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Abstract

The γp → K+π0Λ and γp → K+πΣ reactions are studied in the kinematic
region where the π0Λ(1116) and πΣ(1192) pairs originate dominantly from the decay
of the Σ(1385) and Λ(1405) resonances. We consider laboratory photon energies
around 2 GeV, significantly above the threshold for producing the K+ Σ(1385)
and K+ Λ(1405) final states. We compute for both reactions the process in which
the ingoing photon dissociates into a real K+ and a virtual K−, the off-shell K−

scattering subsequently off the proton target to produce the π0 Λ or π Σ pair. The
K−p → π0Λ and K−p → πΣ amplitudes are calculated in the framework of a chiral
coupled-channel effective field theory of meson-baryon scattering. The structure of
the amplitudes reflects the dominance of the Λ(1405) in the πΣ channel and of the
Σ(1385) in the πΛ channel. The full pion-hyperon final state interaction is included
in these amplitudes. We extract from the calculated cross section the gauge-invariant
double kaon pole term. We found this term to be large and leading to sizeable
cross sections for both the γp → K+π0Λ and γp → K+πΣ reactions, in qualitative
agreement with the scarce data presently available. Accurate measurements of these
cross sections should make it possible to extract the contribution of the double kaon
pole and hence to assess the possibility of studying kaon-nucleon dynamics just
below threshold through these reactions.

Key words: Strangeness photoproduction; Λ(1405); Σ(1385)

PACS: 12.39.Fe; 13.30.Eg; 13.60.Rj; 14.20.Jn

Preprint submitted to Elsevier Science 30 July 2004



1 Introduction

The simplest process leading to strange particle creation in photon-nucleon
interactions is the associated production of a kaon and a hyperon. The hy-
peron decays subsequently into specific channels. We consider the interaction
of 2 GeV photons (in the laboratory reference frame) with proton targets. We
select final states consisting of a K+ and a π0 Λ or a π Σ pair respectively and
restrict the invariant mass of these pairs to the mass range of the Σ0(1385) and
the Λ(1405). The Σ0(1385) decays primarily into the π0 Λ channel (88 ± 2 %)
and less importantly (12 ± 2 %) into the π Σ channel [1]. The Λ(1405) decays
entirely into the π Σ channel [1]. The Σ0(1385) and the Λ(1405) are therefore
expected to dominate the production of π0 Λ and π Σ pairs in the correspon-
ding mass range.

These resonances overlap in mass and have to be separated experimentally
by distinctive decays. A particularly interesting idea is to study the Λ(1405)
in the π0 Σ0 channel [2]. The transition between the Σ0(1385) and the π0 Σ0

channel is forbidden because the isospin Clebsch-Gordan coefficient vanishes.
The π0 Σ0 decay is therefore a unique signature of the Λ(1405) channel. Such
a measurement has not yet been performed but is intended at ELSA (Bonn)
where the π0 Σ0 pair could be detected through a multi-photon final state
(π0 Σ0 → π0 Λ(1116) γ → π0 nπ0 γ) with the Crystal Barrel [2]. The pho-
toproduction of Λ(1405) resonances is also presently studied in the charged
decay channels, π− Σ+ and π+ Σ−, at SPring-8/LEPS with incident photon en-
ergies in the range 1.5 < ELab

γ < 2.4 GeV [3] and at ELSA with the SAPHIR
detector at 2.6 GeV [4]. These channels are expected to be dominated by the
Λ(1405) with some contribution from the Σ0(1385). There are no published
cross sections yet. The only data presently available in the kinematics of in-
terest [5] were obtained at DESY thirty years ago with space-like photons, in
electroproduction experiments where the scattered electron and the produced
K+ are detected in coincidence. With this method the Σ0(1385) and Λ(1405)
channel could not be separated at all. The differential cross sections for the
e p → eK+ Y reaction obtained in these measurements characterize globally
strangeness production processes for missing masses ranging from 1.35 GeV
until 1.45 GeV. An interesting trend of these data is that the t-dependence
of the cross section, for given photon energy and virtuality, seems to show
a sharp drop as would be expected if the dynamics were dominated by t-
channel exchanges. The Mandelstam variable t is defined as the square of the
4-momentum transfer from the proton target to the Σ0(1385) or Λ(1405).

Both the Σ(1385) and Λ(1405) resonances are located close and below the K̄N
threshold. These resonances seem to be of rather different nature. The Σ(1385)
belongs to the large Nc ground state baryons and appears well-described by
quark models [6,7]. The Λ(1405) is a complex baryonic state. Its mass, in
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particular the large splitting between the Λ1/2−(1405) and the Λ3/2−(1520),
cannot be understood in the constituent quark model with residual quark-
quark interactions fitting the other low-lying baryonic states [6,7]. There are
many indications that the quark model description of the Λ(1405), if valid
at all, requires a sizeable q4q̄ component [8–10]. This observation is closely
related to the early idea that the Λ(1405) can be viewed as a bound kaon-
nucleon system [11–18] and to the later picture of the Λ(1405) as a kaon-soliton
bound state [19,20]. The K̄N nature of the Λ(1405) was also inferred from the
SU(3) cloudy bag model description [21,22]. Extensive studies of the Λ(1405)
based on chiral Lagrangians [23–31] suggest that this resonance is generated
by meson-baryon interactions.

The different nature of the Σ(1385) and of the Λ(1405) resonances is built in
the chiral coupled-channel approach of kaon-nucleon scattering developed in
Ref. [27] and which will be used in this work. The baryon resonances belonging
to the large Nc ground state baryon mutiplets (hence the Σ(1385)) are intro-
duced explicitly as fundamental fields of the effective Lagrangian. The other
baryon resonances (in particular the Λ(1405)) are generated dynamically by
meson-baryon coupled-channel dynamics.

The Σ(1385) and Λ(1405) resonances have also different spectral properties.
The Σ(1385) mass distribution is very close to a Breit-Wigner form [32]. The
spectral shape of the Λ(1405) departs from a Breit-Wigner [33,34]. It depends
strongly on the initial and final states through which it is measured, empha-
sizing the need for a full understanding of the coupling of the Λ(1405) to its
different decay channels.

We study the γp → K+π0Λ and γp → K+πΣ reactions with the idea of us-
ing future accurate data on these processes (mainly t-distributions) to gain
understanding of the K−p → π0Λ and of the K−p → πΣ amplitudes below
the K̄N threshold, where they are dominated by the Σ(1385) and Λ(1405) re-
sonances. This procedure requires that these reactions be significantly driven
by the process in which the ingoing photon dissociates into a real K+ and a
virtual K−, the off-shell K− scattering subsequently off the proton target to
produce the π0 Λ or π Σ pair. Such dynamics would show in a sharp drop of
the differential cross sections dσ/dt with increasing |t|. This drop has both a
double pole component behaving like 1/(m2

K − t)2 and a single pole depen-
dence going like 1/(m2

K − t). The amplitude associated with the K− t-channel
exchange alone is not gauge-invariant. There are many other terms of order α
building up the gauge-invariant amplitude. We argue that the contributions
from all these other terms to the cross section will not affect the double pole
term, which is made gauge-invariant and entirely fixed by our calculation.
This issue is of interest because the double kaon pole term contribution to
the γp → K+π Y cross section is large (contrary to what is found in other
meson photoproduction processes as discussed below). Our hope is that very
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accurate data will make it possible to isolate this term by expressing the dif-
ferential cross sections dσ/dt as a superposition of double and single K− pole
terms with less singular contributions. Such an information would be most
useful in constraining K̄N dynamics at low and subthreshold energies. The
K−p inelastic cross sections close to threshold are indeed poorly known [27].

We compute the t-channel K−-exchange contribution to the γp → K+π0Λ and
γp → K+πΣ reactions for photon laboratory energies around 2 GeV using the
K−p → π0Λ and K−p → πΣ amplitudes obtained in Ref. [27] and extract the
gauge-invariant double K− pole contribution for both processes. The steps
of that calculation are outlined in Section 2. Our numerical results for the
γ p → K+ π0 Λ(1116) and γ p → K+ π Σ(1192) reactions based on the double
K− pole term are displayed and discussed in Section 3. We conclude by a few
remarks in Section 4.

2 The γ p → K+ π0 Λ(1116) and γ p → K+ π Σ(1192) reaction cross
sections

The t-channel K−-exchange contributions to the amplitudes for the γ p →
K+ π0 Λ(1116) and γ p → K+ π Σ(1192) reactions are displayed in Figs. 1 and
2.

π

Λ

− 0

γ

p

K

+
K

Fig. 1. K−-exchange contribution to the γ p → K+π0Λ amplitude.

The importance of the contribution of the K−-exchange term to the γ p →
K+ π0 Λ(1116) and γ p → K+ π Σ(1192) cross sections can but be assessed by
accurate dσ/dt measurements for both reactions. As discussed earlier, such
data are expected in the near future but not yet available.

4



Kγ +

p

π

Σ

K
−

Fig. 2. K−-exchange contribution to the γ p → K+πΣ amplitude. The πΣ symbol
stands for π−Σ+, π0Σ0 or π+Σ−.

In order to get nevertheless a rough feeling for the t-dependence of the cross
section, we have used the old data of Ref. [5] characterizing the sum of the
γv p → K+ Σ0(1385) and γv p → K+ Λ(1405) processes measured with space-
like photons, in electroproduction experiments. These data are displayed in
Fig. 3.

We plot the sum of the unpolarized transverse and longitudinal cross sections
which dominate the process (ε is the transverse photon polarization) [5]. The
points at t = −0.18 GeV2 and t = −0.23 GeV2 are direct measurements.
The points corresponding to t = −0.27 GeV2 and t = −0.37 GeV2 have been
measured at q0

γ ≃ 3.5 GeV and extrapolated to q0
γ = 2.5 GeV by rescaling

the differential cross section according to the energy dependence predicted
by our model (i.e. an increase of about a factor of 2). There is clearly a
large uncertainty associated with this procedure. We consider therefore the
data displayed in Fig. 3 only as a tenuous indication that the reaction could
proceed through a t-channel exchange in qualitative agreement with the rapid
fall-off expected from a dominant double K−-pole term.

It should be noted however that there are no good reasons to expect significant
s-channel contributions to the γp → K+π0Λ and γp → K+πΣ reactions at
Eγ ≃ 2 GeV. The corresponding total center of mass energy in these kinematics
is
√

s = 2.15 GeV. There are no baryon resonances in that mass range known
to decay into the K+π0Λ or K+πΣ channels. It is interesting to recall that, for
the γp → K+Λ and γp → K+Σ0 reactions at Eγ ≃ 2 GeV, the dominance of
the K−-exchange at low t could be inferred from photo- and electroproduction
data [35]. The importance of the Σ0(1385) and Λ(1405) resonances in the K̄N
dynamics close to threshold provides additional grounds for expecting a similar
picture to hold for the γp → K+Σ0(1385) and γp → K+Λ(1405) reactions.

We calculate the cross section for the γ p → K+ π Y , where Y denotes either
the Λ(1116) or the Σ(1192). The 4-momenta of the photon, the proton, the
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Fig. 3. Differential cross section for the production of K+Λ(1405) and K+Σ0(1385)
final states induced by the scattering of virtual photons from proton targets. The
data are from Ref. [5]. The quantity q2 is the photon virtuality and q0

γ is the (virtual)
photon energy. The two points at t=-0.27 GeV2 and -0.37 GeV2 are extrapolated
from data taken at higher energy according to a prescription explained in the text.
The full and dashed lines show the shape of the t-dependence of the cross sec-
tion as expected from double and single K−-pole terms respectively (with arbitrary
normalizations).

K+, the pion and the hyperon are denoted by q, p, q̄K , q̄π and p̄Y respectively.
The photon, proton and hyperon polarizations are indicated by the symbols
λγ, λ and λ̄Y . The total cross section reads

σγ p→K+ π Y =
1

|~vγ − ~vp|
1

2 q0

mp

p0

∫ d3~̄qK

(2π)3

1

2 q̄ 0
K

∫ d3~̄qπ

(2π)3

1

2 q̄ 0
π

∫ d3~̄pY

(2π)3

mY

p̄ 0
Y

(2 π)4 δ4(q + p − q̄K − q̄π − p̄Y )
∑

λγ ,λ,λ̄Y

1

4
|Mγ p→K+ π Y |2. (1)

The first step of the calculation is to factorize the full amplitude Mγ p→K+ π Y

into the photon-kaon vertex and the K− p → π Y amplitude in accordance
with the reaction mechanism depicted in Figs. 1 and 2. We have

∑

λγ ,λ,λ̄Y

1

4
| Mγ p→K+ π Y |2 =−e2 (t + m2

K)

(t − m2
K)2

1

2

∑

λ,λ̄Y

|MK−p→π Y |2. (2)

6



We work in the photon-proton center of mass reference frame where the total
energy of the reaction is denoted by

√
s. In that reference frame, the photon

3-momentum is -~p and the 3-momentum of the π Y pair is -~̄qK . It is useful to
define the invariant mass

√
w̄2 of the final π Y pair by

w̄2 = (p + q − q̄K)2 = s + m2
K − 2

√
s

√

m2
K + ~̄q

2
K (3)

and to express the 4-momentum transfer t = (q − q̄K)2 as function of that
variable,

t (s, w̄2, cos θ) = m2
K − 1

2s
(s − m2

p) (s + m2
K − w̄2)

(

1 −
√

√

√

√1 − 4 m2
K s

(s + m2
K − w̄2)2

cos θ
)

, (4)

where θ is the angle between the initial photon and the produced kaon.

Using these variables, the total cross section (1) can be rewritten as

σγ p→K+ π Y =
α mp

16 π s |~p |2
(t + m2

K)

(t − m2
K)2

(
√

s−mK)2
∫

(MY +mπ)2

dw̄2

t−(s,w̄2)
∫

t+(s,w̄2)

dt
∫ d3~̄qπ

(2π)3

1

2 q̄ 0
π

∫ d3~̄pY

(2π)3

mY

p̄ 0
Y

(2 π)4 δ4(w̄ − qπ − p̄Y )
1

2

∑

λ,λ̄Y

|MK−p→π Y |2, (5)

with t−(s, w̄2) = t (s, w̄2, cos θ = +1) and t+(s, w̄2) = t (s, w̄2, cos θ = −1).

It is convenient to express Eq. (5) in terms of the total K−p → π Y cross
section, σK−p→π Y . This quantity is frame independent. Its expression in the
K−p center of mass reads

σK− p→π Y =
1√

w̄2 |~qK−p|
mp

2

∫ d3~̄qπ

(2π)3

1

2 q̄ 0
π

∫ d3~̄pY

(2π)3

mY

p̄ 0
Y

(2 π)4 δ4(w̄ − q̄π − p̄Y )
1

2

∑

λ,λ̄Y

|MK−p→π Y |2, (6)

in which qK−p is the K− momentum in the K−p center of mass. Its value as

function of the total center of mass energy
√

w̄2 of the K−p system is given
by

|~qK−p|2 =
1

4 w̄2
{w̄4 − 2 w̄2 (m2

p + m2
K) + (m2

p − m2
K)2}. (7)

7



The doubly differential cross section dσ/dtdw̄2 can be written as

dσγ p→K+ π Y

dt dw̄2
=

α

4 π

(w̄4 − 2 w̄2 (m2
p + m2

K) + (m2
p − m2

K)2)1/2

(s − m2
p)

2

(t + m2
K)

(t − m2
K)2

σK− p→π Y (w̄2). (8)

We remark first that the amplitude Mγ p→K+ π Y obtained by calculating the
graph of Fig. 1 (or Fig. 2) is not gauge-invariant. To obtain the full gauge-
invariant amplitude, all the other diagrams of order α leading to the same
final state should be added. In the energy range under consideration (Eγ ≃ 2
GeV), there are many possible diagrams involving poorly known couplings
and hence large uncertainties.

Instead of attempting to calculate these graphs, we resort to the pole scheme
method [36]. This technique was used to derive gauge-invariant results in the
vicinity of a pole for electroweak processes involving radiative corrections [37].
The idea of the method is to decompose the amplitude according to its pole
structure and to expand it around the pole. To any order in perturbation
theory, the residues of the poles are gauge-invariant. The expansion provides
therefore subsets of gauge-invariant expressions associated with a given pole
structure.

We apply this method to derive the gauge-invariant cross section correspon-
ding to the double K−-pole term to first order in α. We expect this term to
play a significant role in the γ p → K+ π Y process. The key point is that the
graph of Fig. 1 (or Fig. 2) is the only process which can contribute to the
double K−-pole term. We will therefore decompose the corresponding cross
section according to its pole structure, keep only the double K−-pole term and
extract the gauge-invariant cross section associated with that pole structure
by calculating the residue at the pole.

According to this procedure, the gauge-invariant cross section corresponding
to the double K−-pole term reads

dσγ p→K+ π Y

dt dw̄2
=

α

2 π

(w̄4 − 2 w̄2 (m2
p + m2

K) + (m2
p − m2

K)2)1/2

(s − m2
p)

2

m2
K

(t − m2
K)2

σK− p→π Y (w̄2). (9)

We stress that the double pole term is the only one which can be determined
this way, because it does not get contributions from any other graph but the
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t-channel kaon-exchange diagram. In contrast, the single pole term is built
up as a sum of many processes, in particular the interference of the t-channel
kaon-exchange diagram with s- and u-channel terms.

In order to be able to extract the double pole term from accurate t-distributions,
it has to be reasonably large. We speculate so in view of the numerical results
discussed in the next section. As shown earlier, it is also compatible with the
few data points available.

We emphasize that this would be a specific behaviour of the γ p → K+ π Y
reactions. The situation is indeed different in other meson photoproduction
processes, even when they are dominated by t-channel exchanges. It is inte-
resting to consider for example the pole structure for the photoproduction of
ω-mesons in the energy range 1.4 < Eγ < 1.6 GeV. In these kinematics, the
γp → ωp reaction is expected to be well described by a simple pion-exchange
diagram for small momentum transfers and with standard form factors [38].
We use the specific model of Ref. [38]. Neglecting the t-dependence of the form
factors and concentrating on the pole structure of the differential cross section
in the limit of local couplings, we have

dσγ p→ω p

dt
∝ −t

4 m2
p

(m2
ω − t)2

(m2
π − t)2

=
−m2

π

4 m2
p

(m2
ω − m2

π)2

(m2
π − t)2

+
(m2

ω − m2
π)

4 m2
p

(m2
ω − 3m2

π)2

(m2
π − t)

+
1

4 m2
p

(2m2
ω − 2m2

π − t). (10)

We see that the differential cross section behaviour is dominated by the single
pion pole term. The double pion pole is small and even negative. It acts as
a minor correction to the cross section, as a consequence of the smallness
of the pion mass. The pole scheme technique used above is not predictive
in this case and the dominant single pion pole term has to be determined
phenomenologically. As a consequence of this observation, the effective πNN
and πγω couplings are not constrained directly by the data and depend on
further assumptions such as the form factors assigned to the vertices. We
remark that the particular form of the couplings chosen in Ref. [38] makes the
full pion-exchange diagram gauge-invariant, irrespectively of its pole structure.

To characterize the momentum transfer dependence of the K− p → π Y cross
section, one can define the variable t̄ = (p− p̄Y )2 and generalize Eq.(9) to the
threefold differential cross section
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dσγ p→K+ π Y

dt dw̄2dt̄
=

α

2 π

(w̄4 − 2 w̄2 (m2
p + m2

K) + (m2
p − m2

K)2)1/2

(s − m2
p)

2

m2
K

(t − m2
K)2

dσK− p→π Y

dt̄
(w̄2, t̄). (11)

We focus on the K− p → π Y reaction by integrating over t, using the kine-
matic boundaries t− and t+ defined after Eq. (5). We have

t−
∫

t+

dt
dσγ p→K+ π Y

dt dw̄2dt̄
=

α

2 π

(w̄4 − 2 w̄2 (m2
p + m2

K) + (m2
p − m2

K)2)1/2

(s − m2
p)

2

m2
K (t− − t+)

(t+ − m2
K) (t− − m2

K)

dσK− p→π Y

dt̄
(w̄2, t̄), (12)

or

dσγ p→K+ π Y

dw̄2dt̄
=

α

2 π

|~̄qK | s1/2

(s − m2
p)

3
4 |~qK−p|

√
w̄2

dσK− p→π Y

dt̄
(w̄2, t̄). (13)

The nontrivial dynamical quantity of interest in Eq. (13) is clearly 4 |~qK−p|
√

w̄2

dσ
K− p→π Y

dt̄
(w̄2, t̄).

To calculate this cross section we use the K̄p → πY amplitudes derived in
Ref. [27] from the chiral SU(3) Lagrangian by solving coupled-channel Bethe-
Salpeter equations. We will not repeat here the technical developments in-
volved in this scheme. They are explained and discussed extensively in Ref.
[27].

This effective field theory achieves an excellent description of the available data
on K− p elastic (direct and charge-exchange) and inelastic (π0 Λ, π+ Σ−, π0 Σ0,
π− Σ+) processes up to laboratory K− momenta of the order of 500 MeV. The
interest of the present work is to offer the possibility of testing the amplitudes
below the K̄N threshold, in the region where they are dominated by the
Λ(1405) and the Σ(1385). The specific spectral shape of these resonances is a
particularly meaningful prediction of the description of Ref. [27]. As mentioned
earlier, the shape of the Σ(1385) resonance is expected to be close to a Breit-
Wigner form. The Λ(1405) resonance mass distribution has an asymmetric
shape and depends on the initial and final states through which it is observed.
The π0 Λ production would also put strong constraints on the Σ(1385) K̄N
coupling which is poorly known.
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3 Numerical results

We present our numerical results in three different perspectives. We restrict
our calculations to cross sections integrated over t̄.

We show first the quantity 4 |~qK−p|
√

w̄2 σK− p→π Y (w̄2) as function of the total

center of mass energy in the K−p system, renamed for clarity
√

sK−p (≡
√

w̄2).
The interest of displaying our results this way is to exhibit the behaviour of the
K− p → π Y cross section across threshold. We recall that the K̄N threshold
is at

√
sK−p ≈ 1.435 GeV. Our predicted cross sections are displayed in Fig.

4 for the K− p → π− Σ+ and K− p → π+ Σ− reactions and in Fig. 5 for the
K− p → π0 Σ0 and K− p → π0 Λ reactions. They are compared to the data
available above threshold [39–44].
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Fig. 4. K− p → π− Σ+ and K− p → π+ Σ− cross sections below and above threshold.
The length of the K− 3-momentum is defined by Eq. (7) and

√
sK−p (≡

√
w̄2) is

the total center of mass energy of the K− p system. The dashed line represents the
contribution from K− p relative s-wave only. The grey histogram is explained in the
text. The data above threshold are from Refs. [39–44].

We recall that the π Σ channel is dominated by the Λ(1405) and the π Λ chan-
nel by the Σ(1385). The properties of the spectral functions of the Σ(1385)
and Λ(1405) resonances are very apparent in Figs. 4 and 5. The shape of
the resonant behaviour of the K− p → π0 Λ cross section below threshold is
quite symmetric and close to a Breit-Wigner form. The s-wave contribution is
small as expected for a process dominated by a p-wave resonance. In contrast,
the spectral form of the K− p → π Σ cross sections for the three possible π Σ
channels is asymmetric and largely given by s-wave dynamics, reflecting the
Λ(1405) dominance. The grey histograms show (in arbitrary units) the empi-
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rical shape of the Λ(1405) resonance extracted from the p (γ,K+π) Σ reaction
at 1.5-2.4 GeV photon energy [3]. It should be emphasized that strictly speak-
ing the comparison implied by Fig. 4 is not yet justified. Only after extracting
the double kaon pole contribution from the cross section by a detailed study
of t-distributions can this comparison become legitimate. The result of such
an analysis is expected to resolve the discrepancy of the histograms and the
K−p scattering data, at least above threshold. Nevertheless, the different line
shapes of [3] seems to confirm the prediction of chiral coupled-channel dynam-
ics that the spectral shape of the Λ(1405) resonance depends crucially on the
initial and final states it is probed with [27,45]. We note that the available
K−p scattering data close to threshold have large error bars, emphasizing the
interest of being able to determine from experiment the subthreshold K−p
scattering amplitudes by extracting the double kaon pole contributions to the
γp → K+πY reactions calculated in this work.
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Fig. 5. Same as Fig. 4 for the K− p → π0 Σ0 and K− p → π0 Λ channels.

We display in Figs. 6 and 7 the double kaon pole term contributions to the
differential cross sections for the γp → K+π0Λ and γp → K+πΣ reactions as
functions of the π Y total center of mass energy

√
sK−p at Eγ = 1.7 GeV and

Eγ = 2.1 GeV.

They reflect clearly the dynamical features discussed in commenting on Figs.
4 and 5. It is also interesting to note the absolute values of the double kaon
pole cross sections. They are large on the scale of what is expected from
other theoretical approaches. If we compare our results to the predictions of
the model of Ref. [45] at Eγ = 1.7 GeV, we notice that our calculated cross
sections are roughly twice larger for the π Σ channels. It is not easy to trace
the origin of this effect. Our gauge-invariant double kaon pole term contains
contributions which cannot be mapped easily onto the Feynman diagrams
computed in Ref. [45]. The cross section we obtain for the π0 Λ channel is
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Fig. 6. Double kaon pole term contribution to the differential cross sections for the
γp → K+π0Λ and γp → K+πΣ reactions as function of the π Y total center of mass
energy at Eγ = 1.7 GeV
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Fig. 7. Same as Fig. 6 at Eγ = 2.1 GeV

about an order of magnitude larger than the result displayed in Ref. [45]. A
substantial part of this effect should be ascribed to the neglect of the Σ(1385)
resonance in that work.

Finally, we show in Fig. 8 the t-distribution of the double kaon pole term
contribution to the γp → K+π0Σ0 reaction at Eγ = 2.1 GeV, computed at
different values of the π0 Σ0 total center of mass energy. As mentioned in the
introduction, this process is a unique signature of the Λ(1405) resonance. It is
a very nice test of the underlying dynamics of the Λ(1405) photoproduction
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and a clean process to extract the double kaon pole from accurate data.
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Fig. 8. Double kaon pole term contribution to the t-distribution for the
γp → K+π0Σ0 reaction at Eγ = 2.1 GeV, computed at different values of the
π0 Σ0 total center of mass energy.

4 Conclusion

We have studied the γp → K+π0Λ and γp → K+πΣ reactions in the kinematic
region where the π0Λ(1116) and πΣ(1192) pairs originate dominantly from
the decay of the Σ(1385) and Λ(1405) resonances. We focus on laboratory
photon energies around 2 GeV, significantly above the threshold for producing
the K+ Σ(1385) (Ethresh

γ =1.41 GeV) and the K+ Λ(1405) (Ethresh
γ =1.45 GeV)

final states. We have calculated the t-channel K−-exchange contribution to
these reactions using the K− p → π Y amplitudes of Ref. [27], which have
been shown to describe the data available at low kaon momentum. Based
on the pole structure of this contribution, we determined the gauge-invariant
double kaon pole contribution to the γp → K+πY cross sections by calculating
the residue at the pole. The relevance of our work stems from the advent of
detector systems able to measure exclusively multiparticle final states with
great accuracy. Three complementary experiments in the photon energy range
considered in this paper are planned with LEPS at SPring-8 [3], SAPHIR at
ELSA [4] and the Crystal Barrel at ELSA [2], dealing for the first two with the
charged [π−Σ+ and π+Σ−] channels and for the latter with the neutral [π0Σ0

and π0Λ] final states. These accurate measurements should make it possible
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to extract the contribution of the double kaon pole and hence to study kaon-
nucleon dynamics below threshold.
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