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ABSTRACT

Microlensing surveys derive the microlensing optical depth towards various
directions such as the Galactic Centre from the distribution of observed Einstein
radius crossing time. I show that the formula which is being used is invalid for
“exotic” lensing events. The corrected formula is derived. The “parallax” effect
(earth motion) requires no correction. Corrections for the finite size of the source
and wide binary lenses are small (typically less than 1 %), except for blended
events. Corrections for intermediate type binaries such as MACHO-LMC-9 can
be substantial.

Subject headings: cosmology:dark matter — gravitational lensing

1. Introduction

Microlensing surveys (Paczynski 1996) such as EROS, MACHO or OGLE have been very
successful at finding microlensing candidates. The MACHO collaboration (Alcock et al. 2000a)
found 13-17 events in their 5.7 year data sample towards the Large Magellanic Cloud (LMC).
The EROS collaboration found 4 events towards the same direction in their 3 year data
(Lasserre et al. 2000; Lasserre 2000) and 1 event in the 2 year Small Magellanic Cloud
sample(Palanque-Delabrouille et al 1998). Hundreds of microlensing events were found by
either MACHO (Alcock et al. 2000c) or OGLE (Wozniak et al. 20001) towards the Galac-
tic Centre. EROS (Derue et al. 2001; Afonso 2001) found also tens of microlensing events
towards the Galactic Disk and the Galactic Centre.

The microlensing optical 7 depth is given by

Dgs
T = / dDdﬂrE2pd(Dd) (1)

where Dy and Dy are the deflector and the source distance, py(Dy) is the number density of
deflectors of mass M, and rg, the Einstein radius is given by

_ [4GMy Dy(Ds — Dy)
= c? DS

(2)
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The microlensing optical depth can be calculated towards any direction with a galactic model.
An interesting property of the optical depth is that it is independent of the deflector mass
function. Since the deflector mass function is not known precisely (it is totally unknown
in the case of halo microlensing), the comparison between predicted and measured optical
depths is little sensitive to systematics. The experimental determination of the optical depth
is described in section 3.

The optical depth for microlensing towards the LMC measured by the MACHO col-
laboration is 7MACHO = 12702 1077 a factor of 4 too small to explain the Galactic rota-
tion curve. On the other hand, interpreting the observed optical depth in terms of lensing
by known stellar populations in the galactic disk or in the LMC seems difficult, since the
expected contribution is much smaller (7gee, = 0.24 — 0.36 10_7). The optical depth
towards the Baade window measured by MACHO with red giants is 7 = 2.0 & 0.4 10~°
(Popowski et al. 2000). This seems somewhat (~ 30%) too large compared to the predictions
of models (Evans et al. 2002). Previous measurements by MACHO (Alcock et al. 2000c)

and OGLE (Wozniak et al. 20001) were even larger by a factor of 1.5-2.

Systematic effects have been suspected as the reason for the excess optical depth towards
the LMC and the Galactic Centre. The main suspect is the ”blending” ! of source stars,
sometimes associated with binary lensing effects (see e.g. (Di Stefano 2000)). The purpose
of this paper is to investigate the role of ”exotic” microlensing events in the calculation of
the optical depth.

About 10% of the detected microlensing events are ”exotic” events. They cannot be
explained by the simplest ”point lens-point source” (PLPS) model of lensing. Examples of
exotic lenses are binary lenses or sources ("xallarap” events), ”parallax” events (distorsion
due to the earth motion around the sun), and events in which the disk of the source is
differentially magnified (due to the finite size of the source). Since only 10% of the events
are exotic, one naively expects a correction to the optical depth of at most 10% from exotic
lensing. However, as will be shown in paragraph 4.3, the effect of exotic lensing is much
stronger for blended events. Because of this, exotic events have a potentially large effect on
the blending correction of the optical depth.

In the next two sections, I derive the expressions for the rate (equation (14b)) and the
contribution to the optical depth (equation (21)) of exotic microlensing events.

!The objects monitored by microlensing surveys are blends of many stars whose seeing disk are overlap-
ping. Any of these stars can be lensed. Optical depth estimates include in general a blending correction.
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2. The microlensing rate

The Einstein radius crossing time ¢ is the only physical information that can be ob-
tained from most microlensing events. Once corrected for the experimental efficiency €(tg),
the ¢z distribution (or histogram) is an estimator dI'/dt of the differential microlensing rate
dl'/dtg. A

o = () )
g €(tg) Necdops dig

where Ny, Tops and Ny are the number of sources, the total observing time and the

number of observed microlenses. A “lensing event” occurs whenever the magnification A of
a microlensing event exceeds a threshold A, (in general Ay, = 1.34). For a given source,
the locus of lens positions for which A > Ay, is called the “microlensing tube” (Griest 1991).
It is easy to show that the number of lenses d/N at distance Dy entering the microlensing
tube and crossing an area dl dDy per unit time is

d*N
dl' = W = Pd V¢ dl d_Dd cos f(Ut)Ut d’Ut do (4)
where 0} is the transverse velocity of the lens, f(v;) is the distribution of v, = ||7}||, 6 is the

angle of v; with respect to the normal to the tube section and dl is the elementary length of
the slice of the tube. v; is related to tg and rg by

tp =2 (5)

Ut

dl' is the number of lenses crossing inward an area dl dDy of the microlensing tube per second.
Hence this is not the microlensing event rate, since a lens may enter the microlensing tube
several times. However, the difference between these two rates will be ignored until section
3.

The transverse velocity o is the sum of 2 components: the microlensing tube transverse
drift velocity v; and the velocity dispersion ¥g;;.

77t = 77d + 77dis (6)

I assume hereafter that the velocity dispersion is distributed according to

) = 5 exp (- (2 . Ut (7)
' 20,0, 202 207

where z and y are the eigendirections of the velocity dispersion tensor. f is normalized by

/fdvdis(w) dvdis(y) =1 (8)
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The orientation of the microlensing tube is arbitrary relative to the eigendirections of the
velocity tensor.h The transverse velocity distribution has to be averaged over all the orien-
tations of the microlensing tube.

If the velocity dispersion tensor is isotropic with o, = o, = o , the v, distribution is

given by
1 1
f(v) = 5 exp (— 557 ——(v? 4+ v3 — 2vgcos(y + U — 3))) (9)
where the angles v, U and 3 are defined in figure 1. Averaging over a =  — ¢ at fixed v, ¥
and § gives:
~ 1 [ 1 1 20,04
Flo) = 5 | dot() = 5z exp~(55 0 + o) (g (10)

where [, is a modified Bessel function.

The general expression of f is cumbersome and derived in the appendix. It depends
only on the kinematical variable v; and is independent of the geometry of the microlensing
tube.

Changing variable from v; to tx and integrating over 6 gives:

=) (11)

3
dI' = 2py dl dDy (“2) dtyy F(-2
Since f(v;) is independent of the geometry of the lensing tube, the integration over [ is

trivial: 3

dl = 2py | dDy (P2 dtp f(rE) (12)

4
E E

For a PLPS, the microlensing tube section is a circle with length | = 2u,,;, 7 rg with
Umin given by

Umin — ﬂ\/(Athr/ A?hr - 1) —1

For a general lens, the tube section is much more complicated. On dimensional grounds, the
length [ of the lensing tube can be written as

I =2mrpK(Apy) (13)

The K factor is a function of both the magnification threshold A, and the geometry of
the lens (e.g the distance of the components in Einstein units and the mass ratio of the
components for a binary lens). K is not in general linear in w,,;,. For instance, for a binary
lens and Ay, > 1, K is almost independent of u,,;, (see section 4.3).
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Replacing [ from equation (13) into equation (12) gives:

4 —
dl' = 47TK(Athr)pd dDd (Tg) th f(;—g) (14&)
= K(Athr)((ft—FE)oth (14b)
where (%), is the rate obtained with point sources and point lenses. Equation (14b), which

was also found by Baltz and Gondolo (Baltz and Gondolo 2001) means that the lensing rate
for exotic lenses can be calculated by rescaling the lensing rate for PLPS lenses with K. K can
be calculated for any observed microlensing event, provided the geometry of the event and

the magnification threshold A, are known. Examples of calculations are given in section
4.1 and 4.2.

If source stars are not resolved and differential photometry is used, the magnification
threshold depends on the magnitude of the source star and has to be found on an event-by-
event basis. From now on, I assume that the microlensing events are found by monitoring a
catalog of resolved objects and using a fixed magnification threshold. The resolved objects
are a blend of many stars. If only a fraction f of the source object flux is magnified, it is
useful to define an effective magnification threshold by

Y Apr + [ =1

thr — f (15)

3. Estimation of the microlensing optical depth

For the purpose of calculating 7, it is convenient to calculate a weighted average of tg.
One gets from equation (3):

o t
- NSTCTD;,S Zevents K(/I;thr) e(ti') (17)

Since dI'/dtg is the number of lenses entering the microlensing tube per unit time and unit
tg, the observed events in the r.h.s of equation 17 have (in general) to be multiply counted.
The multiplicity p is the number of observed amplification threshold crossings.

The experimental efficiency takes into account the loss of events due the selection cuts
(see e.g. (Lasserre 2000)) as well as time sampling. It is generally calculated with simulated
microlensing light curves superimposed to observed stable star light curves. It is thus clear
that the experimental efficiency depends not only on tg, but also on the geometry of the
lensing event and needs not be the same for binaries and PLPS lenses.
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Inserting equation (14b) in the r.h.s of equation (16) gives

1 Z p e _ —47r/Pd dDy /(;i;) dip f(r_E) (18)

NsrcTobs cvents K(Athr) 6(tE) %‘ tE
Changing variable from ¢y to w = rg/tg one gets:
o _r e 4 [7pary dDy [ dwwf(w) (19)
NsrcTobs events K(Athr) €(tE)
= 4([ dww f(w))T (20)

The integral over w is calculated in the appendix. The r.h.s of equation (20) is independent
of v4, 0, and o,. Equation (20) can be rewritten as

s D 155

T= > (K(Athr))e(tE)

21
2NsrcTobs ( )

events

Equation (21) is the main result of this paper and will be fully discussed in the next
section. For PLPS lenses, K is simply . For K = u,,;, = p = 1, equation (21) gives
the formula used by the microlensing surveys to derive 7 from the observed Einstein radius
crossing time distribution. As far as the authors know, exotic microlensing events have
always been either summed up as ordinary events or just ignored. I now estimate the values
of K for exotic lenses.

4. Discussion

As explained in the introduction, many types of exotic microlensing events have been
observed.The earth motion on its orbit around the sun (”parallax”) is detected as a small
asymmetry on the light curve of microlensing events. The weight for parallax events is simply
K =1, because the K factor is independent of the lensing tube drift velocity v,. By the same
argument, ”xallarap” events which are the motion of the source around a companion also
have K = 1.

The main effects which require a non trivial value of K are the finite size of source stars
and binary lenses. To give specific values, I now take as example example the events found
by the MACHO collaboration (Alcock et al. 1997; Alcock et al. 2000a) towards the LMC.
Three events in the MACHO sample are possible exotic events (Dominik and Hirschfeld 1996;
Alcock et al. 2000b): LMC-1 (finite size or binary lensing), LMC-9 (binary lensing) and
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LMC-10 (binary lensing). Note that LMC-9 and LMC-10 were used for estimating the mi-
crolensing optical depth towards the LMC in the 2 year sample (Alcock et al. 1997), but
were discarded in the 5.7 year sample (Alcock et al. 2000a). The magnification threshold
was A, = 1.75 in the 2 year sample and Ay, = 1.49 in the 5.7 year sample. Event LMC-1
can be taken as unblended. Event LMC-9 has blending coefficients in the R and B band of
fr =~ 0.26 and fp ~ 0.17 (Alcock et al. 2000b) so that its effective magnification threshold
is Af,{f ~ 3.4. Event LMC-10 has blending coefficients of fp = fgr = 0.15 and the effective
magnification threshold is A;{f ~ 4.3.

4.1. Finite size of source stars

The magnification of extended sources depends in a complicated way on o = rgDg/riDy
(Witt and Mao 1994), where r, is the source star radius. MACHO event LMC-1 shows
a deviation to the simplest PLPS microlensing model. This deviation has been modeled
by various authors (Witt and Mao 1994; Dominik and Hirschfeld 1996) as the effect of the
source disk finite extent. A value of o ~ 0.18 has been fitted by Dominik and Hirschfeld
(Dominik and Hirschfeld 1996).

The microlensing light curve with extended sources has been calculated by Witt and
Mao (Witt and Mao 1994). In the limit 0 < 1, they find that the extended source light
curve is a simple extension of the PLPS light curve (equation (A4) of(Witt and Mao 1994))

2+ K? 414+ K?)
MACHO __ 2
Aphr = kT +0 41 K2 (22)

Solving equation (22) for K and comparing with the usual impact parameter w,,;, which is

the solution of )
AMACHO _ 2+ Uy (23)

thr 2

gives K{'\ 1 q = 1.008upin.

The value K correction is thus within 1% of u,,;, in spite of the relatively large o value
assumed here. However, as shown in section 4.3, the K correction for a finite source effect
may become important for a strongly blended source star.

4.2. Binary lenses

In cases more complicated than the finite size effect, such as binary lenses
(Schneider and Weiss 1986; Mao and Paczyniski ; Dominik 1999), the microlensing tube has
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a complicated shape. The total length [ of the tube section has been calculated by a Monte-
Carlo algorithm. A small “rod” with length A is generated in the source plane and rotated
around its center. The magnification is calculated at both ends of the “rod”. The fifth order
equation giving the magnification of binary lenses (Witt and Mao 1995) is solved numeri-
cally. The points selected are those for which one end of the rod is above threshold and the
other is under. These points cover an area A of width 2 A having the shape of a ribbon
located along the tube slice boundary, equally spread on each side of this boundary.

The length [ is thus found by [ = A/(2)).

I find that the K correction for LMC-1 is consistent with 1 at the 1% level in both
MACHO binary models 1a and 1b. The K corrections for LMC-9 and LMC-10 are:

Kiye—o(1.75) = (1.49 £ .04)Upmin (24a)

for the 2 year analysis and

for the 5.7 year analysis.

First assume that the efficiencies and blending corrections calculated with PLPS lenses
can be used on binary lenses. Then the optical depth contributed by events LMC-9 and
LMC-10 can be obtained by dividing the values in table 7 of (Alcock et al. 1997) and table
8 of (Alcock et al. 2000a) by the relevant K factors. The microlensing optical depth of
(Alcock et al. 1997) is changed from 7 = 2.9 1077 to 7 = 2.65 1077, a 8% effect. The optical
depth of analysis B of (Alcock et al. 2000a) is lowered by only 2%. In both cases, the effect
is much smaller than the systematics quoted in the papers.

However, the reductions of the optical depth by 8% and 2% are only lower limits,
because the blending corrections increase the detection efficiency of binaries such as LMC-9
and LMC-10 more than that of PLPS lenses. This can be seen by calculating the K factors
at the effective magnification threshold Af,{f instead of the magnification threshold Ap,. The
K factors are:

The increase in lensing rate of binary lenses relative to PLPS (measured by K) has to be
taken into account in the blending correction of the detection efficiency.
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An important question is whether lenses with distant companions (“wide binaries”)
have any K corrections, since a large (~ 50%) fraction of the stars are members of binary
systems. The simulation shows that the K correction for a binary star with mass ratio ¢ and
projected separation a is within 1% of 1 (assuming A, = 1.34) as long as

2
qa% <0.1 (27)

Assuming that the projected separation is half the space separation and using Kepler’s
third law, this condition can be recast as a constraint on the period P of the binary :

Md 1/4 Ds 3/4

P> 452(qx(1 - 93))3/4(M®) 10 kpc) yr (28)

where z = Dy/Ds. Taking ¢ = 0.5, My = 0.2 M, and typical values 1 — z = 6 102
(z = 0.85) for LMC (Galactic Centre) lenses, the constraint on P becomes P > 50 yr. The
log P distribution for binaries is roughly gaussian with an average period P,, ~ 6 10* days
and ojoq p = 2.3 (Duquennoy and Mayor 1991). Thus roughly 62% of the binary lenses do
not need a K correction for an unblended source and a magnification threshold A, = 1.34.
As will be seen in the next section, the conclusion that a large fraction of wide binaries do
not need to be corrected remains valid for blended sources.

4.3. Blending

The examples of LMC-9 and LMC-10 show that K/u,,;, can be much larger than 1 for
blended sources. This can be easily understood for binary lenses, since the length of the
microlensing tube tends to twice the caustics length at high A, (neglecting the finite size
of the source) instead of 0 for PLPS lenses. For wide binaries in the high A, limit, the
caustic length is ~ 8v/2¢(rg/a)’rg (Dominik 1999) so that the K factor is :

K 8vV2 rp.2 TE .2
~ a(=) :3.6th,W(;E) (29)

Umin T Umin a

For a strongly blended source star with Af,{f ~ 1000, the condition K/, > 1 gives a
constraint on the period P > 10%r. In other words, even with Af,{f ~ 1000, one third
(roughly) of binary lenses need not be K corrected. But the correction for the other binary
lenses, especially intermediate type binaries such as MACHO LMC-9 may be very large.

The finite size of blended source stars can give non negligible values for K/u,;, — 1.
Numerically, K/, is found to depend only on oAy, where o is defined in section 4.1.
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The variation of K/, as a function of 0 Ay, is shown in figure 2. Figure 2 is very similar
to figure 3 of (Schneider 1987) and the underlying physics is of course the same.

A LMC lens with M; = 0.1M, located at 300 pc in front of the source has an Einstein
radius r; ~ 0.5AU. The parameter o ranges from 0.1 for a red giant source to 1072 for a M
dwarf. These relatively high o values may give non-trivial K factors. For instance, a solar
type star inside the seeing disk of a giant star contributes only ~ 1/100 of the total light.
The magnification threshold for such a star is thus ~ 100 and the K factor is ~ 1.2u,,;, from
figure 2.

A 0.1Mg lens located 1500 pc in front of the Galactic Centre has an Einstein radius of
rg =~ 1AU, so that the orders of magnitude are similar to those discussed in the previous
paragraph.

In microlensing surveys, the raw efficiencies and Einstein radius crossing time are gener-
ally modified to take the “blending” of sources into account (Alcock et al. 2001). K factors
generally increase the efficiency for detecting blended sources and thus tend to decrease the
optical depth.

5. Conclusion

Exotic microlensing events such as binary lensing or source finite size effects contribute
differently from the simplest “point lens-point source” events to the optical depth. Taking
this effect into account leads to a reduction in the measured optical depth. The finite size
of blended stars may give a reduction of up to 30% of the microlensing optical depth. The
effect of binaries may be even larger. Thus correcting with K factors might reduce the
disagreement between measurements and models towards the Galactic Center and the LMC.

I am grateful to Andy Gould, Jacques Haissinski and Jim Rich for many interesting
comments. [ also thank Clarisse Hamadache for helpful suggestions.

A. Appendix

The direction of the principal axis of the velocity dispersion tensor relative to arbitrary
axis (X,Y) is given by the angle «. The direction of drift by the angle 8 = o+ . One has:

V(gis), = V3Co8(Y+ ¥ —a)—wvgcosd (A1)
U(dis), = Ut Siﬂ('y + U — a) — vgsind (AQ)
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(A3)

Rotating the microlensing tube is equivalent to rotating the (X,Y) axis system or «. Hence,
using equation 7, averaging over o and keeping v, ¥ and 0 fixed gives

Floy) = 1 /027r exp[—1/2((vt cosa —vgco80 )? N (v sin o 4 vgsin 6)2)]da (A4)

(27m)20,0, o2 ol

f depends only on vy and is independent of the geometry of the microlensing tube. In section

L 2 y up to a numerical factor which is

2, it has been shown that 7 is equal to Y, .. KA i)

the integral
1) = [ dwwfw) (A3)

Defining w’, o/, ' and v/, as

’U), cof;a + si22a)w (A6)
tan(a') = tan (o) (A7)
tan(d') == tan((S) (AB)

Ud — \/cos2 J + sin?§ Ud (A9)

and changing variable from (w,«) to (w’,a) gives

() = L)Q /0 " dw' /0 " do! exp [—1/2(w” + ()2 — 2wl cos(a — )] (A10)

(27
Next integrating over o/ gives:

1

I(f) = P /00 dw'w' exp [—1/2(w"™ + (v} o (w'v)) (A11)

Using equation 11.4.29 of Gradshteyn and Ryzhik ((Gradshteyn and Ryzhik 1980)) yields
finally:

o 1
1) = 5- (412)
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B=a+9d

Fig. 1.— Section of the microlensing tube (thick line) perpendicular to the line of sight.
The point 0 and the X,Y axes are arbitrary. The point P is on the microlensing tube. The
velocity tensor at P has principal axes x,y. The normal to the slice of the microlensing tube
is shown by the dashed line and is oriented outwards. The angle between X and x is . The
drift velocity of the tube projected in a plane perpendicular to the line of sight ¥,; makes an
angle 8 with X.
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K factor
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Fig. 2— K factor versus magnification threshold A, times o. o, defined in section 4.1, is
the ratio of the source size over the projection of the Einstein radius of the lens unto the
source plane.



