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Abstract 
 
Side coupled Cavities are good candidates for proton accelerations in the 90-180 
MeV range, as it has been first proposed for the CERN LINAC4 project. This is not a 
new technology used, for example, for the Spallation Neutron Source (SNS). The 
goal for HIPPI was the development of technical knowledge about it. We summarize 
here the theoretical and experimental studies. This work is not completed and tuning 
procedures are under study and must be proven on the prototype. 
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1 Side Coupled Cavities 
 
We present here a brief summary of side coupled cavities. A Side Coupled Linac is 
made of a lump chain of resonant cavities, alternatively accelerating and coupling, as 
shown on the drawing given Figure 1.1. This set of cavities is equivalent to a lumped 
chain of RLC circuits (figure 1.2). 
 

 
 

Figure 1.1: Accelerator tank (figure CERN) as initially proposed for the high energy 
part of LINAC4 

 
 

 
Figure 1.2: Equivalent circuit 

 
 

 
 100 

MeV 
120 
MeV 

140 
MeV 

160 
MeV 

β 0.428    0.462 0.492 0.52 
D (cm) 28.83 28.99 28.78 28.86 
L (cm) 9.108 9.838 10.48111.06 
g (cm) 2.6 3.1 3.4 3.8 
g/L 0.285 0.315 0.324 0.343 
Q  20795.122120.823003 23884.4
ZT2 
(MΩ/m) 

34.863 37.623 39.77141.486 

T 0.893 0.894 0.897 0.896 
Ep/Eo  5.62 5.35 5.374 5.249 
Ep (Kil.,
3.5MV/m) 

 0.799 0.761 0.764 0.746 

ZT2 
(3% 
Coupling) 

25.56 27.61 29.19 30.45 

 
Table 1.1: SCL parameters for linac 4 (courtesy CERN, Eva Benedico-Mora) 
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If each cavity has the same resonnant frequency ω0, and considering the classical coupling 
factor k, the eigenmodes iX

r
and the eigenfrequencies ωi of such a structure are obtained 

from the following relations: 
 

Ni

k
k

kk
k

M

i
i ..0,

100
2/0

02/12/
001

2

2
0 ==

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

ω
ωλ

LL

( )

pq

i

iin

XX
N
ik

cavityNthitj
N
inX

rr
⊥

+
=

=⎥⎦
⎤

⎢⎣
⎡=

  

cos1

 ..0      expcos

0

π
ωω

ωπ 
 
 
 
 
 
 
 
 
The λi values are the eigenvalues of M. The eigenvectors are orthogonal and we suppose 
now that 1=qX

r
(orthonormal basis). For a perfect structure, all the modes are on a coslike 

curve (figure 1.3 left). For a real structure (ie: different frequencies for each cell), the central 
mode (the π/2 mode) is not defined in an unique way (depending on the boundary 
conditions), and this causes a discontinuity in the curve (the so-called “stop-band”, figure 1.3 
right). 
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Figure 1.3: Mode frequency for CERN SCL cavities versus phase shift from cell to cell 
(radians). The accelerating mode is the central one (π/2 mode ). Left: perfect structure 

(identical cells). Right: imperfect structure (different frequency between accelerating and 
coupling cells). 
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2 Design  
 
The Microwave Studio (MWS) software has been used at CERN, as well as HFSS at LPSC 
to define the cavity structure. The so-called M3 solution has been chosen. Its geometry is 
230 mm between cavity axes (accelerating/coupling) and 20mm gap in accelerating cells. 
 
 

0 mode π/2 mode  π mode 
 

Figure 2.1: Magnetic field for the basic pattern of SCL (2 half accelerating cells + 1 coupling 
cell), calculated with HFSS 

 
 

M1 
Q 
(π/2) k 

ω1/2π 
MHz 

ω2/2π 
MHz 

ω3/2π 
MHz 

ωa/2π 
MHz 

ωc/2π 
MHz 

MWStudio 10155 0,4%  738,6  739,67 741,4  739,67740,32 
HFSS 19956  0,5% 705,8 706,5 711.3 706,5 710.59 
M2               
MWStudio 10902 3%  721,68 731,33 744.07  731.33 733.92 
HFSS 18586  3,4% 697,32 701.13 738.38 701,13 734.05 
M3               
HFSS 19128 3% 688,71 702,5 710,33 702,5 696,08 

 
Table 2.1: comparison MWS/HFSS simulations. The M3 solution has been chosen. 

 
 

 
Figure 2.2: SCL assembly. The module is made of elementary parts including half an 

accelerating cell and half a coupling cell. Here, the cooling system for a 15% duty cuycle 
operation is represented. 
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3 E
 
3.1 Sensitivity do errors    
 
A frequency error (due for example to machining) an a cell error gives a modification of the M 
matrix, who becomes (I+Λ)M, as follows: 
 
 
 
 
 
 
 
 
 
 
 
The goal of the study is how to get the mechanical tolerances of the structure. The 
knowledge of the dependence frequency versus mechanical error is obtained by Superfish 
simulations. 
 
3.2 Single cell perturbation - First order 
 
The cavity number k est perturbed by an amount  δ. The accelerating mode is written versus 
the δ up to second order.  

 
 
 
 

The X symbols are the normalized eigenvectors. The star notation is for the perturbed 
values. The π/2 mode has the « q » index. 
 
We write also : 
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A is the identity matrix except for the kth term, equal to 1+δ. 
At first order, writing the development at δ=0, we get  : 
 

The prime symbols are for the derivative versus  δ 
A’is zero, except for the  kth term, equal to 1.  
 
For the π/2 mode, (eigenvalue 1), we have : 
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The A1 vector is decomposed over the orthonormal eigenvectors Xi, with µi components. We 
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The µq coefficient is got by writing the conservation of the norm. So, still at first order :  
021 22* =⇒+== qqqkqq XXX µµδ  

We observe immediatly that µi is zero (it is proportional to an alternate sum of cosine terms, 

The accelerating mode perturbation is a second order perturbation (at least) 

3.3 Single cell pertur
 
The calculation is done 
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The εq cœfficient is obtained from the norm: 
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The calculation is the same, to second order. We suppose (for an easier understanding) that 
two cavities (1 and 2) are perturbed. 
The second order terms have been already calculated (previous paragraph), except for the 
cross terms between cavities 1 and 2. 

  

e rewrite this équation (q is the accelerating mode) : 
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The main parameters are the number of cells (N), the coupling factor (k) and the standard 
deviation σ of the cell frequency error.  
The perturbed mode is now known and written: 
 

i
qX

And something similar for the q term 
 
3.5 Global sensitivity to errors  
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he mean value of the electric field can be deduced: 

Where C if a function of the Cip coefficients only. 
 
The RMS value is, hence : 
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The A terms have a zero contribution (as shown previously). 

So, the RMS dispersion of the electrical field is : 
 

 

[ ]∑∑ += 2242
ipijpE CBσσ  

 
3.6 Scaling laws 

here are N2 terms, but their amplitude is in 1/N (normalised vectors). They vary like k2
 

 
T  

(terms 2)1( iλ− ) 
inally: F

S
k
N

E
2
δσσ =  2

If the relative frequency error is   ±∆ ‘width in the following table, with an uniform distribution, 
we get: 
 

S
k
N2 4

∆=σ  E 23
 

he S coefficient can now be used by simulation (modelisation by MAPLE software for 
. We get, for our design, S~1.3.  

T
example). We perform several to check the scaling laws
 
Nb runs k Ncells width sigma S

100 0,03 11 1,00E-03 5,60E-03 1,14E+00
100
200

0,03 11 1,00E-03 5,60E-03 1,14E+00
0,03 11 1,00E-03 5,70E-03 1,16E+00

100 0,06 11 1,00E-03 1,40E-03 1,14E+00
100 0,01 11 1,00E-03 4,78E-02 1,08E+00

0,03 11 2,00E-03 2,19E-02 1,11E+00
0,03 11 1,00E-04 5,60E-05 1,14E+00
0,03 5 1,00E-03 2,93E-03 8,84E-01

11 1,00E-03 5,56E-03 1,13E+00
21 1,00E-03 8,40E-03 1,24E+00
23 1,00E-03 9,72E-03 1,37E+00
47 1,00E-03 1,26E-02 1,24E+00

3.7 Calculation of mechanical tolerances. 
 

he goal for field homogeneity is ±2% full width (3 standard deviations), so, if χ is the 
d τ the mechanical tolerance (±τ is the 

full mechanical tolerance), then the contribution of this error to the field deviation is (3 
viations): 

 0,03
0,03
0,03

100 0,03
 

Table 3.1: Estimation of the S parameter by simulation 
 
 

T
frequency sensitivity versus the mechanical error, an

standard de
 

22
2

43 τχσ S
k

N
E =  

The total error is the quadratic sum of the individual values. 
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3.8 Mechanical tolerances and recommendations 

The next table gives the field dispersion obtained by using the standard tolerances that can 
e achieved by a classical (ie not too expensive) machining. It is done for 2 coupling factors: 

 
 

 

 
 
 
 
 
 
 
 

Table 3.2: Field dispersion for the SCL tank 
 
 
We see that a low coupling factor (3%) leads to 15% dispersion, when a higher value (5%) 
leads to 6%. This last value is not good enough. In addition, a 5% coupling factor leads to a 
lower Q-value and n has been 

• The 3% cou
• A tuning ring is mandatory for this structure (leading to complicated mechanical 

 
 

 
 
 

Figure 3.1: Tuning ring at 1GHz (W=20mm, ∆y ring=10mm, thickness 5mm) 

 

b
 

k 0,03
Nacc 44

S 1,3

défaut tolerance ki (%) sigma
Diam_AC 0,25 0,27 0,01746203
Gap_AC 0,099 0,74 0,02056937

Diam_CC 0,25 0,43 0,0422287
Gap_CC 0,099 2 0,14325877

3sigmato 0,15869753

k 0,05

défaut tolerance ki (%) sigma
Diam_AC 0,25 0,27 0,00628633
Gap_AC 0,1000002 0,74 0,00755535
Epaisseur 0,25 0,44 0,01669456
Angle cône 0,25 0,024 4,967E-05
Diam_CC 0,25 0,43 0,01520233
Gap_CC 0,099 2 0,05157316

3sigmatotal 0,0571508

 
 
 
 

Ncoup 40

 

Epaisseur 0,25 0,44 0,04637378
Angle cône 0,25 0,024 0,00013797 

 
 
 

tal

 
 Nacc 44

Ncoup 40
S 1,3

 
 
 

too high losses. So the recommendation and the decisio
pling factor is a good choice 

tuning. 
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4 Thermal studies 
 
These studies have been related in detail in CARE/HIPPI Document-05-0011. An example of 
the proposed solution is given below, for 704 MHz copper cavities. It has been show that 
olutions exist for a ee figure 4.1), a rather 
omplicated cooling circuit has to be designed. The brazing might be also an issue. This 
tudy has shown a limit around 10-15% duty cycle of such a structure for high duty cycle. 

Figure 4.1: cooling system for a 15% duty cycle operation 

 

Figure 4.2: Cavity te a 15% duty cycle operation 

 Prototype and tuning of individual cells 

n aluminium prototype has been built to check low-level frequency aspects. Twenty two 
plates have been manufactured, permitting the construction of a full size tank. The prototype 
has been scaled to a reduced size around 1 GHz. 
The assembly is done by using ordinary screw  The alignment is done by using centering 
rings between to half accelerating cells. This structure allows prototype from the smallest 
size (a few elements) up to full size. 

s high duty cycle (15%). Nevertheless (s
c
s
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

           
 

mperatures for 

s.
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A
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igure 5.1: view of the ight) 

.1 Tuning of individual cells and k factor measurement 

he tuning of the accelerating cells can be done only by machining of the tuning ring. The 
ning of the coupling cells can be done in two ways: machining of the gap or an adjustable 
ner on the cavity axis. 

 has been observed that the correct measurement of an individual frequency is not easy: 
e cavity volume is not well known (even short-circuiting extremity cells), and the 

erturbation induced by the measurement system itself (antenna for example) is also 
nknown. Hence, we cannot guarantee that the measured value is the right one. An 
lternative proced

he measurement of the coupling cell resonant frequency is presented figure 5.2. Three 
lementary plates are assembled. The extremity half-cells are short-circuited. A movable 
ner is intr ding to a variation (unknown) of its resonant 

frequency. As the struct  extremities is 
lower.  
 
 
 
 

wing of the frequency measurement set-up. 

F prototype (accelerating cells on the left, coupling cells on the r
 
 
5
 
T
tu
tu
 
It
th
p
u
a ure has been used, based on an idea from Vittorio Vaccaro (Napoli). 
 
T
e
tu oduced in the accelerating cell, lea

ure is more complex, the influence of the short-circuited

 
 

Figure 5.2: Schematic dra

tuner
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Let us assume the frequency of the coupling cell is constant, equal to ω1. Let k be the 
coupling factor and ω2 the adjustable frequency of the accelerating cell. The modes of the 
system are given by: 
 
 
 
 
 
 
If F1 and F2 are the 2 modes frequencies, measured by a network analyser, rewriting the 
previous equation leads to: 
 
 Y

k
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k− ²121

2
2

2
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So, by taking several measurements, corresponding to different positions of the tuner, and 
without ANY knowledge of the frequency of the accelerating cell, we can get the coupling cell 
frequency as well as the coupling factor by a simple linear fit. An example is given figure

X
k

Y 2
1

1

²1 ω
+

−
=

 5.3. 

 
 
 
 
 
 
 
 

Figure 5.3: Linear fit among the measured eigenfrequencies 
 
After the measurement of all frequencies, all plates are machined. The frequency variation is 
linear versus the gap in the coupling cells. For the accelerating cells, the required 
modification of the tuning ring is more delicate to know. Using Superfish, we draw the “tuning 
curve” given figure 5.4, giving the frequency variation versus the ring machining, from the 
original frequency (full tuning ring). 
 
 
 

It must be noticed that for a coupling factor k=0.03, the uncertainty due to the fit is around 
7*10-5, ie a 2 per mil uncertainty on k. 
 
The same procedure is used to get the accelerating cell frequency. 
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Figure 5.4: Variation of the accelera cy with the tuning ring depth frequency, from 

 the results of the coupling factor measurement for all the plates. 

Figure 5.5: he 
esults obtained when the accelerating cell is varied, the red one when the coupling is varied. 

The final uncertainty on k might be 0.1% (absolute value). 

.2 Measurement of the second order coupling factor 
 

ll the models have supposed the coupling factor from accelerating cell to accelerating cell 

ting frequen
the initial (measured) value. 

 
Figure 5.5 show
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Coupling factor. The abscissa is the plate number. The green points are t
r

 
 
5

A
(or coupling to coupling) to be zero. The same method can be used to measure it and is 
summarized below (figure 5.6). We use now 3 full cells (3 modes) and we change the 
frequency of the central cell. We measure now the mode frequencies apart from the central 
one, named F2, giving again 2 frequencies F1 and F3. 
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Figure 5.6: Measurement of the second order coupling factor. Four plates are used and end 

is put in the central cell to varcells are short-circuited. A tuner y the frequency. 

et us define (K is th  the previously measured 
oupling factors from cell to cell): 

ence we get easily: 

 has been observed that the central F2 remains constant with a very good stability. This has 
be ly 

 

 
 
 

 
The mode frequencies are now solution of the equation: 
 
 
 
 
 
 
 
 
L e second order coupling factor, k1 and k2
c
 
 
 
H
 
 
 
 
It

en confirmed by a lot of numerical simulations but not demonstrated (it is not strict
constant). So, again, a linear fit can be used: 

 
 
 
 
 
 
 
leading to the knowledge of a and, finally of K. The obtained value is K=0.0034. This 
parameter is important to go further in the system model (it changes significantly the M 
matrix). 
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 5.3 Tuning results 
 
We present here the values before and after frequency tuning. The frequency goal is 1004.5 
MHz. One can see (fig 5. a too low frequency. 
 
 

8) that the 9th accelerating cell has 

             
 
Figure 5.7: Tuning. View he small tuner on the  of the tuning ring after machining (left) and of t

coupling cell (right) 
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Accel
Coupling

 

Figure 5.8: Frequencies before (left) and after machining (right). The coupling cell are in 
green, the accelerating cells in red. 

hat can we expect from this tuning? By using all the measured parameters (coupling 
ctors, frequencies etc), introduced in a realistic M matrix in a MAPLE code, we can get 
igure 5.9) the expected mode frequencies for the whole tank. This very simple tool can be 
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f CC
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995
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W
fa
(f
used for predicting the modes of any subprototype and for doing comparisons with 
experiments. 
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Figure 5.9: Theoretical mode frequencies before and after machining 

6 Tuning procedures for couple

 an SCL structure. We show first how the 
to the structure. In a second part we show 

 to the ideal π/2 mode), we can modify 
order to get the nominal frequency for this central mode 

we can achieve the nominal frequency but that 
f the coupling coefficients. 

with N an odd integer. Each oscillator has a 
coupling factor ki/2 (the factor 2 is needed to 

r). We consider also the Ki “second order” 

such as ωi = ω0 , ki = k0, Ki = 0. The 
igenfrequencies are related to the M0 NxN tridiagonal matrix where (this matrix is slight  
if e 

prototype, but the results are
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If λn is an eigenvalue of M0, it is related to the eigenfrequency by the relation
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d cavities 
 
 
6.1 Introduction 
 
We consider a chain of coupled oscillators like
eigenfrequencies and eigenmodes are related 
how, from a measurement of the central mode (close
the frequency of each oscillator in 
with a maximum homogeneity. We show that 
the homogeneity is limited by the homogeneity o
 
6.2 Chain of coupled oscillators   
 
We consider (again) a chain of N oscillators, 
frequence ωi and is coupled to the next one by a 
have k the classical inductive coupling facto
coupling factors form cell i to cell i+2. 
 
In the most ideal case, such a system is 
e
d

ly
ferent from the M matrix given before, depending on the boundary conditions on th

 similar): 
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The π/2 mode is correspond to the eigenvector. 

ore generally, M0 has a set of N orthogonal eigenvectors. We normalize them to get an 
rthonormal basis of eigenvectors written Xi in the following. The normalized vector for the 
/2 mode will be written X* because it has a specific role in the following. 

 the general case, we must consider the matrices: 
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he eigenfrequencies and eigenmodes are hence given by the relation 
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Here ω0 is the frequency of the π/2 mode that MUST be achieved. It is introduced in the 
second matrix in order to have it close to the identity matrix and to be able to use 
perturbative methods. 
 
T
 
 

XXMX λ
ω
ω

Λ
2
0 == 2  

 is any eigenmode, and ω the eigenfrequency. Once again, this expression is independent 
of ω0 but this writing will be helpful for programming. 
 
Remark: stop band 
 
Suppose all the K coefficients are zero. Suppose ki = ki+2 ≠ki+1. In this case, the ki series 
consists of 2 values only. The central mode eigenvalue depends on the value of k1 and can 
take 2 values. This difference gives the stopband. 

 
X
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6.3 Tuning procedure 
 
This paragraph is a first analysis. It has to be improved and probably corrected, depending 
on the experimental results. 

• To get the right frequency ω0 for the central mode 
• To act only on the accelerating cells for a SCL (we will see that, anyway, we can act 

only on these cells for the π/2 mode tuning) 
• To have the best possible homogeneity for the accelerating cells. 

ude in the odd cells 
ld to be zero in the 

qual to 1) central mode not too far from 
e π/2 normalized mode. 

Let Xm be the measured mode and λm the associated eigenvalue (obtained by measurement 
of the mode frequency). 

We have  
 

with the measured frequency and ω0 the frequency needed. 
 
We have: 
 
 
All matrixes being unknown (only the mode and its eigenvalue are known) 
 
Let us consider now a small perturbation E, acting on the accelerating cells only (or not if it 
appears to be really necessary). E is in fact a set of perturbations. Let us see how such a 
perturbation acts on eigenvectors. So let us rewrite the problem (the idea being to get 

 
The tuning objectives are: 

• To have zero in the coupling cells 
 
We measure the central mode (in fact we measure only the mode amplit

 the case of an SCL structure and, in this case, we suppose the fiein
coupling cells). We suppose the normalized (norm e
th

mω

corrections): 
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et us decompose thL e mode over the eigenvectors, and rewrite the eigenvalue as a 
perturbation of the nominal eigenvalue (1 for the π/2 mode): 
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We can work now to first order only (perturbative method), leading to (the ~ is transposition): 
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Due
first ord e concerned by second order. 
 
The o g this equation and solving it. As the system has 

ore equations than unknown, we proceed by a least squares method, which is obvious for 
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d finalized. 

imental work started on  and is based on the bead pull 
ethod. 
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 to the π/2 mode components, we see we can act only on the accelerating cells as far as 
er is concerned. All cells, on the opposite, ar

 c rrection is now deduced by rewritin
m
linear system by multiplying by a transpose matrix and inverting the square matrix obtained 
by this way. 
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This approach, once again, is preliminary and must be checked an
 
The exper a reduce set of cell (7)
m
 

 
 

Figure 7.1: view of the 7 cell prototyp

s shown a field dispersion up to 15%. Further and detailed
xpected for mid-2008. 
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A first measurement ha  studies 
have now to be done. Results are e
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8 Conclusion 
 
A side coupled cavity has been designed in a CERN-LPSC collaboration to achieve LINAC4 
requirements. After RF studies, a complete thermal study has been done, showing that 10-
15% is the absolute maximum duty-cycle achievable by such a cavity. Error studies have 
been developed. They have shown that a tuning ring is mandatory and that a k=3% coupling 

 

ersion is observed on k. This is mainly due to the shape of the coupling 
hich are very sensitive to mechanical errors. A future and realistic design must 

 guarantee a constant aperture (the important parameter is more the 
dispersion of k than its exact value). 
Finally, we analyse how to tune the cavity. This has to checked carefully and probably 
improved or corrected. Results are expected for mid-2008, 
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factor is a good choice (a higher value decreases strongly the quality factor, without getting 
easily achievable tolerances). 

 prototype has been built and each cell has been measured and tuned. A simple andA
accurate method has been used to get both the resonant frequency and the coupling factor, 
with a movable tuner and a linear fit. A similar method has been used to get the second order 
coupling factor. 
A large disp

pertures, wa
be very careful to
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