Structure studies of exotic nuclei using (p,p’) reactions
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The structure of the radioactive beams is investigated using the simplest possible
probe : the proton used as a target in inverse kinematic reactions. From (p,p’)
reactions, information on the neutron and proton transition densities is obtained
through the comparison between the measured inelastic cross sections to the ones
calculated using a microscopic potential and theoretical densities. (p,p’) inelastic
scattering data to the first excited state for the halo nucleus *He and for other nuclei
34Ar and 34353 have been measured at GANIL using the MUST telescopes. This
allows to extract the global features of the transition densities, as shown for the halo
nucleus ®He. We can also probe the evolution of the shell structure along isotopic
chains as moving towards the neutron or proton drip-lines. The example of the sulfur

isotopic chain is discussed.

I. MOTIVATIONS FOR STRUCTURE STUDIES

We perform structure studies using (p,p’) reactions. Our aim is to obtain the spatial
repartition of the nucleons of exotic nuclei, namely the densities, ground state and transition
densities to excited states. The observables for the structure studies are angular cross
sections of elastic and inelastic scattering.

Nuclear structure of stable nuclei is obtained through electron scattering experiment and
this gives charge then proton densities by unfolding the proton distribution. With electrons,
we rely on the very well known electromagnetic interaction to obtain the repartition of the
protons. The neutron densities were deduced by using hadronic probes : proton, alpha, pi-
ons. Far from the valley of stability, the species are short-lived radioactive nuclei and cannot

form targets so we rely on the simplest probe, protons, used as target in inverse kinematics
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experiments. Proton elastic scattering is a well-known tool for the study of ground state
densities, since the interaction potential can be related to the ground state nuclear densities.
In the case of radioactive nuclei, the interpretation of the data is complex, since we are deal-
ing with nuclei having low threshold energies. They can easily couple to excited states or to
continuum states during their interaction with a target, and the theoretical difficulty is to
calculate the couplings accurately, to extract unambiguously information on the structure.
Experimentally the difficulty is to work with radioactive beams having lower and lower in-
tensities as moving towards the driplines. With high statistics, if a large transfer momentum
is covered, it is possible to extract accurately from (p,p’) data the radial structure of the
nucleus as was done in the case of O in Ref. [1]. For radioactive beams, generally the
poor statistics do not allow to give precisely the ground state and transition densities as a
function of the radial coordinate. Nevertheless, the (p,p’) are a good tool to constrain the
structure models proposed for the exotic nuclei : from (p,p’) we can deduce the features of
the transition densities allowing to reproduce the data and compare them to the theoreti-
cal ones. During the last fifteen years, elastic and inelastic scattering direct reactions like
Coulomb excitation (Coulex) and (p,p’) were performed with the radioactive beams to learn
about the proton and neutron transition densities. Different scenari including core polariza-
tion mechanisms, neutron and proton interaction with the core can be evoked to describe
these transition densities. It is possible to know if we need a change in the description of
the shells, deformation in neutron and proton densities, large enhancement in proton and
neutron transition probabilities.

For instance, in the case of light neutron-rich nuclei, we can test densities with neutron
halo or skin developing ”exotic” forms, compared to the stable nuclei. The halo is a direct
consequence of the weak binding energies of the valence nucleons : in the case of ‘He, the 2
neutron separation energy is small, 975 keV, which allows the wave functions to extend far
from the core potential [2, 3]. These exotic nuclei are changing the normal rules of our text
books of nuclear physics. Sizes are different from what is expected from the short range of
the nuclear force and correlations play an important role [4], the decay to cluster states is
favoured, proton and neutron may behave differently (see the report on neutron-rich Boron
isotopes by W. von Oertzen in this book [5]), and magicity may disappear.

By (p,p’) we can probe the structure and test the prediction of models (either cluster or

mean field models) for the densities. Our tool to analyze the data is a microscopic potential



which is introduced in the following section.

II. ANALYSIS OF (P,P’) REACTIONS USING THE MICROSCOPIC
POTENTIAL

A. The microscopic JLM potential

The nucleus-nucleon interaction for the elastic scattering on protons is taken as the mi-
croscopic, complex and parameter-free JLM (Jeukenne, Lejeune, Mahaux, from the au-
thors'names) potential [6]. This potential is based upon infinite matter calculations, and
it is built on the Reid hard-core Nucleon-Nucleon (NN interaction, using the Brueckner-
Hartree-Fock approximation. An improved Local Density Approximation is applied to derive
the potential in the case of a finite-range nucleus of density p, neutron and proton densities
pn and p,. The complex local JLM potential depends only on incident energy £ and on p,,
pn- The JLM potential was parameterized for incident energies £ < 160 MeV. In general,

it is written using Ay and Ay the normalization factors for the real and imaginary parts :
Usem(p, E)(r) = AvV (p, E)(r) + idwW (p, E)(r) (1)

In general, (for A > 20) Ay and Ay can be slightly modified (less than 10%) to fit the
nucleus-nucleon data, but they are close to 1 for all A > 20 stable nuclei. It was shown
that usually in the case of light nuclei (A < 20) A\ = 0.8 [7]. We adopt it as the standard
normalization of JLM for light nuclei. This potential allows a good reproduction of large sets
of nucleon-nucleus data [7-9]. The Fig. 1 shows it in the case of the light stable nucleus ‘0.
The potential is calculated using a 2 parameter-Fermi (2pF) density for 0. The parameters
of the 2pF proton density are fitted on the density extracted from the electron scattering.
The inelastic (p,p’) angular cross sections are obtained through Distorted Wave Born
approximation (DWBA) calculations including the JLM potential. They are performed with
the TAMURA code [10]. The entrance, transition and exit channel potentials are defined
with the ground state and transition density. The normalization of the real and imaginary
parts is fixed with the values obtained in the analysis of the elastic scattering. For a J; to
J; transition the density is written : p" = (¥, | (7 — 77) | ¥;). The calculated inelastic

(p,p’) cross sections are sensitive to M, and M, factor, which are the radial moments of the



transition densities :
M,, = /drrl”p;’:n, (2)
with [ the multipolarity of the transition. These factors can also expressed as the matrix

elements of the electromagnetic multipole operators Oé(n) between nuclear states [11], [ being

the multipolarity of the transition :

My =< JfTT,|O} | TT, > (3)

p

The M, factor is directly related to the B(El) transition strengh value obtained by Coulex
experiment. We adopt here the following convention for the relationship between | M, | and
B(EI) :

| M, P (4)

The models of elastic and inelastic scattering on proton including the potential JLM
were proven to be reliable to extract the fundamental quantities such as M, /M, without
ambiguity for the stable nuclei [8] as well as for the exotic nuclei [9, 12]. M, , can be used as
a signature for the modification of the shell structure and compared to the values predicted
by different structure models.

A simple analysis of the (p,p’) can be performed using the phenomenological Tassie
form [13] for the densities. The proton (p) or neutron (n) transition density is obtained by

derivating the ground state density

r _14Pp(n
Py (1) = —pyr” 1—;:, ) (5)

The proton density is normalized with the o} by requiring that its moment | M, | should
satisfy the Eq. 4 with B(E2) obtained by Coulex. | M, | is then deduced by adjusting
calculated (p,p’) on the data.

B. Role played by the coupling to the continuum in the elastic scattering : the ‘He

+ p entrance channel

For the analysis of direct reactions we need the potential of the entrance channel, namely
the potential deduced from the elastic scattering. To study the effect of the weak binding on
the interaction potential between a light exotic nucleus and a target, elastic scattering cross

sections of the %He secondary beam, at 38.3 MeV /nucleon, on proton have been measured



at GANIL. The SHe +p results, as well as other existing data, are analyzed within the
framework of the microscopic JLM potential [6]. A halo-type density given by few-body
model calculations [14], with a matter root mean square (rms) radius of 2.55 fm was used to
generate the potential. The rms value of this density corresponds to the value obtained by
few-body analysis [15] of the high-energy *He+p elastic scattering [16]. We have shown [17,
18] that the angular distributions of ®He on proton are better reproduced with a reduction
of the real part of the JLM optical potential as seen in Fig. 2. The origin of this effect
was discussed in Ref. [19] and may be explained within the theory developed by Feshbach
[20]. According to this theory, the interaction potential should be written as U =V + Uy
where V' is the usual real potential and U, is the dynamical polarization potential (DPP).
V' can be seen as the folding potential or the elastic potential described by microscopic or
phenomenological models. It includes only the interaction between the projectile and the
target ground states. The DPP is complex, non-local and energy-dependent, it arises from
couplings to inelastic channels. For well-bound nuclei, the probability to excite during the
elastic scattering is weak, and the main contribution is imaginary, represented by the usual
phenomenological imaginary part WW. For weakly-bound nuclei, the particle threshold is close
to their ground state, which favours couplings to the excited states and to the continuum
during their interaction with a target. This leads to a greater influence of the DPP and
then to the reduction of the real part of the nuclear potential [21]. Therefore, one must take
into account in the analysis the interaction potential term due to transitions going to the
excited states and then back to the ground state [19]. However the precise calculation of the
DPP requires the knowledge of the spectroscopy of the nucleus and also the knowledge of
low-lying resonant states and couplings to the continuum. The scheme for such a transition
occurring during the elastic scattering is presented in Fig.3. It was explained in Ref. [21, 22]
that a complex surface potential, with a repulsive real part, is expected to simulate the
surface effects generated by the polarization potential and this corresponds to the reduction
of the real part [17]. This effect is observed in the SHe + p scattering, analyzed with the
JLM potential [18] and shown in Fig. 2. By taking it into account in the JLM calculation,
we have reproduced successfully the data at 38.3 MeV /nucleon together with other data for
®He on proton, measured at Riken [23] at E/A = 71 MeV and at Dubna [24] at E/A = 25
MeV. The whole set of data is compared to the calculations in Fig. 2 [18].

Recently the structure of the halo nucleus He was explored through proton inelastic



(p,p’)scattering [25]. The interaction potential tested on the elastic scattering will be used

in the calculation of the (p,p’) scattering.

C. Experimental setup

For (p,p’) reactions, the experimental apparatus MUST [26], an array of three-stage
telescopes (a set of Si-strips, SiLi and Csl telescopes) specifically designed to detect recoiling
light charged particles, is used to measure angular distributions for elastic and inelastic
scattering of radioactive beams on proton target. Using MUST, (p,p’) scattering data to
the first excited state of *He at 1.8 MeV were measured with a 40.9 MeV /nucleon *He beam
produced at GANIL [25]. The MUST detector has detected the recoil proton in coincidence
with a plastic scintillator measuring the heavy nucleus focused at forward angle. The profile
of the incident beam was given by two multi-wire chambers, CATS [27], developed by the
DAPNIA/SED. Energy, time of flight (between MUST and CATS) and position of the light
charged particle are measured in the MUST detector, allowing for a full reconstruction of the
(p,p’) kinematics. Inelastic scattering on proton, to the first excited states, below the proton
separation threshold, for the nuclei 1%!'C, were also measured at Ej,; ~40 MeV /nucleon
using the MUST device. A sketch of the experimental device can be found in Ref. [28] and
a description of the analysis performed in this case.

By (p,p’) we can probe the structure and test the prediction of models (either cluster or

mean field models) for the densities.

III. DISCUSSION OF THE *HE(P,P’) REACTION

(p,p’) scattering data to the first excited state of °He at 1.8 MeV have been measured
at GANIL with the MUST telescopes. The results obtained at 40.9 MeV /nucleon [25]
allows to test different shapes for the transition densities. Here we test two options for the
ground state and transition densities included in the JLM potential : one corresponding
to a non-halo case, with a matter rms radius equal to 2.2 fm, the other one having the
features of a halo density, namely the large extension of the neutron density, and a larger
matter rms radius of 2.5 fm. The transition densities are derived from ground state

densities by applying the Tassie model as was explained in Sec. ITA. The calculations of



the (p,p’) cross sections for these two options are compared with the experimental data.
We renormalized the theoretical proton transition in order to obtain a B(E2) corresponding
to the experimental value (3.1 £ 0.6 e?.fm*) given in Ref. [29]. The M, value given by
Eq. 4 is equal 0.79 fm?. To reproduce the (p,p’) data, we have to renormalize the neutron
densities given by the Tassie model, and this corresponds to M, /M, equal to 4.4 or to 2.7
for the halo and non-halo cases for the densities, respectively. In Fig. 4, the dashed and
solid curves correspond to the “non-halo” and “halo” options, respectively. The ®He(p,p’)
analysis using JLM is in favour with the halo configuration for this nucleus. Here we can
provide a realistic shape for the neutron and proton gs and transition densities, that can
be easily compared to the structure for ®He predicted theoretically. A precise analysis
including directly the effects of the couplings to the continuum was done using the CDCC
Coupled-channel calculations and a dineutron model for ®He [30]. It was applied to the
SHe+p elastic, inelastic and transfer data measured at Dubna. It helps in determining the
influence of the DPP. Nevertheless, through optical model calculations based on the JLM
model, we directly test the densities. Both approaches are complementary : the CDCC to
fix the couplings, JLM model to extract the densities.

10,11C(p,p’) scattering data were also measured using the MUST detectors. These nuclei,
like the other carbon isotopes described in the theory of the Antisymmetrized Molecular
Dynamics (AMD) [31] are expected to have a proton density with an oblate deformation.
The aim of the experiment was to obtain structure information for these two neutron-
deficient radioactive nuclei and to compare data to calculations performed with different
models predicting the ground state and transition densities. The analysis performed with

the JLM potential is explained in these proceedings [28].

IV. EVOLUTION OF THE SULFUR ISOTOPES

The ground state neutron and proton densities are given from HF+ BCS (SGII) calcu-
lations using the SGII parameterization of the effective Skyrme interaction. The transition
densities are obtained through QRPA calculations with SGII. They are described in Ref. [32].

These calculations are well suited to interpret the excitations in terms of p — h (or two

quasiparticles) configurations. To show the validity of the JLM interaction we have per-



formed a test calculation on the stable nucleus 32S using the experimental ground and
transition densities 07 — 2% of 32S. The proton densities are deduced from the charge den-
sities known from (e,e’) scattering and we assume that the neutron densiities are identical
to the proton ones to perform the JLM calculations. The good agreement obtained with
the MUST data measured at 53 MeV /nucleon is shown in Fig. 5. For this stable nucleus,
no renormalization of the real part is needed, neither of the imaginary part, since we are in
this intermediate-mass region. We adopt also for all sulfur isotopes the normalization factor
Aw = 1. For %8S, the QRPA calculations give a reasonable agreement with the data, as
displayed by Fig. 6. As shown in Fig. 7 the trend of the B(E2) values is well reproduced by
the QRPA calculations. When crossing the shell gap, the shell closure N=20 can be clearly
seen as a minimum of the B(E2) values (combined with the increase of the 2% excitation
energies and decrease of Sy, separation energies) For the sulfur isotopes the N=20 closure
is well seen on the B(E2), and correspondingly in the evolution of the M,. The trend of the
M, value is also interesting : the evolution of the neutron excitations is close to the one of
the protons, which shows collective behaviour of the densities. Proton elastic and inelastic
scattering angular distributions to the 2] and 3] states of 3*Ar were measured using the
MUST Si strip detector array with a secondary beam produced at Ganil. They are presented
in Fig. 8. The agreement is good for the elastic and inelastic scattering to the 2% but the
angular 3~ angular distributions are overestimated by the calculations. The measurement of
the 3~ distributions are a good constraint on the models : we test the treatment of negative
parity states in 3*Ar, implying p-h excitations across a shell gap. The calculated M, and M,
values for the Argon isotopes (see Fig. 9) show that the N=20 remain a good magic num-
ber, but for N=28, the decreases of M, and M, are less pronounced, indicating a possible
weakening of the shell effects. Coulex and (p,p’) data are needed for *>*S and *"*®Ar in
order to clarify the picture.

As can be seen in the case of Sulfur and Argon isotopes, extracting the systematic be-
haviour along isotopic chain from the neutron-deficient to neutron-rich side and combining
B(E2) value (i.e. | M, |) and M, can provide strong constraint on the theoretical shell

structure models.



V. PERSPECTIVES USING THE (P,P’) TOOL

The next generation facilities are expected to deliver radioactive beams at high intensities
allowing to extract precisely the nuclear transition densities, as was done in the past for stable
beams [1], by leading model-independent analysis of the (p,p’) reactions. At present, we
can probe the transition densities predicted by shell model, HFB, QRPA ou cluster-model
calculations. Since the elastic potential is the entrance channel of all more complicated
direct reactions, like inelastic scattering and transfer reactions, it has to be correctly tuned
on the elastic scattering. The measurement of the elastic scattering is required, if a reliable
information on structure has to be extracted from inelastic or transfer reactions. In our case,
it has allowed to probe the transition densities from the ground to the first excited state of

the nuclei He and °C, and for sulfur and Argon isotopes.
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Figure 1: Comparison between experimental data for the proton elastic scattering of 0 and

calculations done using the JLM potential and explained in the text.
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Figure 2: The $He4+p GANIL data at 38.3 MeV /nucleon are plotted with previous data obtained
at Dubna in a first experiment [24] at 25 MeV /nucleon and at Riken [23] at 71 MeV /nucleon.
The lines are calculated with the JLM potential (dashed lines). The data are reproduced with a

reduction of the real part by a factor 0.8 (solid line).



°

S ®
éa #(00) @,@‘, &

Vg @ #(00)

o

(0,0) (0,0) a0
0,0 00 ——

) @
s & e &
P T P T

Figure 3: Scheme of the virtual couplings occurring during an elastic scattering between projectile

P and target T'. They contribute to the DPP term in the total elastic optical potential.
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Figure 4: Comparison between data obtained at 40.9 MeV /nucleon using MUST [25] and JLM
calculations allowing to test two kinds of phenomenological transition densities based on the Tassie

model.
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Figure 5: Experimental 32S(p,p’) angular distributions measured at 53 MeV /nucleon are compared

to calculations performed with the JLM potential and using experimental densities, as described

in the text.
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Figure 6: Comparison between JLM calculations and experimental 38S(p,p’) elastic and inelastic

distributions for the ZT state. The JLM potential is calculated using the ground state densities
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Figure 7: Comparison for Sulfur isotopes between calculated B(E2) values (asterisks) and exper-
imental ones (diamonds) is shown on the top figure, and the M, and M, calculated values are

displayed below as a function of the neutron number N.
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Figure 8: (p,p’) >*Ar elastic and inelastic angular distributions for the 2+ and 3~ states measured
at 47 MeV /nucleon. Data are compared with calculations using the JLM potential and densities

obtained with HF+BCS and QRPA models.
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