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Abstract

A geometrical method for 3-D modeling of the magnetic field inscaling and non-scaling FFAG mag-
nets has been installed in the ray-tracing code Zgoubi. The method in particular allows a good simulation
of field fall-offs and of merging fields in configurations of neighboring large magnets, while using realistic
models of magnetic fields. That yields an efficient tool for lattice design and optimizations, and for 6-D
tracking studies. It is applied for illustration to the simulation of an acceleration cycle in a 150 MeV radial
sector proton FFAG.
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1 Introduction

Fixed field alternating gradient (FFAG) accelerators science is subject to a regain of interest [1] in the context
of muon acceleration for the neutrino factory [2], with as anoutcome investigation of possible application in
various domains as hadrontherapy and other high power accelerators [3].

Stepwise ray-tracing is considered (from the very beginning [4]) a good technique to track particles in
FFAG’s, allowing to draw machine parameters from single- ormulti-turn tracking. The developments pre-
sented here are based on such methods using the ray-tracing code Zgoubi [5].

A strong concern that motivates these software developments is in simulating in a correct manner the field
in the FFAG magnets. This has various aims, as : offering tools for fast optimization of magnet geometry and
fields as constrained by accelerator design parameters ; providing correct simulation of multiturn motion in
FFAG, with such outcomes as the right computation of latticeparameters as tunes, tune variations, time of
flight, etc. ; yielding precision 6-D multiturn tracking andmotion stability limits.

In addition, the present developments can be applied to various other magnetic devices involved in ma-
nipulation of the large emittance muon beam in the neutrino factory, as for instance compression chicanes [6],
muon beam cooling rings [7], with the potential of magnet/field parameters adjustments thanks to the built-in
Zgoubi fitting procedure, whereas optimizations based on 3-D magnet code calculations strongly lack flexi-
bility in that matter.

In the following, Section 2 first recalls the principles of the Zgoubi method relevant to the simulation of
large acceptance dipoles, Section 3 describes the method for simulating dipoleN -uplets, possibly featuring
strong radial non-linearity, and the particular case of FFAG magnets, with illustration by a radial-sector FFAG
triplet, Section (4) shows a simulation of the KEK 150 MeV proton ring that is based on an FFAG triplet cell.

2 The ray-tracing method, ingredients
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Figure 1:Zgoubi frame and coordinates.

We first recall the ingredients of the Zgoubi method that in-
tervene in the implementation of dipoleN -uplet simulations.

Position and velocity

The integration method is based on stepwise resolution of
Lorentz equation by a technique of Taylor series. The work-
ing frame is shown in Fig. 1.

Position and velocity of a particle subject tomd~v/dt =
q ~v × ~b are tracked using truncated Taylor expansions in the
integration step∆s

~R(M1) ≈ ~R(M0) + ~u(M0)∆s + ~u′(M0)
∆s2

2! + ... + ~u′′′′′(M0)
∆s6

6!

~u(M1) ≈ ~u(M0) + ~u′(M0)∆s + ~u′′(M0)
∆s2

2! + ... + ~u′′′′′(M0)
∆s5

5! (1)

wherein~u = ~v/v, ∆s = v ∆t, ~u′ = d~u/ds, m~v = mv~u = q Bρ~u, and with the derivatives~u(n) = dn~u/dsn

given by~u′ = ~u × ~B, ~u′′ = ~u′ × ~B + ~u × ~B′, ~u′′′ = ~u′′ × ~B + 2~u′ × ~B′ + ~u × ~B′′, etc.

Taylor coefficients

Computation of the coefficients in Eqs. 1 requires the knowledge of the magnetic field~B(s) and derivatives
dn ~B/dsn (n ≤ 5) in the orthogonal frame (O,X,Y,Z) (Fig. 1). On the other hand, the magnetic field in a
dipole can be obtained from a mid-plane model of the verticalfield component (the horizontal component is
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zero by symmetry), in cylindrical coordinates, of the formBz(r, θ) = Bz0 F(r, θ)R(r), with factorsF(r, θ)
andR(r) accounting for the longitudinal (e.g., field fall-offs at dipoles’ ends) and for the transverse (e.g.,
transverse non-linearities) variation of the dipole field.The way the mid-plane field and its derivatives

Bz(r, θ),
∂k+lBz

∂θk∂rl
(2)

at all (r, θ) are obtained from this model is detailed in Section 3.
Once this is done, a transformation from the cylindrical frame of the magnet into the Cartesian frame in

Fig. 1 is performed using

∂Bz

∂X
=

1

r

∂Bz

∂θ
,

∂Bz

∂Y
=

∂Bz

∂r
,

∂2Bz

∂X2
=

1

r2

∂2Bz

∂θ2
+

1

r

∂Bz

∂r
,

∂2Bz

∂X∂Y
=

1

r

∂2Bz

∂θ∂r
−

1

r2

∂Bz

∂θ
, etc.

Next, Z-derivatives and extrapolation off mid-plane are obtainedfrom Maxwell equations and Taylor
expansions, thus yielding the 3-D field description

~B(X,Y,Z),
∂k+l+m ~B

∂Xk∂Y l∂Zm

Eventually,~B(s) anddn ~B/dsn needed in Eqs. 1 are derived using the transformations

~B′(s) =
∑

i

∂ ~B(X, Y, Z)

∂Xi

ui(s) , ~B′′(s) =
∑

ij

∂2 ~B(X, Y, Z)

∂Xi∂Xj

ui(s)uj(s) +
∑

i

∂ ~B(X, Y, Z)

∂Xi

u′

i(s) etc.

wherein theXi,j,...( i,j,...=1−3) stand forX, Y or Z.

3 An N -uplet magnet procedure. FFAG magnet

This Section describes the way the vertical field componentBz(r, θ) and derivatives (Eq. 2) at all position in
the median plane of a magnet composed ofN neighboring dipoles with overlapping fields are calculated.

The method is derived from an existing procedure, “DIPOLE”, generally used for the design of large
acceptance spectrometers (see Appendix for details), and will yield two new procedures named respectively
“DIPOLES” and “FFAG”, that mostly differ by the radial dependence of the magnetic field and of the magnet
gap as described below. Principles of the “DIPOLE” method are recalled in Fig. 2 : a reference radiusRM
and a reference angleACN together with anglesω± serve for the positioning of theENTRANCE, EXIT and
possiblyLATERAL EFBs. These can be more or less curved (using theR1, R2, u1, u2 parameters) and given
a wedge angle (theθ parameters). The total sector angleAT of the field extent accounts for the fringe field
regions at both ends.

Now, let us write the magnetic field at all(r, θ) in the median plane (z = 0) due a single one (indexi) of
the dipoles of aN -uplet magnet under the form

Bzi(r, θ) = Bz0,i Fi(r, θ)Ri(r) (3)

whereinBz0,i is a reference field. The factorRi(r) models ther dependence of the field. In the case of the
“DIPOLES” procedureRi(r) is a regular expansion of the form

Ri(r) = b0i
+ b1i

(r − R0,i)/R0,i + b2i
(r − R0,i)

2/R2
0,i + ... (4)

proper to simulate for instance chicane dipoles [6], isochronous [8] or superconducting [9] FFAG magnets,
whereas in the case of the “FFAG“ procedure it writes

Ri(r) = (r/R0,i)
Ki (5)
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Figure 2: Description of the geometry of a single
dipole.
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Figure 3: Definition of a dipole triplet using
“DIPOLES” or “FFAG” procedure.

with R0,i being a reference radius andBz0,i the field atR0,i (see Fig. 3), andK being the field index. The
factorFi(r, θ) models the azimuthal dependence of the field. In the present work we will not address the
spiral-sector case and will restrict the role ofFi(r, θ) to simulating the field fall-offs (fringe fields) atEFBs,
and the field variation in the intermediate region between two neighboring dipoles, in the way described
hereafter.

3.1 Field fall-offs
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Figure 4:Typical fringe fieldFEFB(d/g).
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Figure 5: Ingredients in computation of fringe
field form factors.

The field fall-off (Fig. 4) at a particularEFB (e.g.,Entrance,
Exit EFB, see Fig. 2) is modeled by [10, p. 240]

FEFB(d) = 1 / (1 + exp[p(d)]) ,

p(d) = C0 + C1d/g + C2(d/g)2 + ... + C5(d/g)5

whereind is the distance to thatEFB and depends onr and
θ (Fig. 5), and the normalizing coefficientg is normally ho-
mogeneous to the gap and can be a function ofr, see below.
The numerical coefficientsC0 − C5 may be determined from
prior matching with realistic fringe field data.

An adequate positioning of theEFB makes possible to
satisfy (referring to the frame as defined in Fig. 4)

∫ 0

d=−∞

FEFB(u) du =

∫

∞

d=0
(1 −FEFB(u)) du

which entails that varyingg will not change the magnetic
length, it will just change the fall-off steepness.

A convenient consequence of this is thatg can be made
dependent ofr as for instance in the case of pole shaping
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FFAG magnets whose gap satisfies

g(r) = g0(R0/r)
κ (6)

with normally κ ≈ K. Each one of the three possibleEFBs (Figs. 2 and 5) has its own fringe field factor,
FEntrance, FExit, FLateral. The resulting form factor at particle position(r, θ) due to dipole (i) of the
N -uplet is thus taken to be

Fi(r, θ) = FEntrance(r, θ) ×FExit(r, θ) ×FLateral(r, θ) (7)

3.2 Full field at arbitrary position

Now, accounting forN neighboring dipoles in anN -uplet, the mid-plane field and field derivatives are ob-
tained by addition of the contributions of theN dipoles taken separately, namely

Bz(r, θ) =
∑

i=1,N

Bzi(r, θ) =
∑

i=1,N

Bz0,i Fi(r, θ)Ri(r) ,
∂k+l ~Bz(r, θ)

∂θk∂rl
=

∑

i=1,N

∂k+l ~Bzi(r, θ)

∂θk∂rl
(8)

with Ri(r) being defined by either Eq. 4 or Eq. 5. Note that, in doing so it is not meant that field superposition
does apply in reality, it is just meant to provide the possibility of obtaining a realistic field shape, that would
for instance closely match (using adequateC0 − C5 sets of coefficients) 3-D field simulations obtained from
magnet codes.
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Figure 6:Typical magnetic fieldBz(r0, θ, z) (Eq. 8) as observed at traversal of the 30 degree sector FFAG triplet for
r0 = 4.87 m (the 50 MeV closed orbit region) and for either,(a) : z = 0 or, (b) : z = 5 cm as obtained by off mid-
plane extrapolation. On both plots the solid curve represents the full field, as obtained by superposition of the separate
contributions of each one of the three dipoles represented by the dashed curves.

Eventually, the 6-D field model~B(r, θ, z) and derivatives∂k+l+m ~B/∂rk∂θl∂zm are deduced byz-
extrapolation accounting for Maxwell equations (see Sec. 2).

This procedure is illustrated in Fig. 6 in the case of an FFAG triplet with characteristics drawn from the
KEK 150 MeV proton machine [11], with field fall-offs as in Fig. 4 andg(r) given by Eq. 6.

3.3 Calculation of the mid-plane field derivatives

Two methods have been implemented to calculate the field derivatives in the median plane (Eq. 8), based on
either analytical expressions related to the magnet geometry or classical numerical interpolation.

The first method has the merit of insuring best symplecticityin principle and fastest tracking.
The interest of the second method is in its facilitating possible changes in the mid-plane magnetic field

model Bz(r, θ), for instance if simulations of shims, defects, or specialr, θ field dependence need to be
introduced.
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Analytical formulation The analytical formulations of the field derivatives in Eq. 8to be fed into the source
Fortran have been obtained usingMathematica. The starting ingredients are, on the one hand distances to the
EFBs (Fig. 5), d(r, θ) =

√

(x(r, θ) − x0(r, θ))2 + (y(r, θ) − y0(r, θ))2 to be computed for all three cases,
dEntrance, dExit, dLateral, on the other hand the expressions of the coordinates of particle positionM and
its projectionP on theEFB in terms of the magnet geometrical parameters

x(r, θ) = cos(ACN − θ)− R0
y(r, θ) = r sin(ACN − θ)

xP (r, θ) = sin(u) (y(r, θ) − yb)/2 + xb sin2(u) + x(r, θ) cos2(u)
yP (r, θ) = sin(u) (x(r, θ) − xb)/2 + yb cos2(u) + y(r, θ) sin2(u)

with xb, yb, u parameters drawn from the magnet geometry (sector angle, wedge angle, face curvatures, etc.).

These ingredients allow calculating the derivatives∂u+vx(r,θ)
∂θu∂rv , ∂u+vy(r,θ)

∂θu∂rv , ∂u+vx0(r,θ)
∂θu∂rv , ∂u+vy0(r,θ)

∂θu∂rv . which

in turn which intervene the derivatives of the compound functions ∂u+vF (r,θ)
∂θu∂rv , ∂u+vp(r,θ)

∂θu∂rv , ∂u+vd(r,θ)
∂θu∂rv .

B

interpolation
grid

trajectory

m
0

m 1
BB

1 3

2

particleδs

Figure 7:Interpolation method.m0 andm1 are the pro-
jections in the median plane of particle positionsM0 and
M1 (see Fig. 1) separated by one integration step∆s.

Numerical interpolation The expressionBz(r, θ) in
Eq. 8 is computed at then × n nodes (n = 3 or 5 in
practice) of a “flying” interpolation grid in the median
plane centered on the projectionm0 of the actual par-
ticle positionM0 as schemed in Fig. 7. A polynomial
interpolation is involved, of the form
Bz(r, θ) = A00+A10θ+A01r+A20θ

2+A11θr+A02r
2

that yields the requested derivatives, usingAkl =
1

k!l!
∂k+lB
∂θk∂rl . Note that, the source code contains the ex-

plicit analytical expressions of the coefficientsAkl so-
lutions of the normal equations, so that the operation is
not so CPU time consuming.
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Figure 8: Field derivatives at traversal of the FFAG sector triplet atconstant radius, after Eq. 8.(a) : ∂Bz(r, θ)/∂θ,
(b) : ∂2Bz(r, θ)/∂θ2.

Typical shapes of the derivatives so obtained are displayedin Fig. 8. Note that, their rapid variation with
θ indicate that accordingly small integrations step size (∆s in Eq. 1) should be employed. In addition, when
using the numerical interpolation method (Fig. 7), a small enough mesh size should be used1.

1The same remark holds as to using dense mesh when tracking through magnetic field maps, as pointed out in Ref. [14].
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4 Acceleration in a 150 MeV proton FFAG ring

The goal here is to show that these simulations provide the right results. For that purpose the geometrical
model is submitted to various numerical experiments,
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Figure 9:150 MeV DFD triplet.
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Figure 10: Field along various closed orbits in a cell of the
150 MeV proton FFAG addressed in Section 4.

A 12-cell machine is considered, representative of the KEK 150 MeV FFAG [11, 12]. The cell is a
30 degree sector DFD (Fig. 9). Its design parameters are as follows : reference radiusR0 = 5.4 m and
K = 7.6 (in Eq. 5), gap shape determined byκ = 3 (in Eq. 6), field fall-offs as in Fig. 4. This yields field
along closed orbits as schemed in Fig. 10, no too far from computed 3-D field maps representative of the
actual magnets, this is discussed in App. B. As a consequencethe working tunes are close to those considered
in Ref. [14], which one can refer to for detailed comparisonswith 3-D field map tracking results.

4.1 First order data

Fig. 11 shows the closed orbits in a cell at various energies,Fig. 12 gives sample beam envelopes forǫr,z/π =
200 mm.mrad. Betatron functions can be drawn from this type of output using paraxial rays, sample values at
the center of the drift are displayed in Fig. 13.

Total tunes (12 cell ring) are given in Fig. 14 ; the way their integer part has been obtained is described
below. It can be observed that the horizontal tune is constant as can be expected from the zero-chromaticity
conditions resulting from therK dependence of the magnetic field ; on the other hand the vertical chromaticity
is not zero, which is attributed to the field fall-offs,i.e., the azimuthal variation of the field in our geometrical
model is not quite independent of radius - in contrast, a sharp edge field model yields zero chromaticities and
constant valuesνr = 3.773, νz = 1.574, this is discussed in App. C.

The momentum compactionα = dL/L / dp/p is computed from∆p induced difference in closed orbit
lengths, sample values are given in Tab. 1 and fairly satisfythe theoretical relationα ≈ 1/(1 + K) given
K = 7.6.

All these results demonstrate very good consistency on the one hand with theoretical data, and on the
other hand with published material [11, 12, 14].

Note : The integer part of the tunes in Fig. 14 has been calculated as follows. We noteβ(s) = β + δβ(s)
with β =

∫

cell β(s)ds /Lcell the average beta value over a cell so that
∫

cell δβ(s)ds = 0, andLcell = L/12.
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Figure 11: Closed orbits in the
DFD cell at various energies.
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Figure 12: Horizontal(a) and vertical(b) beam envelopes in a cell for re-
spectivelyǫr/π = 200 mm.mrad andǫz/π = 200 mm.mrad.
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Figure 13:Betatron function values at center of drift.
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Figure 15: Horizontal phase space, the limits
of stable motion (accuracy better than∆r =
±0.1 mm) for 5 energies.
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Figure 16:Horizontal(a) and vertical phase space(b), for a par-
ticle launched on 50 MeV horizontal closed orbit with non-zero
z-motion.
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We assume that the beta functions are smooth enough that1/β(s) ≈ (1 − δβ(s)/β)/β. That yields
(

1
β

)

≈

1
β
− 1

Lcellβ
2

∫

cell δβ(s)ds = 1
β

so that cell tunes satisfyνr,zcell
= 1

2π

∫

cell
ds

β(s) = Lcell

2π

(

1
β

)

= Lcell

2πβ
. On the

other hand, numerical results (or grossly, the square root of the mean value of the envelopes in Fig. 12) show
thatLcell/βr ≈ 2.5 andLcell/βz ≈ 1/2, so that both cell tunes have zero integer part, and full tunes are just
12 times the fractional cell-tune values as delivered for instance by multiturn Fourier analysis.

4.2 Large amplitude transverse motion

Fig. 15 shows horizontal phase space trajectories at the limit of stable motion in the ring, as observed at center
of a drift, together with the related fractional tunes whosevalues differ from first order ones (Fig. 14) due to
amplitude detuning induced by the non-linear field ; the triangle shape of phase space motion is related to the
presence of strong sextupole component inB(r) (Eq. 5) and the proximity to third integer tune. Fig. 16 shows
phase space motion at 50 MeV, observed at center of drift ; thehorizontal motion clearly shows non-linearr−z
coupling induced horizontal motion, given that the particle was launched on closed orbit (r0 = rc.o., 50 MeV ,
r′0 = 0). The horizontal symplecticity is very good, up to separatrix regions (Fig. 15) ; it is to be determined
whether the vertical motion spreading in Fig. 16-right is effectively free of non-symplecticity effects, although
a good indication is that the motion stays confined within thefinite limits actually displayed in bothr andz
phase-spaces.

Another feature revealed in Fig. 15 is the large geometricalacceptance characteristic of FFAG optics : the
surface of the 10 MeV stability limit portrait isǫx = 1 cm about, 2.5 times the nominal emittance practiced at
the KEK 150 MeV FFAG [11].

4.3 Synchrotron motion

Peak RF voltagêV = 19 kV is considered here, a value somewhat larger than that usedat KEK [12], for the
sake of faster tracking.

Table 1: Parameters of longitudinal motion. (num. : numerical values, from tracking ; th. : theoretical values from
formulas in the text).

E orbit length frev α νs bucket height
(MeV) L (m) (MHz) ±∆p/p (%)

num. num. num.(a) num. / th. num. & th.(b)

10 28.6333 1.516522 0.11605 0.011325 / 0.011451 2.654
22 29.9794 2.124539 0.11611 0.007593 / 0.007649 1.824
43 31.1885 2.808931 0.11616 0.005339 / 0.005367 1.344
125 33.2724 4.238662 0.11619 0.002909 / 0.002917 0.881

(a) The theoretical value isα = 1/(1 + K) = 0.11628.
(b) The agreement is better than10−4, relative.

Stationary bucket dynamics is investigated first, as illustrated in Fig. 17.
Complete tracking results are given in Tab. 1, they are in excellent agreement with theoretical data, also

given in Tab. 1, as drawn from :
- phase slippage factorη = 1

γ2 − α = 1
γ2 − 1

1+K and takingK = 7.6,

- synchrotron frequency :fs = Ωs/2π = c
L

(

hη cos φsqV̂
2πEs

)1/2
, givenh = 1, φs = 0, qV̂ = 19 keV ; Es is the

synchronous energy,L andTrev are obtained by tracking (Tab. 1),
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Figure 17:Stationary buckets in the(a) 10 MeV and(b) 125 MeV regions.
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Figure 18: Acceleration cycle.(a) : two motions close synchronous particle.(b) and (c) : respectively, horizontal
motion over the full cycle, 20000 turns, from 12 to 150 MeV, and the corresponding vertical motion.

- synchrotron tune :νs = fs × Trev,

- bucket height±∆p
p = ± 1

βs

(

2qV̂
πhηEs

)1/2
.

A full acceleration cycle, from 12 to 150 MeV is experimented next.
The RF is increasedlinearly with turn number (this RF program is purely arbitrary) from 1.62 to 4.63 MHz,

synchronous phaseφs = 20 degrees which means about2 104 turns to complete the cycle.
Sample tracking results are displayed in Fig. 18 and show excellent behavior. A∆s = 1 mm integration

step size has been taken, sensibly smaller than the oscillation frequency of the second order derivatives (Fig. 8)
so to insure enough sufficient precision in computation of Eqs. 1.

It can be observed that the vertical motion undergoes regular damping,(Bρ12 MeV/Bρ150 MeV)1/2 ≈

0.52 from start to end of the cycle ; the radial motion does not satisfy that, however it is of extremely low
amplitude in the vicinity of the closed orbit and may be subject to coupling effects due to thez motion, as
already pointed out concerning Fig. 16.

5 Comments

Using the analytical derivatives method allows fast tracking, with high accuracy, and makes the code a pow-
erful tool for long term tracking, DA tracking, transmission efficiency calculations (a strong concern in cap-
ture/acceleration of unstable particle beams), etc. Numerical interpolation of the field from mid-plane field
model instead (Figs. 6, 10), is also efficient, it has the merit of allowing the field model to be changed easily
(it is just a matter of changing the mid-plane field model, Eq.3) and yields very good accuracy as well, but
computing speed lower by a factor of slightly more than 2.
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Accounting for the built-in fitting procedure, these developments make Zgoubi an efficient tool for FFAG
optics and machine design studies. The code has at present been used with success for design studies, DA
tracking and various validations concerning linear non-scaling optics (acceleration of muons) [20], non-linear
non-scaling FFAG optics (protontherapy application) [21]and an isochronous cell (acceleration of muons,
electron-model of non-scaling FFAG) [22].

It is planned to compare the magnetic fields (Fig. 10) as obtained with the method described in this paper,
and the ensuing tracking results, with 3-D magnet calculations and tracking in field maps, as addressed in
App. B. Works have already been tackled on that topic and willbe pursued [14].

CPU time - Computing speed tests were performed upon12 to 150 MeV acceleration in the 12 cell
FFAG ring (conditions as in Fig. 18), using two different processors, Pentium III 1 GHz or Xeon 2.8 GHz,
under Linux system. Derivatives are computed with either the analytical or the numerical method, up to either
second or fourth order as indicated in the Table below, whereas an integration step size∆s = 0.5 cm is
considered so to insure convergence of the numerical integration in any of these cases.

CPU time (seconds per turn per particle) :

Pentium III 1 GHz Xeon 2.8 GHz
Analyt. Num. Analyt. Num.

2nd order 0.17 s 0.40 s 0.10 s 0.25 s
4th order 0.44 s 1.00 s 0.17 s 0.64 s

Such computing speed means that one can envisage overnight runs on computer network systems, aiming at
such goals as long-term DA tracking, 6-D multi-turn beam transmission, resonance crossing studies.
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Appendix

A The “DIPOLE” procedure

The Figure shows the iso-field
regions in the median plane
of the large acceptance Elbeck
spectrometer SPES3 once oper-
ated at SATURNE for rare decay
experiments (typically,3.4 T.m
rigidity) [15, 16]. That field
model had been obtained us-
ing the “DIPOLE” procedure
whereas magnet edges and cor-
responding field fall-offs where
optimized using POISSON and
matched for “DIPOLE” purpose
as described in Section 3.1. 0.0 0.5 1. 1.5 2. 2.5 3.

0.5

1.

1.5

2.

2.5

3.

Postprocessor/Zgoubi                                                            

  SPES3                           
spectrometer                           

*   SIMULATION  OF  KAON  IN-FLIGHT  DECAY  IN  SPES3 *                          

   Y  (m)     vs.    X  (m)                                         

 0.4                   1.2             
GeV/c                  GeV/c                  

The same method has been used to design several other spectrometers as SPES2 [17, 16], SPEG at
GANIL [18], the 1.8 GeV Kaon QD spectrometer at GSI [19].

B 3-D field map versus geometrical model

In the main text, a 3-dipole representation of the 150 MeV FFAG sector magnet is involved Fig. 9. However,
a characteristic feature of the actual magnet is in its non-zero fringe field over the drift (Fig. 19-a), about
700 Gauss independent of the radius. This feature can be reproduced using 5 dipoles with the “FFAG”
procedure as schemed in Fig. 19-b,c instead of just 3 as in Fig. 9.

Nevertheless, for the sake of simplicity in the modeling andin numerical demonstration experiments,
and in order to stay as close as possible to the theoretical hypothesis, namelyRi(r) = (r/R0,i)

Ki and
g(r) = g0(R0/r)

κ, the the 3-dipole model is used in the present work.
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Figure 19:Comparison of magnetic field along closed orbits in the case of, (a) : TOSCA 3-D map representative of the
KEK 150 MeV FFAG [13, 14] and,(b) : a “3+2”-dipole geometrical model. In(c) is represented the geometry of the
“3+2”-dipole design, involving two regions (hatched) of about700 G field over the two end drifts.
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C Sharp edge field model
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Figure 20: Field on closed orbits, hard edge
model.

The geometrical model also allows hard edge fall-offs
(Fig. 20). Compared top the soft edge model (field in
Fig. 10, closed orbits in Fig. 11) the closed orbit radial posi-
tions are but slightly changed, at the millimeter scale.
Tunes have constant valuesνr = 3.773, νz = 1.574 over
the all energy span as expected from the theory [23], to be
compared to soft-edge values in Fig. 14. The horizontal tune
is practically independent of the model either hard- or soft-
edge, as expected since fringe fields have no effect to first
order on horizontal motion. Such is not the case for the ver-
tical motion that shows non-negligible first order effect of
fringe fields (∆νz > 0.17).
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