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How to reconcile the Rosenbluth and the polarization transfer method in the

measurement of the proton form factors
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The apparent discrepancy between the Rosenbluth and the polarization transfer method for the
ratio of the electric to magnetic proton form factors can be explained by a two-photon exchange
correction which does not destroy the linearity of the Rosenbluth plot. Though intrinsically small,
of the order of a few percent of the cross section, this correction is kinematically enhanced in the
Rosenbluth method while it small for the polarization transfer method, at least in the range of Q2

where it has been used until now.

PACS numbers: 25.30.Bf, 13.40.Gp, 24.85.+p

The electro-magnetic form factors are essential pieces
of our knowlegde of the nucleon structure and this jus-
tifies the efforts devoted to their experimental determi-
nation. They are defined as the matrix elements of the
electro-magnetic current Jµ(x) according to :

< N(p′)|Jµ(0)|N(p) >

= e ū(p′)

[

GM (Q2)γµ − F2(Q
2)

p + p′

2M

]

u(p), (1)

where e '
√

4π/137 is the proton charge, M the nu-
cleon mass, and Q2 the squared momentum transfer.
The magnetic form factor GM is related to the Dirac
(F1) and Pauli (F2) form factors by GM = F1 + F2,
and the electric form factor is given by GE = F1 − τF2,
with τ = Q2/4M2. For the proton, F1(0) = 1, and
F2(0) = µp − 1 = 1.79. In the one-photon exchange or
Born approximation, elastic lepton-nucleon scattering :

l(k) + N(p) → l(k′) + N(p′), (2)

gives direct access to the form factors in the spacelike
region (Q2 > 0), through its cross section :

dσB = CB(Q2, ε)
[

G2
M (Q2) +

ε

τ
G2

E(Q2)
]

, (3)

where ε is the photon polarization parameter, and where
CB(Q2, ε) is a phase space factor which is irrelevant in
what follows. For a given value of Q2, Eq. (3) shows that
it is sufficient to measure the cross section for two values
of ε to determine the form factors GM and GE . This is
referred to as the Rosenbluth method [1]. The fact that
dσ/CB(Q2, ε) is a linear function of ε (Rosenbluth plot
criterion) is generally considered as a test of the validity
of the Born approximation.

Polarized lepton beams give another way to access the
form factors [2]. In the Born approximation, the polar-
ization of the recoiling proton along its motion (Pl) is
proportional to G2

M while the component perpendicular
to the motion (Pt ) is proportional to GEGM . We call
this the polarization method for short. Because it is much

easier to measure ratios of polarizations, it has been used
mainly to determine the ratio GE/GM through a mea-
surement of Pt/Pl using [2, 3] :

Pt

Pl

= −

√

2ε

τ(1 + ε)

GE

GM

. (4)

Thus, in the framework of the Born approximation,
one has two independent measurements of R = GE/GM .
On Fig. 1 we show the corresponding results, which we
call Rexp

Rosenbluth and Rexp
Polarisation , for the range of Q2

which is common to both methods. The data are taken
from Refs. [4, 5, 6]. It is seen that the deviation be-
tween the two methods starts around Q2 = 2 GeV2 and
increases with Q2, reaching a factor 4 at Q2 = 6 GeV2.
Recently, a global re-analysis of the SLAC cross section
data was performed [7], where it was found that the in-
dividual cross section data are self-consistent, but still
yield results inconsistent with the polarization measure-
ments. An extensive set of Rosenbluth measurements
in the range 0.5 < Q2 < 5.5 GeV2 was also obtained
recently at JLab (Hall C) [8] as a byproduct of the ex-
periment E94-110 [9]. These results are also in excellent
agreement with the global re-analysis of Ref. [7] confirm-
ing the discrepancy between the Rosenbluth and polar-
ization extractions of the ratio GE/GM . This discrepancy
is a serious problem as it generates confusion and doubt
about the whole methodology of lepton scattering exper-
iments.

In this letter we take a first step to unravel this prob-
lem by interpreting the discrepancy as a failure of the
Born approximation which nevertheless does not destroy
the linearity of the Rosenbluth plot. This means that we
give up the beloved one-photon exchange concept and
enter the not well paved path of multi-photon physics.
By this we do not mean the effect of soft (real or virtual)
photons, that is the radiative corrections. The effect of
the latter is well under control because their dominant
(infra-red) part can be factorized in the observables and
therefore does not affect the ratio GE/GM . Here we con-
sider genuine exchange of hard photons between the lep-
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FIG. 1: Experimental values of R
exp

Rosenbluth and R
exp

Polarisation

and their polynomial fits.

ton and the hadron.
Even if we restrict to the two-photon exchange case,

the evaluation of the box diagram (Fig. 2) involves the
full reponse of the nucleon to doubly virtual Compton
scattering and we do not know how to perform this cal-
culation in a model independent way. Therefore we adopt
a modest strategy based on the phenomenological conse-
quences of using the full eN scattering amplitude rather
than its Born approximation. Though it cannot lead to a
full answer it produces the following interesting results:

• the two-photon exchange amplitude needed to ex-
plain the discrepancy is actually of the expected
order of magnitude, that is a few percent of the
Born amplitude.

• there may be a simple explanation to the fact that
the Rosenbluth plot looks linear eventhough it is
strongly affected by the two-photon exchange.

• the polarization method result is little affected by
the two-photon exchange, at least in the range of

Q2 which has been studied until now.

� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �

� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �

k k’

p p’

FIG. 2: The box diagram. The filled blob represents the
response of the nucleon to the scattering of the virtual photon.

To proceed with the general analysis of elastic electron-
nucleon scattering (2), we adopt the usual definitions :

P =
p + p′

2
, K =

k + k′

2
, q = k − k′ = p′ − p, (5)

and choose

Q2 = −q2, ν = K.P, (6)

as the independent invariants of the scattering. The po-
larization parameter ε of the virtual photon is related to
the invariant ν as (neglecting the electron mass) :

ε =
ν2 − M4τ(1 + τ)

ν2 + M4τ(1 + τ)
. (7)

For a theory which respects Lorentz, parity and charge
conjugation invariance, the general amplitude for elastic
scattering of two spin 1/2 particles depends on six in-
variant amplitudes [10]. To simplify, we neglect the am-
plitudes which flip the helicity of the electron since this
amounts to neglect terms of the order of the electron
mass. One is then left with three amplitudes [10], and
the T -matrix can be written in the form :

T =
e2

Q2
ū(k′)γµu(k)

× ū(p′)

(

G̃M γµ − F̃2

Pµ

M
+ F̃3

γ.KPµ

M2

)

u(p), (8)

where G̃M , F̃2, F̃3 are complex functions of ν and Q2,
and where the factor e2/Q2 has been introduced for con-
venience. In the Born approximation, one obtains :

G̃Born
M (ν, Q2) = GM (Q2),

F̃Born
2 (ν, Q2) = F2(Q

2),

F̃Born
3 (ν, Q2) = 0. (9)

Since F̃3 and the phases of G̃M and F̃2 vanish in the
Born approximation, they must originate from processes
involving at least the exchange of two photons. Relative
to the factor e2 introduced in Eq. (8), we see that they
are at least of order e2. This, of course, assumes that
the phases of G̃M and F̃2 are defined, which amounts to
suppose that, in the kinematical region of interest, the
modulus of G̃M and F̃2 do not vanish, which we take for
granted in the following. Defining :

G̃M = eiφM |G̃M |, F̃2 = eiφ2 |F̃2|, F̃3 = eiφ3 |F̃3|, (10)

and using standard techniques, we get the following ex-
pressions for the observables of interest :

dσ = CB(ν, Q2)
ε(1 + τ)

τ

×

{

|G̃M |2
ρ2 − τ + τ2

ρ2 − τ − τ2
+ |F̃2|

2(1 + τ)

−2 |G̃M |
(

cosφ2M |F̃2| − cosφ3M |F̃3|ρ
)

−2 cosφ23 |F̃2F̃3|ρ + |F̃3|
2(ρ2 − τ2)

}

, (11)

Pt

Pl

= −

√

ρ2 − τ − τ2

τ

×
|G̃M | − cosφ2M |F̃2|(1 + τ) + cosφ3M |F̃3|ρ

|G̃M |ρ + cosφ3M |F̃3|(ρ2 − τ − τ2)
, (12)
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with φ2M = φ2−φM , φ3M = φ3−φM , φ23 = φ2−φ3, and
ρ = ν/M2. If one substitutes the Born approximation
values of the amplitudes (9) then Eqs. (11,12) give back
the familiar expressions of Eqs. (3,4).

To simplify the above general expressions, we make
the very reasonable assumption that only the two-photon
exchange needs to be considered. This amounts to keep
only the terms of order e2 with respect to the leading one
in Eqs. (11,12). Using the fact that φM , φ2 and F̃3 are
of order e2 we get the approximate expressions :

dσ

CB(ε, Q2)
=

|G̃M |2

τ

{

τ + ε
|G̃E |2

|G̃M |2

+ 2ε

(

τ +
|G̃E |

|G̃M |

)

R

(

νF̃3

M2|G̃M |

)}

,(13)

Pt

Pl

= −

√

2ε

τ(1 + ε)

{

|G̃E |

|G̃M |

+

(

1 −
2ε

1 + ε

|G̃E |

|G̃M |

)

R

(

νF̃3

M2|G̃M |

)}

, (14)

where, by analogy, we have defined :

G̃E = G̃M − (1 + τ)F̃2, G̃Born
E (ν, Q2) = GE(Q2), (15)

and R denotes the real part. As for G̃M and F̃2, we
assume that the modulus of G̃E does not vanish in the
kinematical domain of interest. To set the scale for the
size of the pure two-photon exchange term (∼ F̃3) we
introduce the dimensionless ratio :

Y2γ(ν, Q2) = R

(

νF̃3

M2|G̃M |

)

, (16)

which should be a good measure of the effect since, if
we neglect |G̃E |/|G̃M | with respect to τ in Eq. (13),
we see that the cross section would be of the form
|G̃M |2(1 + ε Y2γ)2. Therefore we expect Y2γ to be of the
order of α ' 1/137.

Eqs. (13,14) already exhibit the solution to our prob-
lem. In the expression for the cross section, the coefficient
of ε has a two-photon correction 2(τ + |G̃E |/|G̃M |)Y2γ

which is essentially 2τY2γ = Q2Y2γ/2M2 at large Q2.

Moreover it competes with a leading term |G̃E |
2/|G̃M |2

which is small. This produces an amplification of the
two-photon effect which is not present in Pt/Pl.

From Eqs. (13,14) we see that the experimental couple
(dσ, Pt/Pl) depends on |G̃M |, |G̃E |, and R(F̃3). In first
approximation, we know that |G̃M (ν Q2)| ' GM (Q2),
|G̃E(ν Q2)| ' GE(Q2), and only R(F̃3) is really a new
unknown parameter. Thus allowing for two-photon ex-
change somewhat complicates the interpretation of the
lepton scattering experiments but not in a dramatic way.

In principle one could determine the three unknown pa-
rameters |G̃M |, |G̃E | and R(F̃3) if one had one more ob-
servable to complete the set of Eqs. (13,14). This could
be provided, for instance, by a separate measurement of
Pl and Pt rather than their ratio. However this is not re-
ally necessary because the dependence on ν of |G̃M | and
|G̃E | , being of order e2, is certainely weak enough that
it can be described by only a few parameters. Therefore
if, as it is already the case for dσ, one had a set of values
Pt/Pl at several values of ε, it is likely that one could
solve Eqs. (13,14) by a global fit method.

As the present data are not enough to realize the pro-
gram of extracting directly |G̃M (ν Q2)|, |G̃E(ν Q2)| and
R(F̃3(ν Q2)) we need to further simplify the problem. If
we look at the data of Ref. [6] for σ/CB(ε, Q2) as a func-
tion of ε we observe that for each value of Q2 the set of
points are pretty well aligned. We see on Eq. (13) that
this can be understood if, at least in first approximation,
the product ν F̃3 is independent of ε. We do not have a
first principle explanation for this but we feel allowed to
take it as an experimental evidence. To explain the lin-
earity of the plot one must also suppose that |G̃M | and
|G̃E | are independent of ε (that is ν ) but since the dom-
inant term of these amplitudes depends only on Q2 this
is a very mild assumption. We then see from Eq. (13)
that what is measured using the Rosenbluth method is :

(Rexp
Rosenbluth)2 =

|G̃E |2

|G̃M |2
+ 2

(

τ +
|G̃E |

|G̃M |

)

Y2γ , (17)

with |G̃E |/|G̃M | and Y2γ essentially independent of ε ,
rather than (Rexp

Rosenbluth)2 = (GE/GM )2, as implied by
the one-photon exchange approximation. On the other
hand the experimental results of the polarization method
have been obtained for a rather narrow range of ε, typi-
cally from ε = 0.6 to 0.9. So, in pratice, we can neglect
the ε dependence of Rexp

Polarisation and from Eq. (14) we
see that this experimental ratio must be interpreted as :

Rexp
Polarisation =

|G̃E |

|G̃M |
+

(

1 −
2ε

1 + ε

|G̃E |

|G̃M |

)

Y2γ , (18)

rather than Rexp
Polarisation = GE/GM . In order that

Eq. (18) be consistent with our hypothesis we should find
that Y2γ is small enough that the factor 2ε/(1+ ε) intro-
duces no noticeable ε dependence in Rexp

Polarisation.

We can now solve Eqs. (17,18) for |G̃E |/|G̃M | and Y2γ

for each Q2 . Due to the kinematical enhancement of the
two-photon effect in the cross section we cannot treat it
as a perturbation when solving the system of equations.
Since the latter is equivalent to a quadratic equation it
is more efficient to solve it numerically. For this we have
fitted the data by a polynomial in Q2 as shown on Fig. 1,
and we shall consider this fit as the experimental values.
In particular we do not attempt to represent the effect of
the error bars which can be postponed to a more com-
plete re-analysis of the data. The solution of Eqs. (17,18)
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FIG. 3: The ratio Y
exp
2γ versus ε for several values of Q2.

for the ratio Y exp
2γ is shown on Fig. 3 where we can see

that it is actually small, of the order of a few percents.
The largest value is obtained at the highest Q2 but here
the error bars [6] are rather large. We also observe that
Y exp

2γ is essentially flat as a function of ε which is consis-
tent with our hypothesis. The result for Y exp

2γ indicates
that the corrections to the Born approximation are actu-
ally small in absolute value. In the Rosenbluth method
their effect is accidentally amplified but there is no rea-
son to think that this kind of accident will also occur in
G̃E −GE or G̃M −GM . So it makes sense to compare the
value we get for Rexp

1γ+2γ = |G̃E |/|G̃M | with the starting
experimental ratios Rexp

Rosenbluth and Rexp
Polarisation. This

is shown on Fig. 4, from which we see that Rexp
1γ+2γ is

close to Rexp
Polarisation.

In summary, the discrepancy between the Rosenbluth
and the polarization method for GE/GM can be at-
tributed to a failure of the one-photon approximation
which is dramatically amplified at large Q2 in the case
of the Rosenbluth method. No such amplification oc-
curs in the polarization method, and this result does not
depend on a specific evaluation of the two-photon correc-
tion. The expression for the cross section also suggests
that the two-photon effect does not destroy the linearity
of the Rosenbluth plot because the product R(νF̃3) is in-
dependent of ν. It remains to be investigated if there is a
fundamental reason for this behavior or if it is fortuitous.
Using the existing data we have extracted the essential
piece of the puzzle, that is the ratio Y exp

2γ which mea-

sures the relative size of the two-photon amplitude F̃3.
Within our approximation scheme, we find that Y exp

2γ is
of the order of a few percent. This is a very reassuring
result since this is the order of magnitude expected for
two-photon corrections. What is needed as a next step is
a realistic evaluation of this particular amplitude. From
our analysis we extract the ratio |G̃E |/|G̃M | which in first
approximation can be assimilated to GE/GM . We find
that it is close to the value obtained by the polarization
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method when one assumes the one-photon exchange ap-
proximation. Of course it will be necessary to relate the
general amplitudes G̃E , G̃M to GE , GM before drawing
definitive conclusions but the small value that we get
for the ratio Y exp

2γ suggests that the difference should be
modest. We recall that our analysis always assumes that
the modulus of the amplitudes G̃E , G̃M do not vanish.
When this happens the analysis has to be modified.

Finally, we point out that “ à quelque chose malheur
est bon”. The two-photon corrections are generally small
in absolute value but are in some cases amplified by kine-
matical factors. This causes some trouble to extract
GE/GM but we can also see a positive aspect. Thanks to
this amplification we have a way to measure two-photon
amplitudes and this may open a new path to investigate
nucleon structure.
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