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Abstract

The study of the πN → ρ0N and πN → ωN amplitudes below and close to the
vector meson production threshold (1.4 <

√
s < 1.8 GeV) reveals a rich structure

arising from the presence of baryon resonances in this energy range. These reso-
nances are reflected in the interference pattern of the e+e− decays of the ρ0- and
ω-mesons produced in π−p and π+n reactions. We discuss the shape and magni-
tude of the ρ0-ω interference in the π−p → e+e−n and π+n → e+e−p reaction
cross sections as functions of the total center of mass energy

√
s. We find con-

trasted results: the interference is largely destructive for the π−p → e+e−n cross
section but constructive for the π+n → e+e−p cross section. An experimental study
of these reactions would provide significant constraints on the coupling of vector
meson-nucleon channels to low-lying baryon resonances.

Key words: Vector meson production; Baryon resonances; Dileptons; Quantum in-
terference

PACS: 13.20; 13.75.G; 14.20.G

Preprint submitted to Elsevier Science 14 February 2002



1 Introduction

Baryon resonances have been most extensively studied in partial-wave analyses
of pion-nucleon elastic scattering data. Fairly accurate values of their masses,
half-widths and pion-nucleon partial decay widths have been extracted up to
pion-nucleon center of mass energies of about 2 GeV [1,2]. Isobar analyses of
inelastic data (πN → ππN) make it possible to study meson-nucleon final
states other than πN , such as ρN and πN ∗ (where N∗ denotes a low-lying
baryon resonance which couples strongly to the πN channel) [3,4]. The πN →
ππN data are known with much less statistical accuracy than the pion-nucleon
elastic scattering data. For some partial waves, specific final states besides the
πN and ππN channels have to be included in the analyses to satisfy unitarity.
The ηN channel in particular is needed at low energy for a proper description
of the S11 wave [3,4]. Similarly, at higher energies, the ωN and KΛ channels
play a role [3,4].

The study of the π−p → e+e−n and π+n → e+e−p processes described in this
work aims at gaining understanding of the πN → ρ0N and πN → ωN scatter-
ing amplitudes for center of mass energies close and below the vector meson
production threshold (1.5 <

√
s < 1.8 GeV). There are well-known baryon

resonances in this energy range, which contribute to the π−p → e+e−n and
π+n → e+e−p scattering amplitudes through their coupling to the ρ0N and
ωN channels. These amplitudes involve in addition significant non-resonant
processes.

Phenomenological constraints on the ρNN∗ and ωNN∗ coupling strengths are
useful both for baryon structure studies and for building models of vector me-
son propagation in the nuclear medium. On the one hand, it is of interest to
compare the ρNN∗ and ωNN∗ coupling strengths entering the description of
the π−p → e+e−n and π+n → e+e−p cross sections to quark model predic-
tions for the corresponding quantities. In particular, the e+e− channel offers
the possibility to study the coupling of low-lying baryon resonances to the ωN
channel below threshold. On the other hand, the ρNN∗ and ωNN∗ coupling
strengths determine the contribution of resonance-hole states to the ρ0- and
ω-meson propagator in nuclear matter. It has been suggested that the spectral
distribution of those mesons at high baryon density could be interpreted as
a signal of chiral symmetry restoration in the nuclear medium [5] and hence
be sensitive to the nonperturbative structure of Quantum Chromodynamics.
The spectral functions of vector mesons in the nuclear medium should be re-
flected in the spectra of lepton pairs produced in photon- and hadron-nucleus
reactions as well as in ultra-relativistic heavy ion collisions [6]. A proper un-
derstanding of the π−p → e+e−n and π+n → e+e−p reactions appears as a
first and necessary step towards a detailed interpretation of the production
of lepton pairs off nuclei induced by charged pions. Because of the very large
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width of ρ-mesons in nuclei, the production of e+e− pairs in pion-nucleus in-
teractions is expected to be mostly sensitive to the in-medium propagation of
ω-mesons for e+e− pair invariant masses close to vector meson masses [7,8].
Both the πN → e+e−N and πA → e+e−X cross sections could be measured
at GSI-Darmstadt with the HADES detector [7,9].

The exclusive observation of neutral vector mesons through their e+e− decay
presents definite advantages over their observation through final states invol-
ving pions. Firstly, there are no competing processes, such as π∆ production
leading to the same final state and impairing the identification of the ρ-meson
in the ππN channel. Secondly, both the ρ0- and ω-mesons decay into the e+e−

channel. This leads to a quantum interference pattern which is expected to
reflect the structure and relative sign of the πN → ρ0N and πN → ωN
scattering amplitudes. Such an interference in the e+e− channel, observed in
the photoproduction of ρ0- and ω-mesons at higher energies [10], has proved
very useful in establishing the similarity of the γp → ρ0p and the γp → ωp
processes and the diffractive nature of these reactions for incident photon
energies of a few GeV.

The πN → e+e−N cross section is connected to the πN → ρ0N and πN →
ωN scattering amplitudes by the Vector Meson Dominance assumption [11,12].
In this picture, the produced ρ0- or ω-meson is converted into an intermedi-
ate time-like photon which subsequently materializes into an e+e− pair. The
dynamics of the πN → e+e−N , γN → πN and e−N → e−πN processes is
expected to be similar and dominated by the couplings of baryon resonances
to the pion and to vector fields. In that sense, the study of the πN → e+e−N
reaction complements programs devoted to the photo- and electroproduction
of baryon resonances. There is presently a large activity in this field at ELSA
[13], MAMI [14] and the Jefferson Laboratory [15].

To discuss the πN → e+e−N reaction, we use the πN → ρ0N and πN → ωN
amplitudes obtained in the recent unitary coupled-channel model of Ref. [16].
This is a relativistic approach where, in contrast to isobar analyses of πN scat-
tering, the s- and d-wave pion-nucleon resonances are generated dynamically
starting from an effective field theory of meson-nucleon scattering [16]. We
present the model and its predictions for the πN → ρ0N and πN → ωN am-
plitudes in Section 2. The calculation of the π−p → e+e−n and π+n → e+e−p
cross sections in the Vector Meson Dominance model is outlined in Section 3.
Our numerical results for these cross sections are displayed in Section 4. We
show how the ρ0−ω quantum interference pattern in the e+e− spectrum occurs
in both isospin channels and evolves as function of the total pion-nucleon cen-
ter of mass energy in the interval (1.5 <

√
s < 1.8 GeV). Concluding remarks

are given in Section 5.
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2 The πN → ρ0N and πN → ωN amplitudes close to the vector
meson production threshold

We describe the πN → e+e−N reaction for e+e− pair invariant masses ranging
from ∼0.4 to ∼0.8 GeV. The exclusive measurement of the e+e−N outgoing
channel ensures that the e+e− pair comes from the decay of a time-like pho-
ton. In this respect, the identification of the e+e− decay of vector mesons
is easier in the πN → e+e−N process than in the photoproduction reaction
γN → e+e−N , where it interferes with Bethe-Heitler pair production. As-
suming Vector Meson Dominance for the electromagnetic current [12], the
πN → ρ0N and πN → ωN amplitudes are the basic quantities entering the
calculation of the πN → e+e−N cross section. At pion-nucleon center of mass
energies close to the ρ0- and ω-meson production threshold the kinetic energy
of the particles in the entrance channel is large. Hence a relativistic description
of the πN → ρ0N and πN → ωN amplitudes is preferable.

We study the π−p → e+e−n and π+n → e+e−p reactions in the framework of
a recent relativistic and unitary coupled-channel approach to meson-nucleon
scattering [16]. The available data on pion-nucleon elastic and inelastic scatte-
ring and on meson photoproduction off nucleon targets are fitted in the energy
window 1.4 <

√
s < 1.8 GeV, using an effective Lagrangian with quasi-local

two-body meson-baryon interactions and a generalized form of Vector Meson
Dominance to describe the coupling of vector mesons to real photons. The
scheme involves the πN , π∆, ρN , ωN , KΛ, KΣ and ηN hadronic channels,
whose relevance in this energy range has been highlighted by earlier non-
relativistic analyses [3,4]. The coupling constants entering the effective La-
grangian are parameters which are adjusted to reproduce the data. In view of
the kinematics, only s-wave scattering in the ρN and ωN channels is included,
restricting πN and π∆ scattering to s- and d-waves. The pion-nucleon reso-
nances in the S11, S31, D13 and D33 partial waves are generated dynamically
by solving Bethe-Salpeter equations [16].

The model provides a good fit to the π−p → ρ0n, π−p → ωn and γp → ρ0p
cross sections for

√
s ≤ 1.75 GeV, where enough data close to threshold are

available for comparison [16]. Above threshold, where higher partial waves
should become important (in channels where pion-exchange effects are ex-
pected to be large), it underestimates significantly the π−p → ρ0n and the
γp → ωp cross sections. The model reproduces satisfactorily the πN scatter-
ing data (phase shifts and inelasticities) and pion photoproduction multipole
amplitudes below the vector meson production threshold [16]. Our approach
is therefore appropriate to values of

√
s ≤ 1.75 GeV. In the ρ0N - and ωN -

channels, the restriction to s-wave scattering means that the model applies to
situations where the vector meson is basically at rest with respect to the scat-
tered nucleon (

√
s � MN + MV ), where MN and MV denote the nucleon and
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the vector-meson masses respectively. This assumption implies that the range
of validity of the present calculation is limited to e+e− pairs with invariant
masses me+e− close to (

√
s−MN).

The πN → ρN and πN → ωN amplitudes are represented diagrammatically
in Fig. 1. The πN → ρN amplitude has isospin 1/2 and isospin 3/2 compo-
nents while the πN → ωN amplitude selects the isospin 1/2 channel. Both
amplitudes have spin 1/2 and spin 3/2 parts.

(q)

−

(q)−

(p) (p)

π

N N

ρ, ω

Fig. 1. The πN → ρ(ω)N amplitude.

The invariant transition matrix elements for the πN → ρN and πN → ωN
reactions are given by

〈ρj(q)N(p)| T |πi(q)N(p)〉
= (2π)4 δ4(q+ p− q − p)u(p) εµ(q)T ij

(πN→ρN) µ u(p), (1)

〈ω(q)N(p)| T |πi(q)N(p)〉
= (2π)4 δ4(q+ p− q − p)u(p) εµ(q)T i

(πN→ωN) µ u(p), (2)

where T ij
(πN→ρN) µ and T i

(πN→ωN) µ are functions of the three kinematic variables

w = p + q = p + q (
√
w2 =

√
s), q and q.

These scattering amplitudes can be decomposed into isospin invariant compo-
nents as [17]

T ij
(πN→ρN) µ(q, q;w) =

∑
I

T
(I)
(πN→ρN) µ(q, q;w)P

(I) ij
(ρ) , (3)
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T i
(πN→ωN) µ(q, q;w) =

∑
I

T
(I)
(πN→ωN) µ (q, q;w)P

(I) i
(ω) , (4)

in which the isospin projectors are given for the πN → ρN transition by

P
(I= 1

2
) i,j

(ρ) =
1

3
τ iτ j, (5)

P
(I= 3

2
) i,j

(ρ) = δij − 1

3
τ iτ j, (6)

and for the πN → ωN transition by

P
(I= 1

2
) i

(ω) =
1√
3
τ i. (7)

The isospin invariant amplitudes can be expanded further into components of
total angular momentum using the relativistic projection operators introduced
in Ref. [17]. Because our model is restricted to s-wave vector-meson nucleon
final states, this expansion takes the simple form,

T
(I)
(πN→V N) µ(q, q;w) = M

(I,J= 1
2
)

πN→V N(s) Y(J= 1
2
) µ(q, q;w)

+M
(I,J= 3

2
)

πN→V N(s) Y(J= 3
2
) µ(q, q;w), (8)

where V stands for ρ or ω and the angular momentum projectors are defined
by [16]

Y(J= 1
2
) µ(q, q;w) = − 1

2
√

3
(γµ − wµ

w2
w� )(1 − w�√

w2
) iγ5 , (9)

Y(J= 3
2
) µ (q, q;w) = −

√
3

2
(1 +

w�√
w2

)(qµ − w.q

w2
wµ) iγ5

+
1

2
√

3
(γµ − wµ

w2
w� ) (1 − w�√

w2
) (q� −w.q

w2
w� ) iγ5. (10)

In the more general notation of Ref. [16], the quantities defined by Eqs. (9)

and (10) are written as [Y
(+)
0,µ (q, q;w)]13 and [Y

(−)
1,µ (q, q;w)]13 respectively.
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In the center of mass system (�q=−�p), the time component of the spin projec-
tors Y(J= 1

2
) µ and Y(J= 3

2
) µ vanishes and the space components read simply

Y(J= 1
2
) j =

i√
3

(
σj 0
0 0

)
, (11)

Y(J= 3
2
) j = i

√
3 pj

(
0 1
0 0

)
− i√

3

(
0 σj(�σ.�p)
0 0

)
. (12)

In these coordinates, the matrix elements of the spin projectors acting on
Dirac spinors can be expressed in terms of Pauli spinors χ as

u(p, λ)Y(J= 1
2
) j u(p, λ) = i

√
p0 + MN

√
p0 + MN

2
√

3MN

χ(λ)σj χ(λ), (13)

u(p, λ)Y(J= 3
2
) j u(p, λ) =

i
√

3

2

√
p0 + MN√
p0 + MN

χ(λ)
(�σ.�p)

MN

pj

mπ

χ(λ)

− i

2
√

3

√
p0 + MN√
p0 + MN

�p 2

MN

χ(λ)σj χ(λ), (14)

where λ and λ are the polarizations of the ingoing and outgoing nucleons while

p0 and p0 are defined by p0=
√
M2

N + −→p 2 and p0=
√
M2

N +
−→
p

2
. The πN → ρN

and πN → ωN amplitudes in the S11, S31, D13 and D33 channels obtained
in Ref. [16] are displayed in Figs. 2 and 3. The quantities shown are the

amplitudes M
(I,J)
πN→ρN(s) and M

(I,J)
πN→ωN(s) defined by Eq. (8), which depend

only on the center of mass energy
√
s. The coupling to subthreshold resonances

is clearly exhibited in these pictures.

In the S11 channel, the N(1535) and the N(1650) resonances lead to peak struc-
tures in the imaginary parts of the amplitudes. The pion-induced ω produc-
tion amplitudes in the D13 channel reflect the strong coupling of the N(1520)
resonance to the ωN channel. The πN → ωN amplitudes contain also sig-
nificant contributions from non-resonant, background terms. We refer to [16]
for a detailed discussion of the dynamical structure of the amplitudes and for
the comparison to quark-model coupling constants of the effective coupling
strengths of the vector meson-nucleon channels to the baryon resonances con-
tributing to the amplitudes.
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Fig. 2. Real and imaginary parts of the πN → ρ0N amplitudes in the pion-nucleon
S11, S31, D13 and D33 partial waves [16].

Fig. 3. Real and imaginary parts of the πN → ωN amplitudes in the pion-nucleon
S11 and D13 partial waves [16].
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The π−p → ρ0n and π−p → ωn amplitudes are obtained from the isospin 1/2
and isospin 3/2 scattering amplitudes by the relations,

MJ
π−p→ρ0n = −

√
2

3
M

(1/2,J)
πN→ρN +

√
2

3
M

(3/2,J)
πN→ρN , (15)

MJ
π−p→ωn =

√
2

3
M

(1/2,J)
πN→ωN . (16)

Similarly the π+n → ρ0p and π+n → ωp amplitudes are given by

MJ
π+n→ρ0p =

√
2

3
M

(1/2,J)
πN→ρN −

√
2

3
M

(3/2,J)
πN→ρN , (17)

MJ
π+n→ωp =

√
2

3
M

(1/2,J)
πN→ωN . (18)

The quantities MJ
π−p→ρ0n and MJ

π−p→ωn are displayed in Fig. 4. Their counter-

parts for the other reactions, MJ
π+n→ρ0p and MJ

π+n→ωp , are shown in Fig. 5.

The phases of the isospin coefficients appearing in Eqs. (15) and (17) play a
crucial role in determining the ρ0 − ω interference in the π−p → e+e−n and
π+n → e+e−p reaction cross sections. The real and imaginary parts of the
π−p → ωn and of the π+n → ωp amplitudes are the same and mostly positive.
In contrast, the π−p → ρ0n and π+n → ρ0p amplitudes have opposite signs.
The π−p → ρ0n amplitudes are predominantly negative and will therefore
interfere destructively with the π−p → ωn amplitudes. The π+n → ρ0p and
π+n → ωp amplitudes have the same sign over a large

√
s interval, leading to

a constructive interference.

From Figs. 4 and 5, we expect the π−p → e+e−n and π+n → e+e−p reaction
cross sections to be very sensitive to the presence of baryon resonances below
the vector meson production threshold.
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Fig. 4. Scattering amplitudes MJ
π−p→ρ0n and MJ

π−p→ωn obtained from the model of
Ref. [16] for the spin J=1/2 and J=3/2 channels.

Fig. 5. Scattering amplitudes MJ
π+n→ρ0p and MJ

π+n→ωp obtained from the model of
Ref. [16] for the spin J=1/2 and J=3/2 channels.
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3 Calculation of the π−p → e+e−n and π+n → e+e−p cross sections
close to the vector meson production threshold

The π−p → e+e−n and π+n → e+e−p cross sections are calculated from the
π−p → ρ0n, π−p → ωn, π+n → ρ0p and π+n → ωp amplitudes presented in
Section 2, supplemented with the assumption of the Vector Meson Dominance
of the electromagnetic current [11,12]. This assumption can be enforced in the
effective Lagrangian by introducing vector meson-photon interaction terms of
the form,

Lint
γV =

fρ

2M2
ρ

F µν ρ0
µν +

fω

2M2
ω

F µν ωµν , (19)

where the photon and vector meson field tensors are defined by

F µν = ∂µAν − ∂νAµ, (20)

V µν = ∂µV ν − ∂νV µ. (21)

In equation (19), Mρ and Mω are the ρ- and ω-masses and fρ and fω are
dimensional coupling constants. Their magnitude can be determined from the
e+e− partial decay widths of the ρ- and ω-mesons to be [18]

|fρ| = 0.036GeV 2, (22)

|fω| = 0.011GeV 2. (23)

The relative sign of fρ and fω is fixed by vector meson photoproduction ampli-
tudes [16]. We assume that the phase correlation between isoscalar and isovec-
tor currents is identical for real and virtual photons as in Sakurai’s realization
of the Vector Meson Dominance assumption [11]. With the conventions used in
this paper, both fρ and fω are positive. The form of the coupling terms of Eq.
(19) is appropriate for describing the hadronic structure of massive photons.

We consider first the π−p → e+e−n reaction. The diagrams contributing to
this process in the Vector Meson Dominance model are shown in Fig. 6.

We denote the momenta of the ingoing and outgoing hadrons as in Fig. 1
and the 4-momenta of the electron and the positron by p− = (p0

−, �p−) and
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+

n

e e
+

p n p

e e
- -

+

π
ρ

π
ω

− −
ο

γ∗ γ∗

Fig. 6. Diagrams contributing to the π−p → e+e−n amplitude with intermediate
ρ0- and ω-mesons.

p+ = (p0
+, �p+) respectively. The differential cross section for the π−p → e+e−n

reaction in the center of mass reference frame is then given by

[
dσ

dq2

]
π−p→e+e−n

=
Mp Mn

16π2s

|�p|
|�p|

∫ d3�p+

(2π)3

me

p0
+

∫ d3�p−
(2π)3

me

p0−
(2π)4

∑
λ,λ,λ+,λ−

|Mπ−p→e+e−n(q, p, λ; p+, λ+, p−, λ−, p, λ)| 2 δ4(q − p+− p−), (24)

in which me denotes the electron mass and where the magnitude of the initial
and final nucleon momenta is given as function of

√
s and q2 by

|�p| =

√
s

2

[
1 − 2

M2
p + m2

π

s
+

(M2
p −m2

π)2

s2

] 1
2 , (25)

|�p| =

√
s

2

[
1 − 2

M2
p + q2

s
+

(M2
p − q2)2

s2

] 1
2 . (26)

.

We factorize the invariant matrix elements into vector meson production and
e+e− decay amplitudes as

Mπ−p→e+e−n(q, p, λ; p+, λ+, p−, λ−, p, λ) =

Mµ
π−p→ρ0n(q, p, λ; q, p, λ)M ρ0→e+e− µ (q; p+, λ+, p−, λ−)

+Mµ
π−p→ωn(q, p, λ; q, p, λ)M ω→e+e− µ (q; p+, λ+, p−, λ−). (27)
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The e+e− decay amplitudes include the vector meson propagators,

Sρ(q
2) ≡ 1

q2 −M2
ρ + iΓρ(q2)Mρ

, (28)

Sω(q2) ≡ 1

q2 −M2
ω + iΓω Mω

, (29)

where the energy-dependent ρ-width is given by

Γρ(q
2) = Γρ

Mρ√
q2

(
q2 − 4m2

π

M2
ρ − 4m2

π

) 3
2

, (30)

Γρ and Γω denoting the widths at the peak of the ρ- and ω-resonances.

We perform the lepton sums and integrations and average over the angle
between the initial and final 3-momenta. Using Eqs. (9) to (14), we find

[
dσ

dq2

]
π−p→e+e−n

=
α

6π2

Mp Mn

s

|�p|
|�p| m

2
e(1 +

q2

2m2
e

) (1 − 4m2
e

q2
)

1
2

[
f 2

ρ

M4
ρ

S∗
ρ(q2)Sρ(q

2)
∑
J

CJJ MJ∗
π−p→ρ0n(s)MJ

π−p→ρ0n(s)

+
fρfω

M2
ρM

2
ω

S∗
ρ(q2)Sω(q2)

∑
J

CJJ MJ∗
π−p→ρ0n(s)MJ

π−p→ωn(s)

+
fωfρ

M2
ρM

2
ω

S∗
ω(q2)Sρ(q

2)
∑
J

CJJ MJ∗
π−p→ωn(s)MJ

π−p→ρ0n(s)

+
f 2

ω

M4
ω

S∗
ω(q2)Sω(q2)

∑
J

CJJ MJ∗
π−p→ω0n(s)MJ

π−p→ωn(s)

]
, (31)

where the CJJ coefficients depend on
√
s and q2 and are given in the center

of mass frame by the expressions,

C 1
2

1
2

=
(p0 + Mp) (p0 + Mn)

4MnMp

(
1 +

|�p|2
3q2

)
, (32)

C 3
2

3
2

=
(p0 + Mn)

(p0 + Mp)

|�p|4
2MnMp

(
1 +

|�p|2
3q2

)
. (33)
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The derivation of the cross section in the other isospin channel, π+n →
e+e−p, is completely similar, with the obvious replacement of Mπ−p→ρ0n µ

and Mπ−p→ωn µ by Mπ+n→ρ0p µ and Mπ+n→ωp µ.

4 Numerical results

This section is devoted to the discussion of the π−p → e+e−n and π+n →
e+e−p differential cross sections for values of the total center of mass energy√
s ranging from 1.5 GeV up to 1.8 GeV. We explore the dependence of the

ρ0 − ω interference pattern in the e+e− channel on
√
s in this energy range,

in particular in the vicinity of the ω-meson production threshold (
√
s=1.72

GeV).

We consider first the differential cross section defined by Eq. (31) for the
π−p → e+e−n and the π+n → e+e−p reactions. The magnitude of the 4-vector
q is the invariant mass me+e− of the e+e− pair.

The differential cross sections calculated using Eq. (31) for the π−p → e+e−n
and the π+n → e+e−p reactions at

√
s=1.5 GeV are shown in Figs. 7 and 8.

These figures illustrate very clearly the isospin effects discussed in Section
2. For the two reactions, the ω and ρ0 contributions to the cross section are
the same. The ρ0-ω interference is destructive for the π−p → e+e−n reaction
and constructive for the π+n → e+e−p process. Consequently, the π−p →
e+e−n differential cross section is extremely small in the range of invariant
masses considered in this calculation (less than 10 nb GeV−2). In contrast,
the constructive ρ0-ω interference for the π+n → e+e−p reaction leads to a
sizeable differential cross section (of the order of 0.15 µb GeV−2).

This is a very striking prediction, linked to the resonant structure of the scat-
tering amplitudes M

1/2
πN→V N and M

3/2
πN→V N . At

√
s=1.5 GeV, the coefficients

C 1
2

1
2

and C 3
2

3
2

are 1.12 and 0.02 GeV2 respectively (for e+e− pair invariant

masses of the order of 0.5 GeV). The smallness of C 3
2

3
2

is a consequence of the

relative D-wave state in the initial pion-nucleon system implied by the spin 3/2
of the channel. From the values of the amplitudes displayed in Figs. 4 and 5,
it is easy to see that the J=1/2 and J=3/2 contributions to the π−p → e+e−n
and π+n → e+e−p differential cross sections are of comparable magnitude.
These cross sections reflect the couplings of both the N(1520) and N(1535)
baryon resonances to the vector meson-nucleon channels. Data on differential
cross sections for the π−p → e+e−n and π+n → e+e−p reactions at

√
s=1.5

GeV would be very useful for making progress in the understanding of these
couplings.
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Fig. 7. Differential cross section for the π−p → e+e−n reaction at
√

s=1.5 GeV as
function of the invariant mass of the e+e− pair. The ρ0 and the ω contributions are
indicated by short-dashed and dotted lines respectively. The long-dashed line shows
the ρ0 − ω interference. The solid line is the sum of the three contributions.

Fig. 8. Differential cross section for the π+n → e+e−p reaction at
√

s=1.5 GeV as
function of the invariant mass of the e+e− pair. The ρ0 and the ω contributions are
indicated by short-dashed and dotted lines respectively. The long-dashed line shows
the ρ0 − ω interference. The solid line is the sum of the three contributions.

15



The
√
s-dependence of the π−p → e+e−n differential cross section below the

vector meson production threshold is illustrated in Figs. 9-11. The correspon-
ding results for the π+n → e+e−p reaction are shown in Figs. 12-14.

Fig. 9. Differential cross section for the π−p → e+e−n reaction at
√

s=1.55 GeV as
function of the invariant mass of the e+e− pair.

Fig. 10. Differential cross section for the π−p → e+e−n reaction at
√

s=1.60 GeV
as function of the invariant mass of the e+e− pair.
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Fig. 11. Differential cross section for the π−p → e+e−n reaction at
√

s=1.65 GeV
as function of the invariant mass of the e+e− pair.

Fig. 12. Differential cross section for the π+n → e+e−p reaction at
√

s=1.55 GeV
as function of the invariant mass of the e+e− pair.

These differential cross sections vary smoothly with the total center of mass
energy. They exhibit the features discussed for

√
s=1.5 GeV. However they

also reflect dynamics associated with higher-lying resonances [16]. We empha-
size again that the relative s-wave assumed between the vector meson and
the nucleon in the final state is appropriate only for values of me+e− close to
(
√
s −MN). The differential cross sections for the lowest e+e− pair invariant

masses are expected to be outside the range of validity of the model of Ref.
[16].
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Fig. 13. Differential cross section for the π+n → e+e−p reaction at
√

s=1.60 GeV
as function of the invariant mass of the e+e− pair.

Fig. 14. Differential cross section for the π+n → e+e−p reaction at
√

s=1.65 GeV
as function of the invariant mass of the e+e− pair.

The interference pattern changes drastically at the ω-meson threshold. This
is shown in Figs. 15 and 16 for the π−p → e+e−n differential cross section and
in Figs. 17 and 18 for the π+n → e+e−p differential cross section.
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Fig. 15. Differential cross section for the π−p → e+e−n reaction at
√

s=1.70 GeV
as function of the invariant mass of the e+e− pair.

Fig. 16. Differential cross section for the π−p → e+e−n reaction at
√

s=1.75 GeV
as function of the invariant mass of the e+e− pair.

Just below threshold, the ω-contribution begins to increase, while the general
features of the e+e− production in the two isospin channels remain the same.
Above the ω-meson production threshold, the differential cross sections for the
π−p → e+e−n and π+n → e+e−p reactions are completely dominated by the
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Fig. 17. Differential cross section for the π+n → e+e−p reaction at
√

s=1.70 GeV
as function of the invariant mass of the e+e− pair.

Fig. 18. Differential cross section for the π+n → e+e−p reaction at
√

s=1.75 GeV
as function of the invariant mass of the e+e− pair.

ω-contribution. The magnitudes of the cross sections for the two reactions are
comparable. The ρ0 − ω interference is still destructive in the π−p → e+e−n
channel and constructive in the π+n → e+e−p channel, albeit very small. In
both reactions, crossing the ω-production threshold leads to a sharp increase
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in the cross section, by two orders of magnitude in the π−p → e+e−n channel
and by one order of magnitude in the π+n → e+e−p channel.

In order to see the s-channel resonant structure of the e+e− pair production
more directly, it is interesting to look at the differential cross section as func-
tion of

√
s for e+e− pairs of given invariant mass. This quantity is displayed

in Fig. 19 for the π−p → e+e−n reaction and in Fig. 20 for the π+n → e+e−p
reaction. The invariant mass of the e+e− pair is 0.55 GeV. The structures
associated with the N(1520) and N(1535) baryon resonances are particularly
visible. In Figs. 21 and 22, we show differential cross sections as functions
of

√
s for e+e− pairs of invariant masses ranging from me+e−=0.40 GeV to

0.65 GeV. Our results are presented in Figs. 21 and 22 for the π−p → e+e−n
and π+n → e+e−p reactions respectively. The N(1650), the ∆(1620) and the
∆(1700) play a significant role in determining the cross sections for values of√
s close to the ω-meson production threshold.

It is interesting to compare our cross sections for the π−p → e+e−n and
π+n → e+e−p reactions with the recent work of Titov and Kämpfer [19]. In
their approach, the πN → e+e−N amplitudes are assumed to be dominated
by s- and u-channel nucleon and baryon resonance exchanges. All baryon re-
sonances with masses ≤1.72 GeV are included. The transition couplings of
baryon resonances to vector fields are taken from the chiral quark model cal-
culation of Riska and Brown [20]. The couplings to the ρN and ωN channels of
the baryon resonances obtained in the hadronic theory of Ref. [16] are rather
different from those obtained in the quark model of Ref. [20]. They are in
general substantially weaker. This issue is discussed extensively in Ref. [16].
Consequently the π−p → e+e−n and π+n → e+e−p cross sections are much
larger in the calculation of Titov and Kämpfer but some trends are similar in
both descriptions. At

√
s=1.6 GeV, the π+n → e+e−p cross section is signifi-

cantly larger than the π−p → e+e−n cross section. This reflects a constructive
ρ0−ω interference in the first case and a destructive ρ0−ω interference in the
latter process as in our approach. Much of the strength is provided by the S11

resonances. At
√
s=1.8 GeV, the cross sections for both reactions are compara-

ble and dominated by the ω-contribution. The sensitivity of the π−p → e+e−n
and π+n → e+e−p cross sections to the strength of the transition couplings of
baryon resonances to vector fields is the key result of both calculations. The
magnitude of these cross sections below threshold would therefore provide
very valuable information on vector meson-nucleon dynamics. The sensitivity
of the π−p → e+e−n cross section to the couplings of baryon resonances to
vector meson-nucleon channels can also be seen from a previous computation
[21] we did in the same coupled-channel framework as the present calculation.
In Ref. [21], the π−p → ρ0n and π−p → ωn amplitudes were obtained without
systematic constraints from meson photoproduction data. This led to very
different couplings, in particular of the N(1520) to the ρ0N channel, and to a
constructive rather than a destructive ρ0 − ω interference.
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Fig. 19. Differential cross section for the π−p → e+e−n reaction as function of
the total pion-nucleon center of mass energy

√
s for e+e− pairs of invariant mass

me+e−=0.55 GeV.

Fig. 20. Differential cross section for the π+n → e+e−p reaction as function of
the total pion-nucleon center of mass energy

√
s for e+e− pairs of invariant mass

me+e−=0.55 GeV.
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Fig. 21. Differential cross section for the π−p → e+e−n reaction as function of
the total pion-nucleon center of mass energy

√
s for e+e− pairs of invariant masses

ranging from 0.40 until 0.65 GeV.

Fig. 22. Differential cross section for the π+n → e+e−p reaction as function of
the total pion-nucleon center of mass energy

√
s for e+e− pairs of invariant masses

ranging from 0.40 until 0.65 GeV.

23



5 Conclusion

We have computed the e+e− pair invariant mass distributions for the π−p →
e+e−n and π+n → e+e−p reactions below and close to the vector meson pro-
duction threshold (

√
s=1.72 GeV).

We employ the πN → ρ0N and πN → ωN amplitudes obtained in a recent
relativistic and unitary coupled-channel approach to meson-nucleon scattering
[16]. This description reproduces a large body of data on pion-nucleon elastic
and inelastic scattering and on meson photoproduction off nucleons in the
energy range 1.4 <

√
s < 1.8 GeV. In the model, pion-nucleon resonances are

generated dynamically and the coupling strengths of these resonances to vector
meson-nucleon channels are predicted. These couplings are not well-known.

Using the Vector Meson Dominance assumption, we have shown that the dif-
ferential cross sections for the π−p → e+e−n and π+n → e+e−p reactions
below the ω-threshold are very sensitive to the coupling of low-lying baryon
resonances to vector meson-nucleon final states. We find that the ρ0 − ω in-
terference is destructive in the π−p → e+e−n channel and constructive in
the π+n → e+e−p channel. We predict a very small cross section for the
π−p → e+e−n reaction below threshold and a sizeable cross section for the
π+n → e+e−p reaction in this energy range. Above the ω-meson production
threshold, both cross sections are comparable and much larger.

The magnitude of the π−p → e+e−n and π+n → e+e−p differential cross
sections below the ω-threshold depends strongly on the structure and dyna-
mics of baryon resonances. These reactions deserve experimental studies. Such
a programme could be carried at GSI (Darmstadt) using the available pion
beam and the HADES spectrometer [9]. These measurements would provide
a necessary step towards the understanding of e+e− pair production in pion-
nucleus reactions and in general significant constraints on the propagation of
vector mesons in the nuclear medium.
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