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Abstract

Parity violating asymmetry in inclusive �0 or �+ meson production by longi-

tudinally polarized electrons on unpolarized protons, is calculated as a func-

tion of the momentum transfer square k2 and the total energy W of the �N -

system. We consider the �-contribution in the s-channel, the standard Born

contributions and the vector mesons (� and !) exchanges in the t�channel.

The parity-odd term is the sum of two contributions. The main term (found

to be linear in k2) comes from the isovector component of the electromagnetic

currents. It is model independent and can be calculated exactly in terms of

fundamental constants. The second term is isoscalar in nature. Near thresh-

old and in the �-region, it is found to be much smaller (in absolute value)

than the isovector one.
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I. INTRODUCTION

Parity violation (PV) was discovered in 1956 in nuclear beta-decay by C.S. Wu [1],

following a suggestion of T.D. Lee and C. N. Yang [2]. In 1960, Ya. Zeldovich [3] pointed

out that PV should lead to parity-odd (P-odd) terms also in electron-hadron interactions.

These are now considered as a manifestation of the electroweak interaction, whose properties

are dictated by the Standard Model (SM). Several P-odd observables have been studied

since, in two types of PV experiments, namely in atomic physics [4,5] (at very low energy

and momentum transfer) and in electron scattering (at relatively high energies and non-zero

momentum transfers).

At �rst, these experiments were aiming at testing the SM and measuring the Weinberg

angle. A pioneering experiment was performed at SLAC on a deuterium target [6], followed

10 years later by experiments at Mainz on 9Be [7] and Bates on 12C [8]. Their determination

of the Weinberg angle were con�rmed later on, within their stated accuracy of 10%, by

high energy experiments. Since sin2�W is now known to three decimal places [sin2�W =

0:23124(24)] [9], the emphasis of e-p scattering today, is to make use of the SM to learn

about the internal structure of the nucleon.

Until recently, it has been assumed that the nucleon was only made of u and d valence

or sea quarks, but there are indications that the nucleon carries also hidden strangeness:

� the �-term (deduced from the pion-nucleon scattering length) is very di�erent from the

theoretical value calculated within the chiral perturbation theory (which is a realization

of the SM at low energy), indicating that 35% of the nucleon mass might be carried

out by strange quarks. See [10] and refs. herein.

� experiments of polarized Deep-Inelastic-Scattering (DIS) of leptons show that up to

10-20% of the nucleon spin could be carried by strange quarks [11{14],

� elastic scattering of neutrinos and anti-neutrinos by protons can only be explained by

taking into account strange quarks in the nucleon [15,16],
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� a natural explanation of the strong violation of the OZI-rule in pp annihilation [17,18]

and of �- production [19] or �-meson production [20] in nucleon-nucleon interactions

takes into account a nucleon (antinucleon) strange sea.

These experiments are sensitive to various aspects of nucleon structure: for example, the

�-term and NN or NN experiments are sensitive to the scalar part of the hadronic current,

polarized DIS is sensitive to the vector-axial current and elastic scattering of neutrinos/anti-

neutrinos to the axial current. In this respect, PV in electron-nucleon scattering seems the

most attractive way of measuring the strange vector current, thanks to a clean theoretical

interpretation through the SM.

The SAMPLE collaboration at MIT-Bates, has measured PV asymmetries at �k2= 0.1

GeV2 and large angle [21], which allowed them to obtain the �rst experimental determination

of the weak magnetic form-factor of the proton. From this measurement and the knowledge

of the proton and neutron electromagnetic form-factors, one could extract a strange magnetic

form-factor consistent with zero within the stated uncertainties.

A recent measurement with a deuteron target [22], which is much less sensitive to Gs
M

and is thus essentially determining the axial proton current, shows that the isovector axial

form-factor Ge
A(T = 1) has not the sign predicted by theory. This could be the result of

a large anapole contribution [23]. When combined with the earlier SAMPLE result [21],

one obtains a very small strange magnetic moment for the proton �s = 0:01� 0:29(stat)�

0:31(syst)� 0:07(th).

Another experiment, done by the HAPPEX collaboration at Je�erson Lab, [24,25] has

done a measurement at �k2= 0.48 GeV2 and small scattering angle �e = 350 where the

sensitivity to the weak electric form factor GZ
E is increased. Here the measured asymmetry

A = (�14:2� 2:2) � 10�6 is consistent with the SM prediction in the absence of < s�s > com-

ponents in the nucleon sea. From this asymmetry, one can deduce the following contribution

to the strange form-factor:

Gs
HAPPEX = Gs

E + 0:39Gs
M = 0:025� 0:020� 0:14;
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again compatible with zero within the error bars. In this kinematics, the axial form-factor

has a negligible e�ect.

Although disappointing at �rst sight, these results have stimulated a strong interest and

many predictions have been published, whether within quark models [26,27], QCD sum

rules [28] or Chiral Perturbation Theories [29,30]. These calculations predict that while

Gs
M is essentially constant as a function of k2, Gs

E may vary rapidly. They also indicate

that there might be some cancellation between Gs
E and Gs

M which are predicted of di�erent

signs. Therefore new e-p experiments are being set up in order to check these predictions:

at �k2 = 0:225 GeV2 at MAMI-Mainz [31], at �k2 = 0.1 GeV2 and forward angles by the

HAPPEX collaboration to do a Rosenbluth separation of Gs
E and Gs

M in combination with

the SAMPLE results, and �nally a full separation of Gs
E and Gs

M in the momentum transfer

range jk2j = 0.12-1.0 GeV2 is foreseen by the G0 collaboration at Je�erson Lab [32].

The reactions e + p ! e + p + �0 and e + p ! e + n + �+ are of practical interest

for experimentalists as they may contaminate the elastic peak. It is therefore important to

determine their own asymmetries since, if they are much larger than or, even, of di�erent

sign from the elastic one, they might be a source of errors or large uncertainties. This applies

also to the estimation of possible background in SLAC E-158 experiment [33], which aims to

measure the left-right asymmetry in M�oller scattering, e� + e� ! e� + e�. The knowledge

of P-odd asymmetries for pion electroproduction is also important for the estimation of

parity violating asymmetry in inclusive pion electroproduction for proton, in the region of

the �-resonance [34].

In 3-body reactions, besides the weak PV asymmetries, there are also strong (parity-

conserving) interactions, due to the so-called 5th response function [35], which are generally

much larger (of the order of 10�2 � 10�3 instead of 10�5 � 10�6) than PV asymmetries but

which cancel in inclusive reactions or when detectors have an azimuthal asymmetry.

Pion production has been studied previously [23,36{42] in quasi 2-body models with

stable isobars, i.e. e� + N ! e� + �. A more complete calculation including background

(Born) terms with pseudovector �N coupling with the � treated as a Rarita-Schwinger �eld
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with phenomenological �N electromagnetic transition currents can be found in [43].

In the present study, we calculate PV asymmetries in inclusive N(e; e0)N� electropro-

duction, starting from threshold up to the �-region in an approach di�ering from [43] in

many aspects:

� the main improvement consists in including !- and �-exchange in the t-channel for

�(Z�) +N ! � +N (where �(Z�) is a virtual photon (boson)),

� we use a di�erent parametrization for the � contribution, which is free from o�-mass

shell e�ects and slightly di�erent values of mass and width,

� crossing symmetry is treated di�erently than in Ref. [43],

� we use a pseudoscalar �NN interaction in order to identify possible o�-mass-shell

e�ects,

� �nally we use a speci�c parametrization for the asymmetry, which separate, in a model

independent way, the main (isovector) contribution (which depends only on the Fermi

constant GF , the �ne structure constant � and sin2�W ) and the smaller isoscalar part.

II. P-ODD BEAM ASYMMETRY FOR e� +N ! e� +N + �

We shall consider here the processes e� +N ! e� +N + �, where N is a nucleon (p or

n) and � is a pion (�0 or �+). We take into account two standard mechanisms, � and Z�

boson exchanges (Fig. 1), predicted by the SM. The matrix element can be written in the

following form:

M =M +MZ;

M = �
e2

k2
`�J (em)

� ;

MZ =
GF

2
p
2

�
g(e)v `� + g(e)a `�;5

� �
J (nc)
� + J (nc)

�;5

�
; (1)

5



where GF is the Fermi constant of the weak interaction, J (em)
� is the electromagnetic current

for �+N ! N+�, J (nc)
� and J (nc)

�;5 are the vector and vector-axial parts of the neutral weak

current for Z� + N ! N + �. The four-vectors `� and `�;5 are the vector and vector-axial

parts of the neutral weak current of a point-like electron:

`� = u(k2)�u(k1); `�;5 = u(k2)5�u(k1) (2)

where k1 (k2) is the four-momentum of the initial (�nal) electron. The notation for the

particle four momenta is explained in Fig. 1. In the Standard Model the constants g(e)a and

g(e)v are determined by the following expressions: g(e)a = 1; g(e)v = 1� 4 sin2 �W .

The P-odd asymmetry in the scattering of longitudinally polarized electrons can be

written as:

A =
N+ �N�

N+ +N�

= �GF jk2j
2
p
2��

W�

W (em)
; (3)

with two di�erent contributions to W�:

W� = g(e)a
gW1 + g(e)v

gW2; (4)

where W (em) is proportional to jMj2:

W (em) = `��W
(em)
�� ; W (em)

�� = J (em)
� J (em)�

� ; (5)

`�� = 2 (k1�k2� + k1�k2� � g��k1 � k2) ; (6)

and the overline in Eq. (5) stands for the sum over the �nal nucleon polarizations and

the average over the polarizations of the initial nucleon in the process � + N ! N + �.

The quantities gW1 and
gW2 in Eq. (4) characterize the interference of the electromagnetic

hadronic current J (em)
� with the vector and axial parts of the weak neutral current:

gW1 = `��W
(v)
�� ; W (v)

�� =
1

2
J (em)
� J (nc)�

� ; (7)

gW2 = `(a)��W
(a)
�� ; W (a)

�� =
1

2
J (em)
� J (nc)�

�;5 ; (8)
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and

`(a)�� = 2i�����k1�k2�; (9)

where ����� is the usual antisymmetric tensor.

Due to g(e)v � g(e)a , we can neglect the gW2 contribution (the second P-odd contribution,

which is induced by the axial part of the neutral weak current, is more model dependent

and it will be the object of a detailed analysis in a subsequent paper).

In this approximation, the P-odd asymmetry is solely determined by the vector part of

the hadronic neutral weak current:

A = �GF jk2j
2
p
2��

gW1

W (em)
; (10)

In order to calculate the ratio gW1=W
(em), we shall use the isotopic structure of the vector

neutral current, which holds in the SM when neglecting the contributions of the isoscalar

quarks (s, c,...):

J (nc)
� = 2J (1)

� � 4 sin2 �WJ (em)
� =

2(1� 2sin2�W )J (em)
� � 2J (0)

� ; (11)

where J (0)
� and J (1)

� are the isoscalar and isovector components of the electromagnetic

hadronic current. Considering the speci�c isotopic structure of J (nc)
� , Eq. (11), the asym-

metry A for any process ~e +N ! e+N + � can be written as:

A = �GF jk2j
2
p
2��

h
1� 2 sin2 �W +�(s)

i
; (12)

where the quantity �(s) results from the interference of the isoscalar component J (0)
� of the

electromagnetic current with the full electromagnetic current in J (em)
� i.e.:

�(s) =
W (0)

W (em)
; W (0) = �`��J (em)

� J (0)�
� : (13)

One can see from Eq. (12) that the isovector part of the electromagnetic current induces

a de�nite contribution to the P-odd asymmetry A, which is model independent and can be
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predicted in terms of the fundamental constants GF , � and sin2 �W only. Note that this

contribution depends on the single kinematical variable k2. Therefore, for reactions such as

e�+N ! e�+�, e�+d! e�+d+�0, where the electromagnetic current is pure isovector

(and therefore �(s) = 0), the asymmetry can be predicted exactly:

A = �GF jk2j
2
p
2��

h
1� 2 sin2 �W

i
; (14)

in agreement with ref. [37] and neglecting the small contributions from the axial hadronic

current, which is not considered here (note that
GF

2
p
2��

= 1:8 � 10�4=GeV2). In particular,

for the reaction e� + p! e� +�+ this model-independent estimate of A together with the

possibility of a precise measurement of the P-odd asymmetry, open new ways to look for

new physics [36] and to study e�ects due to the axial current.

In the next section, we will show that the quantity �(s), in the near-threshold region

for e� + N ! e� + N + �, as well as in the region of the � excitation, can be considered

as a small correction to the main isovector contribution. Therefore, the uncertainty in the

estimate of �(s) will a�ect very little the results.

From Eq. (12) it appears that the inclusive asymmetry A depends on the variables

E1 and W only through the correction �(s): �(s) = �(s)(k2;W;E1): Taking into account

the longitudinal and transversal polarizations of the virtual  and Z-boson, the following

representation for the correction �(s) can be written (in case of a single channel: e + p !

e+ p+ �0 or e+ p! e+ n + �+):

�(s) =

�
(s)
T + �

(�k2)fk20 �
(s)
L

�T + �
(�k2)fk20 �L

; (15)

��1 = 1� 2
(�~k2)
k2

tan2
�e

2
; fk0 = W 2 + k2 �m2

2W
;

where �T (k
2;W ) and �L(k

2;W ) are the total cross sections of virtual photon absorption in

� +N ! N + �:

�L =

Z ���J (em)
z

���2d
�; �T =

Z ����J (em)
x

���2 + ���J (em)
y

���2� d
�: (16)
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We use here a coordinate system in which the z-axis is along the three momentum of the

virtual photon, and J (em)
x , J (em)

y and J (em)
z are the space components of the hadronic

electromagnetic current.

The interference contributions �
(s)
L and �

(s)
T are de�ned as follows:

�
(s)
L (k2;W ) =

Z
d
�Re J (em)

z J (0)�
z ;

�
(s)
T (k2;W ) =

Z
d
�Re

�
J (em)
x J (0)�

x + J (em)
y J (0)�

y

�
; (17)

where ~J (0)
�
J (0)
x ;J (0)

y ;J (0)
z

�
are the space components of the isoscalar part of the hadronic

electromagnetic current. The lines above the products of the components of the electromag-

netic currents mean the sum over the polarizations of the �nal nucleons and the average

over the polarizations of the initial nucleons.

The inclusive asymmetry for p(~e; e0)N� with the contribution of two channels p+�0 and

n+ �+ in the �nal state, is determined by the following expressions:

A = �GF jk2j
2
p
2��

h
1� 2 sin2 �W +�

(s)
incl

i
;

�
(s)
incl =

�(s)(�p! n�+) +R�(s)(�p! p�0)

(1 +R)
; (18)

with

R =

�T (
�p! p�0) + �

(�k2)fk20 �L(
�p! p�0)

�T (�p! n�+) + �
(�k2)fk20 �L(

�p! n�+)

:

Therefore, the P-odd inclusive asymmetry A for p(~e; e0)N�, N� = (p + �0) + (n + �+) is

determined by a set of four total cross sections:

�T (k
2;W ); �L(k

2;W ); �
(s)
T (k2;W ); and �

(s)
L (k2;W );

for each � + p ! n + �+ and  + p ! p + �0 processes (8 in total), as functions of two

independent kinematical variables k2 and W .

In the present calculation we shall use the following parametrization of the spin structure

of the matrix element for � +N ! N + �, in terms of six standard contributions:

M(�N ! N�) = �y2F�1;

9



F = i~e � ~̂k � ~̂qf1 + � � ~ef2 + ~� � ~̂k ~e � ~̂qf3 + ~� � ~̂q ~e � ~̂qf4 (19)

+~e � ~̂k(~� � ~̂kf5 + ~� � ~̂qf6);

where �1 and �2 are the two-component spinors of the initial and �nal nucleons, ~e is the

three-vector of the virtual photon polarization, ~̂k and ~̂q are the unit vectors along the 3-

momentum of the � and � in the CMS of the � +N ! N + �-reaction.

III. MODEL FOR e� +N ! e� +N + �

We use here the standard approach for the calculation of the electromagnetic current for

the � + N ! N + � processes, which describes satisfactorily well the existing photo- and

electro-production data, in the region of W starting from threshold, W = m +m�, up to

W ' 1.3 GeV (the � excitation region). This approach takes into account the following

three contributions:

� Born terms in the s, t and u channels,

� vector meson ( ! and �) exchanges in the t-channel,

� �-isobar excitation in the s channel.

Using the isotopic structure of the 'strong' vertices on the diagrams (Fig. 2), the scalar

amplitudes for each � +N ! N + � process can be written as:

fi =
q
(E1 +m)(E2 +m) [asfi;s + aufi;u + atfi;t

+a�fi;� + a!fi;! + a�fi;�] ; (20)

where fi;s:::fi;� characterize the contributions of the di�erent Feynmann diagrams to the

scalar amplitudes fi, i = 1�6, E1 (E2)is the energy of the initial (�nal) nucleon. The isotopic

numerical coeÆcients as:::a� for the two processes � + p ! p + �0 and � + p ! n + �+

are shown in Table 1.
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One can see now that, in the framework of the considered approach, the main contribu-

tions to J (em)
� have an isovector nature:

� �-excitation in �+ and �0 production,

� �+-exchange for �+ production,

� !-exchange for �0 production,

� contact term for �+ production (in the case of a pseudovector �NN -interaction),

� s+ u Born contributions.

Therefore, the isoscalar electromagnetic current can only contain the following contributions:

� ��exchange for �0 and �+-production,

� the isoscalar part of the s+ u-diagrams.

However these isoscalar contributions are small in comparison with the corresponding

isovector ones. Indeed, the �-exchange term is smaller than the ! -exchange term, due to

the following reasons: g�� '
1

3
g!� : suppression at electromagnetic vertices; and g�NN '

1

6
g!NN : suppression at the strong vertex.

In the same way, the isoscalar Born contribution due to the nucleon magnetic moment,

for example, is smaller than the isovector contribution:
j�p + �nj
j�p � �nj

� 10�2.

This clearly shows that �(s) can be considered a small correction to the model-

independent prediction of Eq. (14). Let us briey discuss now the properties of the suggested

model, for the � + p! N + � processes.

A. Born contribution

Using a pseudoscalar �NN -interaction, we can write the relativistic invariant expression

for the matrix element of the ? + p! n+ �+ reaction in the following form:

MB = eg(Ms +Mu +Mt);
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Ms = u(p2)5
p̂2 + q̂ +m

s�m2

 
F1pê + F2p

���e�k�

2m

!
u(p1);

Mu = u(p2)

 
F1nê+ F2n

���e�k�

2m

!
p̂2 + q̂ �m

u�m2
5u(p1);

Mt =
(2e � q � e � k)

t�m2
�

u(p2)5u(p1);

where s, t, and u are the standard Mandelstam variables: s = (p2 + q)2; t = (p1 �

p2)
2; u = (p2�k)2, k is the four-momentum of �, e� is the four-vector of the virtual photon

polarization, g is the �NN coupling constant (for a pseudoscalar interaction), F1p(k
2) and

F2p(k
2) (F1n(k

2) and F2n(k
2)) are the Dirac and Pauli electromagnetic form factors of the

proton (neutron). The electromagnetic form factors of the nucleon are usually parametrized

in form of a k2-dependence of the electric (GEN) and magnetic (GMN) form factors:

F1N(k
2) =

GEN(k
2)� �GMN(k

2)

1� �
;

F2N (k
2) =

�GEN(k
2) +GMN(k

2)

1� �
; � =

k2

4m2
:

A simple dipole dependence of GEp, GMp and GMn:

GEp(k
2) = GMp(k

2)=�p = GMn(k
2)=�n =

"
1� k2

0:71 GeV2

#
�2

= GD;

with �p = 2:79; �n = �1:91; has been considered as a good parametrization of the existing

experimental data, while GEn(k
2)=0, in a wide region of space-like momentum transfer,.

However a recent direct measurement [44] of the ratioGEp=GMp shows some deviation ofGEp

from a dipole behavior, in the region 0 � �k2 � 3:5 GeV2. This high precision experiment

is based on the measurement of the polarization of the �nal protons in ~e+ p! e+ ~p, in the

elastic scattering of longitudinally polarized electrons [45].

This e�ect should be taken into account in future calculations, as well as the fact thatGEn

deviates from zero, at least in the region k2 � 1 GeV2. The last direct measurements of GEn,

in ~e+~d! e+X [46] con�rm previous parametrizations [47,48]. A recent derivation ofGEn up
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to �k2 = 3:5 GeV2 has been done in [49]. In the Vector Dominance Model (VDM) approach,

the pion electromagnetic form factor F�(k
2) is described by: F�(k

2) =

 
1� k2

m�
2

!
�1

, where

m� is the �-meson mass. E�ects of possible variations of these form factors have been

extensiveley analyzed in the framework of the present model in [50], up to large momentum

transfer square: �k2 � 2 GeV2. In the present case these variations can be considered a

second order correction for the small quantity �(s), Eq. (18), and will be quantitatively

discussed at the end of Section IV.

Note that the electromagnetic current for the reaction �+ p! p+�0, corresponding to

the sum of the Born diagrams in the s and u-channels, is conserved for any form factors F1p

and F2p in the whole kinematical region. This is not the case for the reaction 
�+p! n+�+.

A possible way to avoid this diÆculty is to renormalize the matrix elementMB(
�p! n�+)

in the following way:

MB !M0

B =MB + eg
e � k
k2

u(p2)5u(p1) (�F1p + F1n + F�) ; (21)

The electromagnetic current, corresponding to the new Born matrix elementM0

B is con-

served for any form factor. Such a procedure changes only �L, without any e�ect on the

transversal cross-sections �T (k
2;W ) and �

(s)
T (k2;W ). Moreover, this additional term which

restores the gauge invariance, has evident isovector nature, and it does not contribute to J (0)
� .

This implies that for the calculation of the main term of the asymmetry A, Eq. (18), which

is isovector, we do not have problems with the gauge invariance, for pion electroproduc-

tion. This is also an advantage of the present method, based on the separation of isovector

and isoscalar components of hadronic currents. The scalar amplitudes fi, corresponding to

di�erent diagrams of the Born mechanism, are given in the Appendix.

B. Vector meson exchange

The matrix elementMV , corresponding to vector meson exchange in the t�channel can

be written in the following form:

13



MV =
egV ��(k

2)

t�m2
V

�����e�k�J (V )
� q�; (22)

J (V )
� = u(p2)

"
�F

V
1 (t)�

F V
2 (t)

2m
���(p1 � p2)�

#
u(p1);

where gV ��(k
2) is the electromagnetic form factor for the V ��-vertex, mV is the vector

meson mass, F V
1 (t) and F V

2 (t) are the "strong" form factors for the V �NN vertex (with a

virtual V-meson). In principle the "static" values of these form factors (i.e. for t = 0), are

related to the !NN and �NN coupling constants: F V
1 (0) = gV NN , F

V
2 (0)=F

V
1 (0) = �V . An

estimate for the !NN coupling constants, based on the Bonn potential [51], gives:

g2!NN

4�
= 20; �! = 0

The �NN coupling constants can be estimated from pion photoproduction data [52]:
g2�NN

4�
=

0:55; �� = 3:7.

The VDM allows to write the following parametrization for the k2 dependence of the

electromagnetic form factor for the � + V ! � vertex (hard form factor):

gV ��(k
2) =

gV �(0)

1� k2=m2
V

: (23)

The gV �(0) coupling constant can be �xed by the width of the radiative decay V ! �,

through the following formula:

�(V ! �) =
�

24
jgV �(0)j2

 
1� m2

�

m2
V

!3

:

The numerical estimate, is based on the following values [53]: Br(! ! �0) = �(! !

�)=�! = (8:5 � 0:5)10�2, �! = (8:41 � 0:09) MeV, Br(�0 ! �0) = (6:8 � 1:7) � 10�4,

Br(�� ! ��) = (4:5 � 0:5) � 10�4, �� = (150:7� 1:1) MeV. The following relation holds

for the hadronic electromagnetic current: Br(�� ! ��) = Br(�0 ! �0). Therefore any

violation of this relation is an indication of the presence of an isotensor component of the

electromagnetic current, which is absent, however, at the quark level. So, a precise experi-

ment with the simultaneous determination of the two coupling constants for �0 ! �0 and
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�� ! �� would be very important. It would not only constitute a test of the isotopic prop-

erties of the hadronic electromagnetic current, but also have application in the calculation

of the meson exchange current contributions (MEC) to the deuteron electromagnetic form

factors.

Note that the relative sign of the V�exchange and Born contributions to the � + p!

N + � processes, is generally not known. So, we shall consider here both relative signs.

Finally we stress that the electromagnetic current, corresponding to vector meson ex-

change in the processes � + p ! N + � is automatically conserved, independently of the

parametrization of the strong form factors F1(t) and F2(t) and the electromagnetic form

factor gV ��(k
2).

C. �-excitation

This contribution can be analyzed in a relativistic framework [43], considering a virtual

� as a Rarita-Schwinger �eld with spin 3/2, but in this approach it is diÆcult to treat

o�-shell e�ects. First of all, this means that ��exchange may contain contributions from a

state with spin 1/2 as well as antibaryonic terms with negative P-parity and s=1/2 and 3/2.

Therefore the description of the ��isobar, with J P = 3=2+, especially in the s�channel is

not straightforward. To avoid these complications, we choose here a direct parametrization

of the � contribution. Note that the CMS for � + p! �+ ! N + � is the optimal frame,

because the three-momentum of the � is zero, so that the � can be described by a two-

component spinor, with a vector index, ~�, which satis�es the following auxiliary condition:

~� � ~� = 0; typical for a pure spin 3/2 state. Using this condition, it is possible to �nd the

following expression for the �-density matrix: �ab = �a�
y

b =
2

3
(Æab �

i

2
�abc�c), with the

normalization condition: Tr��� = 2s� + 1 = 4.

In this formalism the �N�-vertex can be parametrized as follows: M�N� = g�N��
y~� � ~̂q,

where � is the 2-component spinor of the nucleon in the decay � ! N + �, ~̂q is the

unit vector along the pion three momentum, in the � rest frame, and the constant g�N�
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characterizes the width of the strong decay �! N + �.

Taking into account the conservation of the total angular momentum and of the P-parity

in the electromagnetic decay � ! N +  with production of M1 photons, the following

expression can be written for the matrix element:

M�N = eg�N�
y~� � ~e� ~̂k; (24)

where g�N is the constant of the magnetic dipole radiation (or the magnetic moment for

the transition � ! N + ), ~e and ~̂k are the photon polarization three-vector and unit

momentum vector along the three-momentum of , respectively.

In the general case, the transition �+N ! � must be described by three di�erent form

factors, corresponding to the absorption of M1, E2t (transversal) and E2` (longitudinal)

virtual photons. But the existing experimental data about pion photo and electro-production

on nucleons (in the � resonance region) indicate that the M1 term is dominant even for

large k2 [54], therefore in our analysis we will consider only this form factor.

We shall use the following formula for the k2-dependence of the transition electromagnetic

form factors:

G(k2) =
G(0) GD(k

2) 
1� k2

m2
x

! : (25)

The factor (1� k2

m2
x

)�1, withm2
x = 6 GeV2, is included in order to take into account a steeper

decreasing of G(k2) in comparison with the dipole behavior [54].

The normalization constant G(0) can be found according to the following procedure. Let

us calculate �rst the di�erential cross section for �0-photoproduction:

d�

d

(p! p�0) =

�

32�

q3�
k�

(E1� +m)(E2� +m)

M4
��

2
�

G2(0)(5� 3 cos2 ��); (26)

at s = M2
�, where the �-excitation in the s�channel is the main mechanism. So,

our parametrization of the �-contribution describes correctly the angular dependence

(5� 3 cos2 ��), typical for the magnetic excitation of a
3

2

+

state in  + p ! �+ ! N + �.
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Therefore, the total cross section can be written as:

�t(p! p�0) =
�

2

q3�
k�

(E1� +m)(E2� +m)

M4
��

2
�

G2(0);

where:

E1� =
M2

� +m2

2M�

; E2� =
M2

� +m2 �m2
�

2M�

;

k� =
M2

� �m2

2M�

; q� =
q
E2
2� �m2:

We can approximate with a good accuracy �t(p ! p�0) by a single ��resonance contri-

bution. For a numerical estimate of G(0) we use �t ' 250 � 10�30 cm2.

Note again that this procedure cannot determine the sign of G(0). However for the

 + p ! n + �+ reaction, there is a strong interference between the pion diagram and

the ��contribution. The comparison of the calculations using di�erent signs with the

experimental ��-dependence in the resonance region allows to �x the corresponding relative

sign. Two remarks should be done about this procedure:

� there is no ambiguity concerning o�-mass shell e�ects for the �-contribution, at least

in the s�channel,

� this special contribution is gauge invariant.

We neglect in our consideration the �-exchange in the u�channel. The main reason to in-

clude this contribution is to have the crossing symmetry of the model. This is in principle an

important property of the photoproduction amplitude, in particular in connection with the

dispersion relations approach. However in the framework of phenomenological approaches,

this symmetry is typically strongly violated. For example, the s�channel �� contribution

induces an amplitude which is mostly complex (with a Breit-Wigner behavior), whereas the

u-channel contribution results in a real amplitude. The inclusion of di�erent form factors

for the s� and u�channel violates the crossing symmetry, which is particularly important

for the Born contributions. This appears clearly for the reaction  + p ! p + �0, because

here the crossing symmetry is correlated with the gauge invariance of the electromagnetic
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interaction, and the violation of the crossing symmetry has for direct consequence the vio-

lation of the current conservation. On the contrary, for the �-contribution, this important

correlation is absent.

In any case, the delta-exchange in u-channel does not contribute to the isoscalar part of

the electromagnetic current, and therefore does not a�ect our basic result, Eq. (18).

IV. NUMERICAL PREDICTIONS AND DISCUSSION

Having determined all the parameters of the model, it is possible in principle to calculate

all observables for the processes e� +N ! e� +N + � (on proton and neutron targets) in

the kinematical region from threshold to the �-resonance region (W � 1300 MeV), for any

pion production angle, ��, and k2.

In order to test the present model, we used existing experimental data on the angular

dependence of the di�erential cross sections for both the  + p ! p + �0 and  + p !

n+�+ reactions. This comparison allowed to �x empirically the relative sign of the di�erent

contributions: Born, �-excitation (in the s�channel) and vector meson exchange (in the t�

channel). The relative signs of all three diagrams for the Born approximation in the case of

the process  + p ! n + �+ are �xed by gauge invariance, but it is necessary to �nd the

relative signs between the Born amplitudes, on one side, and the �-isobar and vector meson

exchange contributions, on another side. The  + p! n + �+ reaction is more sensitive to

the signs of the �-contribution and �+-exchange. Then the data about the di�erential cross

sections for  + p! p + �0 allow a further check and give a constrain for the !�exchange

amplitude.

Note that the sign of the ��exchange contribution relative to the Born contribution (in

both the +p! p+�0 and +p! n+�+ reactions) has to be the same as the relative sign

of meson exchange currents (due to the ��� meson-exchange mechanism in the calculation

of the electromagnetic form factors of the deuteron) with respect to the amplitude in the

impulse approximation for elastic ed�scattering. This represents an important link between
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very di�erent physical problems.

In order to obtain a good description of the experimental data for  + p ! p + �0 and

+p! n+�+ we introduced small corrections to the di�erent contributions. For the reaction

 + p! p + �0 a form factor was added to the Born contribution. The u�channel nucleon

contribution for +p! n+�+ can be neglected without violating gauge invariance, because

its magnetic content satis�es alone the current conservation condition. As a matter of fact

this contribution has a diverging behavior at large angles, which is typically corrected by

introducing an ad-hoc form factor. We choose to replace this contribution with a somewhat

simpli�ed phenomenological (S-wave like) contribution: a

�
1� t

1:2

�
1:2 GeV

W
; where a is a

parameter which is adjusted in order to reproduce at best the �0 photoproduction data.

We did not attempt to reproduce with a good accuracy the threshold behavior of the

 + p ! p + �0 and  + p! n + �+ amplitudes. A precise description of this behavior, in

particular for the process  + p ! p + �0, can be obtained, for example, in the framework

of the Chiral Perturbative Theory approach [55]. For inclusive calculations, a qualitative

description of the data in the threshold region is suÆcient.

The quality of our model is shown in Fig. 3, where we present the comparison of our

predictions with the experimental data on the di�erential cross sections for the +p! p+�0

and + p! n+�+ reactions, in the kinematical region where our model can be considered

a reasonable approach. Indeed the unpolarized di�erential cross sections are well described.

We did not apply the model to polarization observables. In particular di�erent T�odd

observables, such as, for example, the target asymmetry or the polarization of the �nal

nucleons, are very sensitive to the relative phases of the di�erent contributions. A good

description requires a very precise treatment of the unitarity condition as well as of T-

invariance of the hadron electromagnetic interaction, which are not so important for the

di�erential or total cross section. A further comparison with the existing electroproduction

data is not conclusive, due to their limited accuracy [56].

Therefore, after having determined the relative signs of the di�erent contributions, our

model can be generalized to pion electroproduction.
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Our aim is the calculation of the inclusive P-odd asymmetry A, in p(~e; e0)X, for the sum

of two possible channels, X = p + �0 and X = n + �+. One can see, from Eq. (18), that

such asymmetry is determined by the following ratios of inclusive cross sections:

R
(s)
L =

�
(s)
L (k2;W )

�T (k2;W )
; R

(s)
T =

�
(s)
T (k2;W )

�T (k2;W )
;

RLT =
�L(k

2;W )

�T (k2;W )
;

for both channels, � + p! p + �0 and � + p! n+ �+, and

Rpn =
�T (

�p! p�0)

�T (�p! n�+)
;

which characterizes the relative role of the two channels. The 2-dimensional plots of these

ratios as functions of k2 and W are shown in Fig. 4 and 5, for the reactions �+ p! p+�0

and � + p! n + �+, respectively.

For �0-electroproduction, both R
(s)
L and R

(s)
T are small corrections to A. In the considered

kinematical region, they are positive and tend to decrease in the region of the � resonance,

due to the dominance of the isovector resonance contribution. The behavior of all these

ratios in the threshold region can be improved, as we discussed above.

In the case of the �+p! n+�+ reaction, the corresponding corrections are also small,

especially R
(s)
L . Note that R

(s)
T is negative in the whole region of k2 and W .

Combining these results it is possible to calculate the resulting asymmetry A for the

sum of both channels, again in a 2-dimensional representation (Fig. 6). The dependence on

the detailed electron kinematics for p(~e; e0)X (energies of the initial and �nal electron and

electron scattering angle) is contained in the single parameter �, for which we used three

di�erent values: � = 0; 1=2 and 1. In order to extract the strong k2 dependence of A, the

"reduced" asymmetry A0 = �A=jk2j is shown.

In this picture one can see that the behavior of A versus k2 and W , in the region

1:08 � W � 1:26 GeV and in a wide region of momentum transfer k2, is smooth everywhere

and negative (note the �1=jk2j factor in the formula). Such a behavior results from the

isovector nature of the electroproduction processes which we have considered.
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The role of the di�erent contributions is illustrated in Figs. 7, 8 and 9. In Fig. 7 (Fig.

8) the ratio of the cross sections R
(s)
L and R

(s)
T is reported as a function of W, for two �xed

values of jk2j, (a) jk2j = 0:4 GeV2 and (b) 1.0 GeV2, for the reaction � + p ! p + �0

(�+ p! n+�+). The � contribution (dashed-dotted line) vanishes, while the Born terms

(dotted line) give the largest contribution at forward angles. The contribution given by the

vector meson (� and !) exchange diagrams is not so essential here.

The di�erent contributions to the total asymmetry A are shown in Fig. 9. This �gure is a

projection of Fig. 6 showing the resulting reduced asymmetries A0 = �A=jk2j as a function

of W at a �xed value of the virtual photon polarization � = 0:5 and for two values of the

momentum transfer (a) jk2j = 0:4 GeV2; (b) jk2j = 1:0 GeV2. The �-contribution only is

constant as a function of W - due to its isovector dominance, the vector-meson exchange

gives a rather small contribution at low W (below 1.2 GeV) and it is negligible above. The

full calculation gives values of A varying smoothly from �7 � 10�5 at W=1.1 GeV (close to

the elastic region) to �8 � 10�5 at W=1.25 GeV, in the region of the � at jk2j = 1 GeV2.

Now comparing elastic scattering and inclusive �- production (Fig. 9), we see that

they are both negative and of the same order of magnitude. Moreover A is smaller in the

region W=1.1 GeV (close to elastic scattering) and larger in the � region. Therefore we

can conclude that a small admixture of �-production events in the region of the elastic

peak, is not going to produce a large uncertainty in the elastic PV asymmetry although a

quantitative estimate has to be made in each speci�c case, either by using Fig. 6 or from

the corresponding numerical values available from the authors.

We studied quantitative e�ects of di�erent choices of form factors for the electromagnetic

vertexes. For illustration, we report, in Table II, numerical values for two ratios, R
(s)
L and

R
(s)
T , for the reaction e+ p! e+ p + �0, for �k2= 0.5 GeV2, in the resonance region. The

e�ect of changing the electric neutron form factor, from GEn =0 to the value given by the

parametrization [48], is less then 10%. The dependence on gV �� is larger, when comparing

the previous results based on Eq. (23), to the values obtained with a soft form factor:
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gV ��(k
2) =

gV �(0)

(1� k2=m2
V )

2
: (27)

In any case the isoscalar correction is always very small, at least two order of magnitude

smaller than the main (isovector) result for the asymmetry A.

V. CONCLUSIONS

We have calculated the k2 and W -dependences of the P-odd asymmetry for inclusive

scattering of longitudinally polarized electrons by unpolarized protons with �0 or �+ meson

production. Using the known isotopic properties of the electromagnetic current for the

processes � + p ! p + �0 and � + p ! n + �+ and the vector part of the weak neutral

current for the processes Z� + p ! p + �0 and Z� + p ! n + �+, we have derived an

original expression for the inclusive asymmetry A. Without approximations, it is possible

to determine the main (isovector) contribution to A, which depends only on the variable

k2. The exact calculation of A is then reduced to the analysis of speci�c (small) isoscalar

contributions to the electromagnetic currents.

We have calculated the amplitudes for � + p ! N + �, taking into account three

standard contributions: Born + vector-meson exchange+ �-excitation. All the necessary

parameters: the coupling constants and di�erent electromagnetic form factors are taken

from other sources. Small adjustements of the parameters were done in order to obtain a

good description of the experimental data on the di�erential cross sections for +p! p+�0

and  + p! n + �+. The model gives the vector part of the weak neutral current which is

the main contribution to P-odd e�ects in e+N ! e +N + � processes.

The reduced asymmetry A0 varies very little as a function of the two basic kinematical

variables, k2 and W . In our approach this appears naturally from the fact that the isoscalar

content of the electromagnetic current for  + N ! N + � is very small in the considered

kinematical region.

The possibility to calculate this contribution as a small correction to the main contribu-

tion, opens a way to use P-odd observables in elastic and inelastic electron-proton scattering

22



for the study of the relatively small axial contributions.

VI. APPENDIX

A. Born contribution: s-channel

The scalar amplitudes for � + p! p + �0 are de�ned as

f1s = f3s = �
g

W �m

j~kjj~qj
(E1 +m)(E2 +m)�

F1p(k
2) + F2p(k

2)
W +m

2m

�
;

f2s =
g

W �m

�
F1p(k

2)� F2p(k
2)
W �m

2m

�
;

+
g

W �m

~k � ~q
(E1 +m)(E2 +m)

�
F1p(k

2) + F2p(k
2)
W +m

2m

�
;

f4s = 0;

f5s =
g

(W +m)(E1 +m)

�
�F1p(k

2) + F2p(k
2)
E1 +m

2m

�
;

f6s =
g

(W �m)(E2 +m)

j~kj
j~qj�

�F1p(k
2) + F2p(k

2)
E1 �m

2m

�
;

with j~kj =
q
E2
1 �m2 and j~qj =

q
E2
2 �m2:

B. Born contribution: u-channel

f1u =
gj~kjj~qj
u�m2

(
F1p(k

2)
W +m

(E1 +m)(E2 +m)
� F2p(k

2)

2m(E1 +m)24W +m +

 
m +

m2 � k2

W

!
E�

E2 +m
+

2~k � ~q
E2 +m

359=; ;

f2u =
g

u�m2

"
F1p(k

2)

 
W �m+ ~k � ~q W +m

(E1 +m)(E2 +m)

!
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�F2p(k
2)

2m

 
(E1 �m)(W �m) + ~k0

 
m +

m2 �m2
�

W

!
 
�2~k � ~q +

 
m +

m2 � k2

W

! 
m+

m2 �m2
�

W

!!

~k � ~q
(E1 +m)(E2 +m)

1A35 ;
f3u =

g

u�m2

gj~kjj~qj
E1 +m

"
�F1p(k

2)

E2 +m

 
�m +

m2
� �m2

W

!
� F2p(k

2)

2m0@�W �m+

 
m +

m2 � k2

W

!
E�

E2 +m
+

2~k � ~q
E2 +m

1A35 ;
f4u =

g

u�m2
(E2 �m)

�
�2F1p(k

2) + F2p(k
2)

�
�1 + W

m

��
;

f5u = �
g

(u�m2)(E1 +m)

��
�F1p(k

2) + F2p(k
2)
E1 +m

2m

�
 
m+

m2
� �m2

W

!
+ F2p(k

2)
~k � ~q
m

35 ;
f6u =

g

(u�m2)(E2 +m)

j~qj
j~kj

�
�
�
F1p(k

2) + F2p(k
2)
E1 �m

2m

�
 
m� m2

� �m2

W

!
+ F2p(k

2)
~k � ~q
m

35 ;
where u�m2 = k2 � 2~k0E2 � 2~k � ~q; ~k0 =

W 2 + k2 �m2

2W
; and E� =W � E2:

C. Vector meson exchange: t-channel

f1V = gV ��(k
2)gV NN

j~kjj~qj
mV (t�m2

V )

��
1 +

�
1 +

W

m

�
�V

�
0@�1 + ~k � ~q

(E1 +m)(E2 +m)

1A
+(1 + �V )(W +m)

�
1

E1 +m
+

1

E2 +m

��
;

f2V = gV ��(k
2)

gV NN

mV (t�m2
V )
f(1 + �v)[ ~k0(E2 �m)+
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E�(E1 �m)� ~k � ~q
 

~k0

E1 +m
+

E�

E2 +m

!#
+

�
1 +

�
1 +

W

m

�
�V

� ~k2~q2 � (~k � ~q)2
(E1 +m)(E2 +m)

9=; ;

f3V = gV ��(k
2)

gV NN j~kjj~qj
mV (t�m2

V )�
(1 + �V )

E�

E2 +m
+

�
1 +

�
1 +

W

m

�
�V

�
(~k � ~q)

(E1 +m)(E2 +m)

9=; ;

f4V = �gV ��(k2)
gV NN

mV

(E1 +m)(E2 +m)

t�m2
V

"
1 +

�
1 +

W

m

�
�V +

(1 + �V )

E1 �m
~k0

#
;

f5V = gV ��(k
2)

gV NN

mV (t�m2
V )

1 + �V

E1 +m

�
t+

�
k2 �m2

�

� m
W

�
;

f6V = �gV ��(k2)
gV NN

mV (t�m2
V )

1 + �V

E1 +m

j~kjj~qj
mV (t�m2

V )�
t+

�
k2 �m2

�

� m

W

�
;

where

t�m2
V = m2

� �m2
V � 2~k0E� + 2~k � ~q + k2:

D. One pion contribution: t-channel

f1t = f2t = 0;

f3t = g
2j~kjj~qj
t�m2

�

F�(k
2)

E1 +m
;

f4t = �2g
E2 �m

t�m2
�

F�(k
2);

f5t = �
g

t�m2
�

F�(k
2)
2E� � k0

E1 +m
;

f6t = �
g

t�m2
�

F�(k
2)
j~kjj~qj
t�m2

�

2E� � k0

E2 +m
:
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E. Calculation of the isoscalar amplitudes f
(s)
i (�p! p�0)

The isoscalar amplitudes are:

f
(s)
i (�p! p�0) = �f (s)i;s � f

(s)
i;u � fi;�

where the contributions f
(s)
i;s and f

(s)
i;u are determined by the corresponding formulas, with

the following substitutions:

F1p ! F1s =
F1p + F1n

2
;

F2p ! F2s =
F2p + F2n

2
:

F. Gauge invariance of the suggested model

In the framework of the considered model, for the process of neutral pion electroproduc-

tion, e + p! e + p + �0, the corresponding hadronic electromagnetic current is conserved:

k � J (em)
� = 0 for any form factor in �NN , ���, �V �, and �N�-vertices.

In case of charged pion electroproduction, e + p ! e + n + �+, a special contribution

must be added to the matrix element:

�M = �
p
2g
e � k
k2

5(F1p � F1n � F�)

which results in additional contributions to the scalar amplitudes: �fi(p! n�+):

�f1 = �f2 = �f2 = �f4 = 0

�f5 =
p
2g(E1 �m)[F1p(k

2)� F1n(k
2)� F�(k

2)]=k2

�f6 = �
p
2g(E2 �m)[F1p(k

2)� F1n(k
2)� F�(k

2)]=k2
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TABLES

TABLE I. Numerical coeÆcients for the di�erent contributions to the Feynmann diagrams

Reaction as au at a� a! a�

� + p! p+ �0 -1 -1 0 +1 +1
p
2

� + p! n+ �+
p
2

p
2

p
2

p
2 0 +1
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TABLE II. Numerical values for R
(s)
L and R

(s)
T , for the reaction e + p! e+ p+ �0, for �k2=

0.5 GeV2, W=1.23 GeV and di�erent form factors

R
(s)
T R

(s)
L GEn gV ��

-0.00056 0.0059 0 hard (Eq. 23)

-0.00050 0.0054 from [48] hard (Eq. 23)

-0.00104 0.0017 0 soft (Eq. 27)
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FIGURES

(a) (b)
FIG. 1. Feynman diagrams for �- and Z�-boson exchanges in the processes e�+p! e�+N+�.

(b)

(c) (d)

(a)

(e)

Fig. 2

FIG. 2. Feynman diagrams for � + p! N + �- processes.
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(a)

(b)

(c)

Fig. 3
FIG. 3. The angular dependence of the di�erential cross sections for the photoproduction pro-

cesses: (a) and (b) � + p ! p + �0; open stars: data from ref. [59], open crosses: data from ref.

[57], (c) � + p! n+ �+; data are from ref. [58]; the dashed line is the prediction of the present

model.
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FIG. 4. The k2 and W -dependences of the ratios of the total cross sections for

the e� + p ! e� + p + �0 reaction: (a) R
(s)
L (k2;W ) = �

(s)
L (k2;W )=�T (k

2;W );

(b) R
(s)
T (k2;W ) = �

(s)
T (k2;W )=�T (k

2;W ); (c) RLT (k
2;W ) = �L(k

2;W )=�T (k
2;W ); (d)

Rnp = �T (p�
0)=�T (n�

+).
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FIG. 5. The k2 and W -dependences of the ratios of the total cross sections for the

e� + p! e� + n+ �+ reaction. Same conventions as in Fig. 4.
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FIG. 6. The k2 and W dependences of the reduced asymmetry A0 = �A=jk2j (where A is the

theoretical asymmetry to be compared to experimental data) for p(~e; e0)X at three di�erent values

of the virtual photon polarization �: (a) � = 0; (b) � = 0:5; (c) � = 1.
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FIG. 7. The W -dependence of the ratios R
(s)
L (k2;W ) and R

(s)
T (k2;W ) for �xed values of k2 a)

and c) �k2 = 0:5 GeV2; b) and d) �k2 = 1:0 GeV2 for the e� + p ! e� + p + �0 reaction. The

curves represent the full calculation (full line), �-contribution only (dashed-dotted line), � + Born

terms (dashed line), � + vector mesons (dotted line).
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FIG. 8. The same as Fig. 7, for the e� + p! e� + n+ �+ reaction
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FIG. 9. The W -dependence of the reduced asymmetry A0 for � = 0:5 and two values of k2: (a)

�k2 = 0:4 GeV2; (b) 1:0 GeV2. Same conventions as in Fig. 7.
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