calls t_db_doocs with
appropriate command line. Gtk_db_doocs requires few libs which sometimes cannot be found
directly. In this case instead of executing gtk_db_doocs the wrapper gtk_db_doocs.sh (which sets
needed environmental variables) can be called. The schematic diagram of the relationship and
communication paths between gtk_db_doocs, t_db_doocs, CDB and DOOCS properties is
presented in Fig. 8. The source file and compiled code of gtk_db_doocs application is located in
cdb directory.

Figure 8: Relationship and communication paths between gtk_db_doocs, t_db_doocs, CDB and DOOCS properies

EU contract number RII3-CT-2003-506395 CARE-Report-06-013-SRF

11

Figure 9 presents snapshot of gtk_db_doocs application. On the left side of the window there are
buttons corresponding the various actions. Other columns allows to select the DOOCS properties.
Bottom part of the panel is dedicated to output results from t_db_doocs application performing
selected operation.

Figure 9: Screenshot from gtk_db_doocs application

Potential future improvements of CDB
- Implementation of access restrictions (protects against accident modification of data caused

by human fault)
- Design of new application to manage database records (define new objects, move objects to

locations)
- GUI improvements (sort, multi choice, storage/readout of selected locations to/from file)
- Implementation of new data type: table of floats (this data type is requested by the DOOCS

users but still not defined in DOOCS API)
- Visualization of data relationships between calibration parameters and servers (presentation

in graphical diagram which server uses/modifies which parameter)

Bibliography
[1] DOOCS Home Page, http://tesla.desy.de/doocs/doocs.html
[2] ORACLE Database, http://www.oracle.com/database/index.html

EU contract number RII3-CT-2003-506395 CARE-Report-06-013-SRF

12

http://tesla.desy.de/doocs/doocs.html

Appendix A
example Makefile of cdb project (located in cdb DESY CVS directory)

CXX=CC
LIBS=
CXXFLAGS=-g -I/opt2/oracle/db_client9i/rdbms/demo/ -I/opt2/oracle/db_client9i/rdbms/public -I
/doocs/doocssvr1/MAIN/Epics-R3.13.1/base/include -I/doocs/doocssvr1/lib/include -DDEBUG
LDFLAGS=-g -L/opt2/oracle/db_client9i/lib -locci9 -lclntsh -lTTFapi -L/doocs/doocssvr1/lib
#-dn gives static linking
all: cdb

main.o: main.cpp cdb.h
$(CXX) $(CXXFLAGS) -c main.cpp

cdb.o: cdb.cpp cdb.h
$(CXX) $(CXXFLAGS) -c cdb.cpp

cdb: main.o cdb.o
$(CXX) cdb.o main.o -o cdb $(LDFLAGS)

cdb_eq_client.o: cdb_eq_client.cpp cdb_eq_client.h
$(CXX) $(CXXFLAGS) -c cdb_eq_client.cpp

clean:
rm *.o cdb

Appendix B
example Makefile of t_db_doocs and gtk_db_doocs project (located in gtk_db_doocs DESY CVS
directory)

#DOOCSROOT=/doocs/doocssvr1
#DOOCSARCH=solaris2
#include $(DOOCSROOT)/doocs-versions/$(DOOCSARCH)/CONFIG
#include $(DOOCSROOT)/$(DOOCSARCH)/DEFINEDOOCSROOT

CXXFLAGS=-g -I/opt2/sbin/local/sfw/lib/glib/include/ -I/opt2/sbin/local/sfw/include/ -I
/usr/local/include/glib-1.2 -I/home/mwojtow/cdb/ -I/opt2/oracle/db_client9i/rdbms/public -I
/opt2/oracle/db_client9i/rdbms/demo/ -I/doocs/doocssvr1/lib/include -I/doocs/doocssvr1/MAIN/Epics-
R3.13.1/base/include -I/doocs/doocssvr1/lib/include/xalanc -I/doocs/doocssvr1/lib/include/xercesc
LDFLAGS=-lrt -mt -lgtk -L/usr/local/lib -lgdk -lglib -lTTFapi -g -L/doocs/doocssvr1/lib
LDFLAGS_NOGUI=-mt -g -L/opt2/oracle/db_client9i/lib -L/doocs/doocssvr1/lib -lTTFapi -locci9 -lclntsh
gtk_db_doocs: gtk_db_doocs.o

CC -o gtk_db_doocs gtk_db_doocs.o ${LDFLAGS}
chmod u+x gtk_db_doocs

gtk_db_doocs.o: gtk_db_doocs.cpp
CC -c gtk_db_doocs.cpp ${CXXFLAGS}

get_property: get_property.o
CC -o get_property get_property.o ${LDFLAGS}

get_property.o: get_property.cpp
CC -c get_property.cpp ${CXXFLAGS}

gtk_clist_ex: gtk_clist_ex.o
CC -o gtk_clist_ex gtk_clist_ex.o ${LDFLAGS}

gtk_clist_ex.o: gtk_clist_ex.cpp
CC -c gtk_clist_ex.cpp ${CXXFLAGS}

t_db_doocs: t_db_doocs.o ../cdb/cdb.o
CC -o t_db_doocs t_db_doocs.o ../cdb/cdb.o ${LDFLAGS_NOGUI}

t_db_doocs.o: t_db_doocs.cpp
CC -c t_db_doocs.cpp ${CXXFLAGS}

clean:
rm *.o gtk_db_doocs

EU contract number RII3-CT-2003-506395 CARE-Report-06-013-SRF

13

APPENDIX C
Database structure of CDB
SQL> desc structure_tbl;
 Name Null? Type
 --- -------- ----------------------------
 LOCATION_COL VARCHAR2(255)
 OBJECT_SERIAL_NO_COL VARCHAR2(50)
 OPERATION_COL VARCHAR2(30)
 TIMESTAMP_COL NOT NULL TIMESTAMP(6)

SQL> desc objects_tbl;
 Name Null? Type
 --- -------- ----------------------------
 OBJECT_SERIAL_NO_COL VARCHAR2(50)
 OBJECT_TYPE_COL VARCHAR2(255)
 OPERATION_COL VARCHAR2(255)
 TIMESTAMP_COL NOT NULL TIMESTAMP(6)

SQL> desc values_tbl;
Name Null? Type
 --- -------- ----------------------------
 PROPERTY_NAME_COL VARCHAR2(50)
 VALUE_STRING_COL VARCHAR2(4000)
 OBJECT_TIMESTAMP_COL TIMESTAMP(6)
 TIMESTAMP_COL TIMESTAMP(6)
 FACTOR_COL NUMBER
 UNITS_COL VARCHAR2(30)
 OPERATION_COL VARCHAR2(30)
 VALUE_NUM_COL NUMBER
 VALUE_NUM_2_COL NUMBER
 VALUE_NUM_3_COL NUMBER
 VALUE_NUM_4_COL NUMBER
 CLOB_COL CLOB
 TYPE_COL NUMBER

SQL> desc access_history_tbl;
 Name Null? Type
 --- -------- ----------------------------
 LOCATION_COL VARCHAR2(255)
 PROPERTY_COL VARCHAR2(255)
 DOOCS_ADDRESS_COL VARCHAR2(255)
 TIMESTAMP_COL TIMESTAMP(6)
 OPERATION_COL VARCHAR2(10)

EU contract number RII3-CT-2003-506395 CARE-Report-06-013-SRF

14

Appendix D
contents of cdb.h header file

#ifndef __cdb_h
#define __cdb_h
#include <string>
#include <vector>
#include <occi.h>
#include <eq_client.h>
using namespace oracle::occi;
using namespace std;
class cdb
{
 Environment *env;
 Connection *conn;
 string doocs_address; //client identification
 int database_reconnect();
 int save_to_access_history(string location, string property, bool read);
 bool set_property(string location, string property, bool is_double, double dvalue, string svalue);
 int get_property(string location, string property, double *ret_double, string *ret_string);
 public:
 string get_string_property(string location, string property=NULL);
 double get_double_property(string location, string property=NULL);
 int get(EqAdr *, const EqData *const src, EqData *dst, unsigned history=0);
 // parameter history says which historical data you want to take
 // 0 means present, 1 previous, 2 previous previous
 bool set_property(string location, string property, double value);
 bool set_property(string location, string property, string value);
 int set(EqAdr *, EqData *const src, const EqData *const dst);
 vector<string> get_locations_list();
 cdb(string doocs_address);
 ~cdb();
};
#endif

EU contract number RII3-CT-2003-506395 CARE-Report-06-013-SRF

15

