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Université de Paris VII

ABSTRACT
The evolution of ideas which has led from the first proofs of the renormalizability

of non-abelian gauge theories, based on Slavnov–Taylor identities, to the modern
proof based on the BRS symmetry and the master equation is briefly recalled. The
content and consequences of the master equation are explained. This lecture has
been delivered at the Symposium in the Honour of Professor C. N. Yang,
Stony-Brook, May 21-22 1999.

∗email: zinn@spht.saclay.cea.fr
∗∗Laboratoire de la Direction des Sciences de la Matière du Commissariat à
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1 Introduction

It is a rare privilege for me to open this conference in honour of Professor Yang.
His scientific contributions have been for me an essential source of inspiration.
The most obvious example, Yang–Mills fields or gauge theories, will be illus-
trated by my talk. But there are other important aspects of Pr. Yang’s work
which have also directly influenced me: Professor Yang has consistently shown
us that a theorist could contribute to quite different domains of physics like Par-
ticle Physics, the Statistical Physics of phase transitions or integrable systems....
Moreover his work has always emphasized mathematical elegance.

Finally by offering me a position at the ITP in Stony-Brook in 1971, Pr. Yang
has given me the opportunity to start with the late Benjamin W. Lee a work on
the renormalization of gauge theories, which has kept me busy for several years
and played a major role in my scientific career.

Let me add a few other personal words. The academic year 1971–1972 I
spent here at the ITP has been one of the most exciting and memorable of my
scientific life. One reason of course is my successful collaboration with Ben Lee.
However, another reason is the specially stimulating atmosphere Professor Yang
had managed to create at the ITP, by attracting talented physicists, both ITP
members and visitors, by the style of scientific discussions, seminars and lectures.

My interest in Yang–Mills fields actually dates back to 1969, and in 1970 I
started a work, very much in the spirit of the original paper of Yang and Mills,
on the application of massive Yang–Mills fields to Strong Interaction dynamics.
Although in our work massive Yang–Mills fields were treated in the spirit of
effective field theories, we were aware of the fact that such quantum field theories
were not renormalizable.

In the summer of 1970 I presented the preliminary results of our work in a
summer school in Cargèse, where Ben Lee was lecturing on the renormalization
of spontaneous and linear symmetry breaking. This had the consequence that
one year later I arrived here at the ITP to work with him.

Ben had just learned, in a conference I believe, from ’t Hooft’s latest work
on the renormalizability of non-abelian gauge theories both in the symmetric
and spontaneously broken phase and was busy proving renormalizability of the
abelian Higgs model. We immediately started our work on the much more in-
volved non-abelian extension.

Our work was based on functional integrals and other powerful functional
methods, in contrast to less reliable and much less transparent manipulations of
Feynman diagrams, and a generalization of so-called Slavnov–Taylor identities,
consequence of the properties of the Faddeev–Popov (FP) determinant arising
in the quantization of gauge theories. In a series of four papers (1972–1973), we
examined most aspects of the renormalization of gauge theories.

Notation. In this lecture, we will always use an euclidean formalism, and thus
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will not distinguish betweeen space and time.

2 Classical gauge action and quantization

The principle of gauge invariance, which promotes a global (or rigid) symmetry
under a Lie group G to a local (gauge) symmetry, provides a beautiful geometric
method to generate interactions between relativistic quantum particles.

The basic field is a Yang–Mills or gauge field (mathematically a connection)
Aµ(x), related to infinitesimal parallel transport, and written here as a matrix
belonging to the Lie algebra of the symmetry group

Aµ(x) =
∑
α

Aα
µ(x)tα , (2.1)

where the matrices tα are the generators of the Lie algebra of G in some repre-
sentation.

Acting on the gauge field, a gauge transformation characterized by space-
dependent group element g(x), takes an affine form:

Aµ(x) �→ g(x)Aµ(x)g−1(x) + g(x)∂µg−1(x). (2.2)

In particular, from the point of view of global transformations (g(x) constant),
the field Aµ(x) transforms by the adjoint representation of the group G.

To gauge transformations are associated covariant derivatives, whose form
depends on the group representation, for example,

Dµ = ∂µ + Aµ .

They transform linearly under a gauge transformation:

Dµ �→ g(x)Dµ g−1(x). (2.3)

The curvature Fµν(x) associated to the gauge field can be obtained from the
covariant derivative by

Fµν(x) = [Dµ,Dν ] = ∂µAν − ∂νAµ + [Aµ,Aν] .

It thus transforms linearly as

Fµν(x) �→ g(x)Fµν(x) g−1(x).

The pure Yang–Mills action is the simplest gauge invariant action. It can be
written as

S(Aµ) = − 1
4e2

∫
ddx trF2

µν(x),
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where e is here the gauge coupling constant.
Matter fields that transform non-trivially under the group are coupled to the

gauge field because gauge invariance dictates that derivatives must be replaced
by covariant derivatives. For fermions the action takes the typical form

SF(ψ̄, ψ) = −
∫

ddx ψ̄(x) (�D +M)ψ(x),

and for the boson fields:

SB(φ) =
∫

ddx
[
(Dµφ)† Dµφ+ V (φ)

]
,

in which V (φ) is a group invariant function of the scalar field φ.

Quantization. The classical action results from a beautiful construction, but
the quantization apparently completely destroys the geometric structure. Due
to the gauge invariance, the degrees of freedom associated with gauge transfor-
mations have no dynamics and, therefore, a straightforward quantization of the
classical action does not generate a meaningful perturbation theory (though non-
perturbative calculations in lattice regularized gauge theories can be performed).
It is thus necessary to fix the gauge, a way of expressing that some dynamics
has to be provided for these degrees of freedom. For example, motivated by
Quantum Electrodynamics, one may add to the action a covariant non-gauge
invariant contribution

Sgauge =
1

2ξe2

∫
ddx tr (∂µAµ)2 . (2.4)

However, simultaneously, and this is a specificity of non-abelian gauge theories,
it is necessary to modify the functional integration measure of the gauge field to
maintain formal unitarity. In the case of the gauge (2.4), one finds

[dAµ(x)] �→ [dAµ(x)] detM , (2.5)

where M is the operator

M(x, y) = ∂µDµδ(x− y).

This (Faddeev–Popov) determinant is the source of many difficulties. Indeed,
after quantizing the theory one has to renormalize it. Renormalization is a
theory of deformations of local actions. However, the determinant generates a
non-local contribution to the action. Of course, using a well-known trick, it is
possible to rewrite the determinant as resulting from the integration over un-
physical spin-less fermions C, C̄ (the “ghosts”) of an additional contribution to
the action

Sghosts =
∫

ddx C̄(x)∂µDµC(x).

After this transformation the action is local and renormalizable in the sense of
power counting. However, in this local form all traces of the original symmetry
seem to have been lost.
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3 Renormalization

The measure (2.5) is the invariant measure for a set of non-local transformations,
which for infinitesimal transformations takes the form

δAµ(x) =
∫

dyDµM−1(x, y)ω(y),

the field ω(x) parametrizing the transformation. Using this property it is possible
to derive a set of Ward–Takahashi (Slavnov–Taylor) identities between Green’s
functions and to prove renormalizability of gauge theories both in the symmetric
and spontaneously broken Higgs phase. The non-local character of these trans-
formations and the necessity of using two different representations, one non-local
but with invariance properties, the other one local and thus suitable for power
counting analysis, explains the complexity of the initial proofs.

Though the problem of renormalizing gauge theories could then be considered
as solved, one of the remaining problems was that the proofs, even in the most
synthetic presentation like in Lee–Zinn-Justin IV, were quite complicated, and
more based on trial and error than systematic methods.

Returning to Saclay I tried to systematize the renormalization program of
quantum field theories with symmetries. I abandoned the idea of a determination
of renormalization constants by relations between Green’s functions, for a more
systematic approach based on loop expansion and counter-terms.

The idea is to proceed by induction on the number of loops. Quickly summa-
rized:

One starts from a regularized local lagrangian with some symmetry proper-
ties. One derives, as consequence of the symmetry, identities (generally called
Ward–Takahashi (WT) identities) satisfied by the generating functional Γ of
proper vertices or one-particle irreducible (1PI) Green’s functions. By letting
the cut-off go to infinity (or the dimension to 4 in dimensional regularization),
one obtains identities satisfied by the sum Γdiv. of all divergent contributions at
one loop order. At this order Γdiv is a local functional of a degree determined by
power counting. By subtracting Γdiv from the action, one obtains a theory finite
at one-loop order. One then reads off the symmetry of the lagrangian renor-
malized at one-loop order and repeats the procedure to renormalize at two-loop
order. The renormalization program is then based on determining general iden-
tities, valid both for the action and the 1PI functional, which are stable under
renormalization, that is stable under all deformations allowed by power counting.
One finally proves the stability by induction on the number of loops.

Unfortunately, this program did not apply in an obvious way to non-abelian
gauge theories, because it required a symmetry of the local quantized action, and
none was apparent. WT identities were established using symmetry properties
of the theory in the non-local representation
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In the spring of 1974, my student Zuber drew my attention to a prelimi-
nary report of a work of Becchi, Rouet and Stora who had discovered a strange
fermion-type (like supersymmetry) symmetry of the complete quantized action
including the ghost contributions. There were indications that this symmetry
could be used to somewhat simplify the algebra of the proof of renormalization.
Some time later, facing the daunting prospect of lecturing about renormalization
of gauge theories and explaining the proofs to non-experts, I decided to study
the BRS symmetry. I then realized that the BRS symmetry was the key allowing
the application of the general renormalization scheme and in a summer school
in Bonn (1974) I presented a general proof of renormalizability of gauge theories
based on BRS symmetry and the master equation.

4 BRS symmetry

The form of the BRS transformations in the case of non-abelian gauge transfor-
mations is rather involved and hides their simple origin. Thus, we first give here
a presentation which shows how BRS symmetry arises in apparently a simpler
context.

The origin of BRS symmetry: constraint equations. Let ϕα be a set of dy-
namical variables satisfying a system of equations

Eα(ϕ) = 0 , (4.1)

where the functions Eα(ϕ) are smooth, and Eα = Eα(ϕ) is a one-to-one map in
some neighbourhood of Eα = 0 which can be inverted into ϕα = ϕα(E). This
implies, in particular, that the equation (4.1) has a unique solution ϕα

s . We then
consider some function F (ϕ) and we look for a formal representation of F (ϕs),
which does not require solving equation (4.1) explicitly.

One formal expression is

F (ϕs) =
∫ {∏

α

dEα δ(Eα)
}
F

(
ϕ(E)

)

=
∫ {∏

α

dϕα δ [Eα(ϕ)]
}
J (ϕ)F (ϕ) (4.2)

with
J (ϕ) = detE , Eαβ ≡ ∂Eα

∂ϕβ
.

We have chosen Eα(ϕ) such that detE is positive.

Slavnov–Taylor identity. The measure

dρ(ϕ) = J (ϕ)
∏
α

dϕα , (4.3)



7

has a simple property. The measure
∏

α dEα is the invariant measure for the
group of translations Eα �→ Eα + να. It follows that dρ(ϕ) is the invariant
measure for the translation group non-linearly realized on the new coordinates
ϕα (provided να is small enough):

ϕα �→ ϕ′α with Eα (ϕ′) − να = Eα(ϕ). (4.4)

This property is, in gauge theories, the origin of the Slavnov–Taylor symmetry.
The infinitesimal form of the transformation can be written more explicitly as

δϕα = [E−1(ϕ)]αβνβ . (4.5)

BRS symmetry. Let us again start from identity (4.2) and first replace the
δ-function by its Fourier representation:

∏
α

δ [Eα(ϕ)] =
∫ ∏

α

dλα

2iπ
e−λαEα(ϕ) . (4.6)

The λ-integration runs along the imaginary axis. From the rules of fermion
integration, we know that we can also write the determinant as an integral over
Grassmann variables cα and c̄α:

detE =
∫ ∏

α

(dcαdc̄α) exp
(
c̄αEαβc

β
)
. (4.7)

Expression (4.2) then takes the apparently more complicated form

F (ϕs) = N
∫ ∏

α

(dϕαdcαdc̄αdλα)F (ϕ) exp [−S(ϕ, c, c̄, λ)] , (4.8)

in which N is a constant normalization factor and S (ϕ, c, c̄, λ) the quantity

S (ϕ, c, c̄, λ) = λαEα(ϕ) − c̄αEαβ(ϕ)cβ . (4.9)

While we seem to have replaced a simple problem by a more complicated one,
in fact in many situations (and this includes the case where equation (4.1) is a
field equation) it is easy to work with the integral representation (4.8).

Quite surprisingly, the function S has a symmetry, which actually is a conse-
quence of the invariance of the measure (4.3) under the group of transformations
(4.5). This BRS symmetry, first discovered in the quantization of gauge theories
by Becchi, Rouet and Stora (BRS), is a fermionic symmetry in the sense that it
transforms commuting variables into Grassmann variables and vice versa. The
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parameter of the transformation is a Grassmann variable, an anti-commuting
constant ε̄. The variations of the various dynamic variables are

{
δϕα =ε̄cα , δcα =0 ,
δc̄α =ε̄λα , δλα =0

(4.10)

with
ε̄2 = 0 , ε̄cα + cαε̄ = 0 , ε̄c̄α + ε̄c̄α = 0 .

The transformation is obviously nilpotent of vanishing square: δ2 = 0.
When acting on functions of {ϕ, c, c̄, λ}, the BRS transformation can be rep-

resented by a Grassmann differential operator

D = cα
∂

∂ϕα
+ λα ∂

∂c̄α
. (4.11)

The operator D has the form of a cohomology operator since

D2 = 0 , (4.12)

and is the source of a BRS cohomology.

BRS symmetry in gauge theories. For simplicity, we consider form now on
only pure gauge theories, but the generalization in presence of matter fields is
simple.

In gauge theories, the role of the ϕ variables is played by the group elements
which parametrize gauge transformations and the equation (4.1) is simply the
gauge fixing equation. In the example of the gauge choice (2.4), it reads

∂µAµ(x) = ν(x),

where ν is a stochastic field with gaussian measure.
The corresponding quantized action can be written as

S(Aµ, C̄,C, λ) =
∫

d4x tr
[
− 1

4e2
F2

µν +
ξe2

2
λ2(x) + λ(x)∂µAµ(x)

+ C(x)∂µDµC̄(x)
]
. (4.13)

The form of BRS transformations that leave the action invariant,
{
δAµ(x) = −ε̄DµC(x) , δC(x) = ε̄C2(x),
δC̄(x) = ε̄λ(x), δλ(x) = 0 ,

(4.14)

is more complicated only because they are expressed in terms of group elements
instead of coordinates.
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Introducing the BRS differential operator

D =
∫

ddx tr
[
−DµC(x)

δ

δAµ(x)
+ C2(x)

δ

δC(x)
+ λ(x)

δ

δC̄(x)

]
, (4.15)

one can also express the BRS symmetry of the quantized action by the equation

DS(Aµ, C̄,C, λ) = 0 . (4.16)

Moreover, one shows quite generally that the non gauge contrbution Sgauge,
which results from quantization, is BRS exact. Here,

Sgauge = D
∫

ddx tr C̄(x)
[
∂µAµ(x) + ξe2λ(x)

]
. (4.17)

5 Renormalization and master equation

To BRS symmetry now correspond a set of WT identities that can be used to
prove the renormalizability of gauge theories.

WT identities are based on change of variables of the form of BRS transforma-
tions. As a consequence, they involve the composite operators (non-linear local
functions of the fields) DµC(x) and C2(x), which appear in the r.h.s. of the
BRS transformation (4.14) and which necessitate additionnal renormalizations.
To discuss renormalization, it is thus necessary to add to the action two sources
Kµ, L for them:

S(Aµ,C, C̄, λ) �→ S(Aµ,C, C̄, λ) +
∫

d4x tr
(−Kµ(x)DµC(x) + L(x)C2(x)

)
.

The sources for BRS transformations, Kµ and L, have been later renamed anti-
fields. No other terms are required because the two composite operators are BRS
invariant.

Master equation. Because the composite operators DµC(x) and C2(x) require
renormalizations, the form (4.14) of BRS transformations is not stable under
renormalization.

Instead, one discovers that the complete action S(Aµ,C, C̄, λ,Kµ,L), which
includes these additional source terms, satisfies after renormalization a quadratic
relation, the master equation, which does not involve the explicit form of the BRS
transformations (4.14). In component form (generalizing the notation (2.1) to
all fields), the master equation reads

∫
d4x

∑
α

(
δS

δAα
µ(x)

δS
δKα

µ (x)
+

δS
δCα(x)

δS
δLα(x)

+ λα(x)
δS

δC̄α(x)

)
= 0 . (5.1)
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The proof involves first showing that this equation implies a similar equation
for the generating functional of proper vertices (the 1PI functional). The lat-
ter equation, in turn, implies relations between divergences. In the framework
of the loop expansion, these relations imply that the counter-terms that have
to be added to the action to cancel divergences, can be chosen such that the
renormalized action still preserves the master equation.

What is striking is that the master equation (5.1) contains no explicit reference
to the initial gauge transformations. Therefore, one might worry that it does not
determine the renormalized action completely, and that the general renormaliza-
tion program fails in the case of non-abelian gauge theories. However, one slowly
discovers that the master equation has remarkable properties. In particular, all
its local solutions which satisfy the power counting requirements and ghost num-
ber conservation, have indeed the form of an action for a quantized non-abelian
gauge theory.

Power counting relies on the canonical dimensions of fields, which are (with
the notation [X ] for the canonical dimension of X)

[A] = 1 , [C + C̄] = 2 , [λ] = 2 , [Kµ + C] = 3 , [L + C + C̄] = 4 ,

where this form takes into account ghost number conservation by displaying only
the dimensions of the relevant products.

The action density has dimension 4 and, therefore, is quadratic in λ and linear
in Kµ and L. The master equation implies that the coefficients fαβγ of LαCβC̄γ

are constants that satisfy the Jacobi identity, and the coefficients Dαβ
µ of Kα

µC
β

are affine functions of Aµ that satisfy Lie algebra commutations with the fαβγ

as structure constants. Then continuity implies, in the semi-simple example at
least, preservation of all geometric properties.

One somewhat surprising outcome of analysis is that the master equation has,
for general gauge fixing functions of dimension 2, solutions with quartic ghost
interactions, which cannot be obviously related to a determinant. On the other
hand the master equation (and this one of its main properties) implies directly
that the non gauge invariant part of the quantized action is BRS exact (like in
equation (4.17)). This property then ensures gauge independence and unitarity.

Only a few years later, elaborating on a remark of Slavnov, was I able to
reproduce a general quartic ghost term as resulting from a generalized gauge
fixing procedure (Zinn-Justin 1984).

After the renormalization program was successfully completed, one important
problem remained, of relevance for instance to the description of deep-inelastic
scattering experiments: the renormalization of gauge invariant operators of di-
mension higher than 4. Using similar techniques Stern-Kluberg and Zuber were
able to solve the problem for operators of dimension 6 and conjecture the gen-
eral form. Only recently has the general conjecture been proven rigourously by
non-trivial cohomology techniques (Barnich, Brandt and Henneaux 1995).
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