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Abstract

A geometrical method for 3-D modeling of the magnetic field@aling and non-scaling FFAG mag-
nets has been installed in the ray-tracing code Zgoubi. Téthaod in particular allows a good simulation
of field fall-offs and of merging fields in configurations ofigikboring large magnets, while using realistic
models of magnetic fields. That yields an efficient tool fdtit® design and optimizations, and for 6-D

tracking studies. It is applied for illustration to the silation of an acceleration cycle in a 150 MeV radial
sector proton FFAG.
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1 Introduction

Fixed field alternating gradient (FFAG) accelerators suées subject to a regain of interest [1] in the context
of muon acceleration for the neutrino factory [2], with asoaricome investigation of possible application in
various domains as hadrontherapy and other high powereaatais [3].

Stepwise ray-tracing is considered (from the very begigiif]) a good technique to track particles in
FFAG's, allowing to draw machine parameters from singlemaiti-turn tracking. The developments pre-
sented here are based on such methods using the ray-tracdeg@goubi [5].

A strong concern that motivates these software develoigirt simulating in a correct manner the field
in the FFAG magnets. This has various aims, as : offeringstfunlfast optimization of magnet geometry and
fields as constrained by accelerator design parameteridjprg correct simulation of multiturn motion in
FFAG, with such outcomes as the right computation of lagiaeameters as tunes, tune variations, time of
flight, etc. ; yielding precision 6-D multiturn tracking anabtion stability limits.

In addition, the present developments can be applied towamther magnetic devices involved in ma-
nipulation of the large emittance muon beam in the neut@etoly, as for instance compression chicanes [6],
muon beam cooling rings [7], with the potential of magnetifigarameters adjustments thanks to the built-in
Zgoubi fitting procedure, whereas optimizations based @nrBagnet code calculations strongly lack flexi-
bility in that matter.

In the following, Section 2 first recalls the principles oétAgoubi method relevant to the simulation of
large acceptance dipoles, Section 3 describes the methaihialating dipole/N-uplets, possibly featuring
strong radial non-linearity, and the particular case of GFAagnets, with illustration by a radial-sector FFAG
triplet, Section (4) shows a simulation of the KEK 150 MeVtororing that is based on an FFAG triplet cell.

2 The ray-tracing method, ingredients

We first recall the ingredients of the Zgoubi method that i
tervene in the implementation of dipalé-uplet simulations.

Position and velocity

The integration method is based on stepwise resolution
Lorentz equation by a technique of Taylor series. The woi
ing frame is shown in Fig. 1. Reference

Position and velocity of a particle subject tedv/dt =
qu X b are tracked using truncated Taylor expansions in the Figure 1:Zgoubi frame and coordinates.
integration step\s

6

R(My) ~ R(Mp) + @(Mo) As + @' (Mo) B35 + ... + @"" (M) 25
a(My) =~ @(Mo) + @' (Mo) As + @' (Mo) B3> + ... + @ (Mp) 33 (1)

whereini = 7/v, As = v At, @' = dii/ds, mi = mvil = q Bp i, and with the derivativeg™ = d"ii/ds™
givenbyw =d x B, @' =u' x B+ux B, @"" =4" x B+2u x B'+ 11 x B”, etc.

Taylor coefficients

Computation of the coefficients in Egs. 1 requires the kndgéeof the magnetic fielrﬁ(s) and derivatives
d"B/ds™ (n < 5)in the orthogonal frame (O,X,Y,Z) (Fig. 1). On the other hatit®c magnetic field in a
dipole can be obtained from a mid-plane model of the verfiedd component (the horizontal component is
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zero by symmetry), in cylindrical coordinates, of the foBy(r, ) = B.o F(r,0) R(r), with factorsF(r, 0)
andR(r) accounting for the longitudinal (e.g., field fall-offs apdies’ ends) and for the transverse (e.g.,
transverse non-linearities) variation of the dipole fiflldle way the mid-plane field and its derivatives

ak:—l—lBZ
00kl
at all (r, @) are obtained from this model is detailed in Section 3.

Once this is done, a transformation from the cylindricairfeaof the magnet into the Cartesian frame in
Fig. 1 is performed using

B.(r,0), )

0B, 10B. 9B, 9B, 9°B. 10°B. 10B, &B. 19°B. 109B,

= == - == - tc.
9X r 90’ oY  or OX2 2 002 ‘v or axov rodor 12 00 °C

Next, Z-derivatives and extrapolation off mid-plane are obtaifredn Maxwell equations and Taylor
expansions, thus yielding the 3-D field description

ak:-f—l-‘rmg
oOXkoY'lozm

—

B(X,Y, Z),

Eventually,B3(s) andd™ B /ds" needed in Eqgs. 1 are derived using the transformations

. OB(X,Y, Z) . 9?B(X,Y, Z) OB(X,Y,Z)
Bs)=S T2 sy, Bls)=Y ST i(s) uy(s) TR D2 is) ete
DR e o) + 3 2D

wherein theX; ; (;;..—1—3) stand forX, Y or Z.

3 An N-uplet magnet procedure. FFAG magnet

This Section describes the way the vertical field compoi&fit, ) and derivatives (Eq. 2) at all position in
the median plane of a magnet composedafieighboring dipoles with overlapping fields are calculated

The method is derived from an existing procedur®, POLE", generally used for the design of large
acceptance spectrometers (see Appendix for details), dhgield two new procedures named respectively
“DI POLES” and “FFAG’, that mostly differ by the radial dependence of the magniégid and of the magnet
gap as described below. Principles of tli# POLE” method are recalled in Fig. 2 : a reference raditid
and a reference angldCN together with angles® serve for the positioning of thENTRANCE, EXIT and
possiblyLATERAL EFBs. These can be more or less curved (usingRheRs, u1, us parameters) and given
a wedge angle (the parameters). The total sector anglé’ of the field extent accounts for the fringe field
regions at both ends.

Now, let us write the magnetic field at &, 9) in the median planez(= 0) due a single one (inde} of
the dipoles of av-uplet magnet under the form

B.i(r,0) = B.g,; Fi(r,0) Ri(r) )

whereinB. ; is a reference field. The fact@®;(r) models the- dependence of the field. In the case of the
“DI POLES” procedureR;(r) is a regular expansion of the form

RZ(T) = boi + bli(’l" - RO,i)/RO,i + b2¢ (’I“ - RO,i)Q/Rai + ... (4)

proper to simulate for instance chicane dipoles [6], isoohus [8] or superconducting [9] FFAG magnets,
whereas in the case of thEFAG' procedure it writes

RZ(T) = (’I“/Rovi)Ki (5)
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Figure 2: Description of the geometry of a single
dipole.

Figure

3: Definition of a dipole triplet using

“DI POLES” or “FFAG' procedure.

with R ; being a reference radius artl ; the field atR,; (see Fig. 3), and( being the field index. The
factor F;(r,0) models the azimuthal dependence of the field. In the preserit we will not address the
spiral-sector case and will restrict the role/gf(r, 6) to simulating the field fall-offs (fringe fields) &tFBs,

and the field variation in the intermediate region betweeo h&ighboring dipoles, in the way described

hereafter.

3.1 Field fall-offs

The field fall-off (Fig. 4) at a particulafFB (e.g.,Entrance,
Exit EFB, see Fig. 2) is modeled by [10, p. 240]

1/ (1 +exp[p(d)]),
Co+ Cid/g + Ca(d/g)* + ... +C5(d/g)°

Frrp(d)
p(d)

whereind is the distance to thafFB and depends on and
0 (Fig. 5), and the normalizing coefficiegtis normally ho-
mogeneous to the gap and can be a function, aee below.
The numerical coefficientsy — C5 may be determined from
prior matching with realistic fringe field data.

An adequate positioning of thBF'B makes possible to?r
satisfy (referring to the frame as defined in Fig. 4)

/

which entails that varying; will not change the magnetic
length, it will just change the fall-off steepness.

0 00

Frrp(u) du :/ (1 — Ferp(u)) du

d=0

=—00

F_EFB  vs. d/ g

/

0.0

-1 -0.5 0 0.5 1

Figure 4:Typical fringe field Fgrp(d/g).

Entrance

EFB Lateral

article
mjectory

A convenient consequence of this is tlyatan be made Figure 5: Ingredients in computation of fringe
dependent of- as for instance in the case of pole shapirfigld form factors.
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FFAG magnets whose gap satisfies

g(r) = go(Ro/7)" (6)

with normally k ~ K. Each one of the three possibl&FBs (Figs. 2 and 5) has its own fringe field factor,
FEntrance FExit FLaterat The resulting form factor at particle positign, §) due to dipole (i) of the
N-uplet is thus taken to be

Fi(r,0) = Fentrancd™ 9) < Fexit(r, ) x FLateralr ) (7

3.2 Full field at arbitrary position

Now, accounting forV neighboring dipoles in afv-uplet, the mid-plane field and field derivatives are ob-
tained by addition of the contributions of tié dipoles taken separately, namely

OB, (r,0) OB, (r,0)
B.(r,0) = i:z1:N B.i(r,0) = i:zl:N B, Fi(r,0) Ri(r) T i:zl:N T (8)

with R;(r) being defined by either Eq. 4 or Eqg. 5. Note that, in doing soriot meant that field superposition
does apply in reality, it is just meant to provide the pogisybof obtaining a realistic field shape, that would
for instance closely match (using adequéte— Cj5 sets of coefficients) 3-D field simulations obtained from
magnet codes.

1. Bz (T Vs. theta (rad) 1. Bz (T Vs. theta (rad)
Z=0 (a) Z=5cm (b)

0.8 0.8

0.6 / BF "\ o 6 / BF

0.4 / \ 0.4 / \

0.2 0.2

0.0 0.0

-.2 / \ -.2

_4 \ BD/ \ BD/ T \ BD/ \ BD/

o\ \_/ e\ \

-8 - -Ti 0.0 o 1 0.2 - 8 - -Ti 0.0 o i 0.2

Figure 6: Typical magnetic fieldB. (ro, 8, z) (Eq. 8) as observed at traversal of the 30 degree sector Fglét for

ro = 4.87 m (the 50 MeV closed orbit region) and for eithéx) : z = 0 or, (b) : 2 = 5 cm as obtained by off mid-
plane extrapolation. On both plots the solid curve reprissiéye full field, as obtained by superposition of the segarat
contributions of each one of the three dipoles representeldebdashed curves.

Eventually, the 6-D field modeB(r, 6, z) and derivativeso*+™ B /ork96l0-™ are deduced by:-
extrapolation accounting for Maxwell equations (see Sgc. 2

This procedure is illustrated in Fig. 6 in the case of an FFAQdt with characteristics drawn from the
KEK 150 MeV proton machine [11], with field fall-offs as in Fig andg(r) given by Eq. 6.

3.3 Calculation of the mid-plane field derivatives

Two methods have been implemented to calculate the fieldadeés in the median plane (Eqg. 8), based on
either analytical expressions related to the magnet gegroetlassical numerical interpolation.

The first method has the merit of insuring best symplecticityrinciple and fastest tracking.

The interest of the second method is in its facilitating gmeschanges in the mid-plane magnetic field
model B, (r, 6), for instance if simulations of shims, defects, or speci@ field dependence need to be
introduced.
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Analytical formulation  The analytical formulations of the field derivatives in Eqo&e fed into the source
Fortran have been obtained usiMigthematica. The starting ingredients are, on the one hand distancégto t
EFBs (Fig. 5),d(r,0) = \/(x(r,0) — 2o(r,0))% + (y(r,0) — yo(r,0))? to be computed for all three cases,
dentrance 2Exit: 9 aterap ©N the other hand the expressions of the coordinates d€legpbsition M and

its projectionP on the EFB in terms of the magnet geometrical parameters

x(r,0) = cos(ACN —6) — Ry

y(r,0) = rsin(ACN —0)
xp(r,0) = s@n(u) (y(r,0) —yp)/2 + = sin22(u) + x(r,0) cpsz(u)
yp(r,0) = sin(u) (z(r.0) — 23)/2 + yy cos2(u) + y(r,6) sin?(u)

with x;, vy, u parameters drawn from the magnet geometry (sector angtiyensmngle, face curvatures, etc.).

. . . . . Qutv u+v u+v u+v .
These ingredients allow calculating the derivati ;g(rﬁ’,e) 2 aeu%(ﬁe) .2 8938052’9) 2 w() \which
. . . . . . vtV F(r,0) 9%+vp(r,0) 9vtvd(r,0)
in turn which intervene the derivatives of the compound ioms ~—755~ , ~5gig=~ > ~agug

Numerical interpolation  The expressioB, (r,0) in
Eq. 8 is computed at the x n nodes ¢ = 3 or5 in
practice) of a “flying” interpolation grid in the median
plane centered on the projectiom, of the actual par-
ticle positionM, as schemed in Fig. 7. A polynomial ,
interpolation is involved, of the form

B.(r,0) = Apg+A100+ Ao17+ A200%+ A1107-+ Agor?
that yields the requested derivatives, usidg, =
ﬁ %. Note that, the source code contains the elxigure 7:Interpolation methodny andm, are the pro-
plicit analytical expressions of the coefficiemts; so- jections in the median plane of particle positions and
lutions of the normal equations, so that the operation/is (see Fig. 1) separated by one integration siep

not so CPU time consuming.

interpolation
SF'CP ds particle
trajectory

6E- 4 dBz/dt heta (T) VS. theta (rad) s d2Bz/ dt heta2 (T) VsS. theta (rad)
S R | (b)

" N e .t iw

26 2 S LU L N

L\ JA ] S 1 gL

- 2E- \\ // \\ // :2‘2:12 N \HI \\ I] A

) S S R S i S [ S S 8 A U 1 S

Figure 8: Field derivatives at traversal of the FFAG sector tripletahstant radius, after Eq. ) : 9B, (r,0)/00,
(b): 0?B.(r,0)/002.

Typical shapes of the derivatives so obtained are display&ih. 8. Note that, their rapid variation with
0 indicate that accordingly small integrations step sixe {n Eqg. 1) should be employed. In addition, when
using the numerical interpolation method (Fig. 7), a smadiugh mesh size should be used

1The same remark holds as to using dense mesh when trackinmthmagnetic field maps, as pointed out in Ref. [14].
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4 Acceleration in a 150 MeV proton FFAG ring

The goal here is to show that these simulations provide tii@ riesults. For that purpose the geometrical
model is submitted to various numerical experiments,

Bz (T) VS. theta (rad)

L.5p-7=0 //rzs I\/EV\\
. Kg\
0.5 2215 N
10
D D
0.0
F
Ty Y
-1.
-2 -1 0.0 0.1 0.2
Figure 10: Field along various closed orbits in a cell of the
Figure 9:150 MeV DFD triplet. 150 MeV proton FFAG addressed in Section 4.

A 12-cell machine is considered, representative of the KBR MeV FFAG [11, 12]. The cell is a
30 degree sector DFD (Fig. 9). Its design parameters arellag/$o: reference radiugy = 5.4 m and
K = 7.6 (in Eq. 5), gap shape determined by= 3 (in Eq. 6), field fall-offs as in Fig. 4. This yields field
along closed orbits as schemed in Fig. 10, no too far from cenp3-D field maps representative of the
actual magnets, this is discussed in App. B. As a consequbaaeorking tunes are close to those considered
in Ref. [14], which one can refer to for detailed comparisaiith 3-D field map tracking results.

4.1 First order data

Fig. 11 shows the closed orbits in a cell at various energigs,12 gives sample beam envelopeseor/m =
200 mm.mrad. Betatron functions can be drawn from this type ¢hatuusing paraxial rays, sample values at
the center of the drift are displayed in Fig. 13.

Total tunes (12 cell ring) are given in Fig. 14 ; the way thateger part has been obtained is described
below. It can be observed that the horizontal tune is cohstagan be expected from the zero-chromaticity
conditions resulting from the® dependence of the magnetic field ; on the other hand the akcticomaticity
is not zero, which is attributed to the field fall-ofisg., the azimuthal variation of the field in our geometrical
model is not quite independent of radius - in contrast, apsbdge field model yields zero chromaticities and
constant values, = 3.773, v, = 1.574, this is discussed in App. C.

The momentum compaction = dL/L / dp/p is computed fromAp induced difference in closed orbit
lengths, sample values are given in Tab. 1 and fairly sattefytheoretical relatiom ~ 1/(1 + K) given
K =17.6.

All these results demonstrate very good consistency on tiieehand with theoretical data, and on the
other hand with published material [11, 12, 14].

Note : Theinteger part of the tunes in Fig. 14 has been calculated as follows. We néte) = 5 + 63(s)
with 3 = [, B(s)ds / L. the average beta value over a cell so thiat 63(s)ds = 0, and Loy = L£/12.
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r (m VS. theta (rad r (m VS. s (m 0.04 z (m VS. s (m

0.4 100V 50 MEV orbi t : (a) ’ (b)
. T % vy - : 0.03
0. 2fm e

t 43 MeV ]
0.0

22 MV R
-2 12 NEV
TN

.4
-6 B 0 T 2 48075 5 ; 15 7 75 o) 5 - 15 3 5

Figure 11: Closed orbits in the Figure 12:Horizontal(a) and vertical(b) beam envelopes in a cell for re-

DFD cell at various energies. spectivelye, /7 = 200 mm.mrad and, /7 = 200 mm.mrad.
4. Tunes _vs. _Energy (MeV)
Br B, 35 '
(()AITB)" \ 4.5 !
0. 82 By (m 3
0. 8 4.4 2.5
0.78
Bz /// 2.
0.7 R 4.3 v
1.5 z
-
0.72 040 = (()MW) T 10" 4 2 L 204080 #0100 120
Figure 13:Betatron function values at center of drift. Figure 14:Machine tunes.

r’ (rad) VS. r (m

=
[ERY
()
=
¢

Vo1 2NV
A/\ 22

! (rgd) Vs r (m z' (rad)

AN

.0 X=07"326

\/ 0. 3250 0.0
. l n_ 3243 0
. 00
.1 . 00 By,
-.0 = itz
472 4.4 4.6 4.8 5 5.2 % Lo '*

o o e
"4.862 4.863 4. 864 4. 865 4.806 4.867 4.868 -.03 -.02 -.01 .03

Figure 15: Horizontal phase space, the limits  Figure 16:Horizontal(a) and vertical phase spa¢s), for a par-

of stable motion (accuracy better than = ticle launched on 50 MeV horizontal closed orbit with nomeze
+0.1 mm) for 5 energies. z-motion.
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We assume that the beta functions are smooth enough théat) ~ (1 — 63(s)/3)/3. That yieIds(%) ~

1 1 1 i 1 d Leew (1) — Lee
5= mfcezz 6B(s)ds = 5 so that cell tunes satisty,. ., = oz Jecu 3Gy = 55 (B) = 525 Onthe

other hand, numerical results (or grossly, the square rfdtbieomean value of the envelopes in Fig. 12) show
that L..;;/ 0, =~ 2.5 andL..;;/ 5. ~ 1/2, so that both cell tunes have zero integer part, and fulldame just
12 times the fractional cell-tune values as delivered fetance by multiturn Fourier analysis.

4.2 Large amplitude transverse motion

Fig. 15 shows horizontal phase space trajectories at thiedfrstable motion in the ring, as observed at center
of a drift, together with the related fractional tunes wheakies differ from first order ones (Fig. 14) due to
amplitude detuning induced by the non-linear field ; thengla shape of phase space motion is related to the
presence of strong sextupole componerBim) (Eq. 5) and the proximity to third integer tune. Fig. 16 shows
phase space motion at 50 MeV, observed at center of drifthdhiezontal motion clearly shows non-linear =
coupling induced horizontal motion, given that the pagtialas launched on closed orbit) (= rc.o., 50 Mev,
r, = 0). The horizontal symplecticity is very good, up to sepaxategions (Fig. 15) ; it is to be determined
whether the vertical motion spreading in Fig. 16-right feetively free of non-symplecticity effects, although
a good indication is that the motion stays confined withinfthiée limits actually displayed in both and z
phase-spaces.

Another feature revealed in Fig. 15 is the large geometdcagptance characteristic of FFAG optics : the
surface of the 10 MeV stability limit portrait is, = 1 cm about, 2.5 times the nominal emittance practiced at
the KEK 150 MeV FFAG [11].

4.3 Synchrotron motion

Peak RF voltagd” = 19 kV is considered here, a value somewhat larger than thatats€BK [12], for the
sake of faster tracking.

Table 1: Parameters of longitudinal motion. (num. : numerical vaJueom tracking ; th. : theoretical values from
formulas in the text).

E orbit length frev a Vs bucket height
(MeV) L (m) (MHz) +Ap/p (%)
num. num. num® num. / th. num. & th®)

10 28.6333 1516522 0.11605 0.011325/0.011451 2.654
22 29.9794 2.124539 0.11611 0.007593/0.007649 1.824
43 31.1885 2.808931 0.11616 0.005339/0.005367 1.344
125 33.2724 4.238662 0.11619 0.002909/0.002917 0.881

(a) The theoretical valueis = 1/(1 + K) = 0.11628.
(b) The agreement is better thad—, relative.

Stationary bucket dynamics is investigated first, as illustrated in Fig. 17.
Complete tracking results are given in Tab. 1, they are irekat agreement with theoretical data, also
given in Tab. 1, as drawn from :
1

- phase slippage facter= 712 —a= VLQ — o and takingk = 7.6,

N1/2 . .
- synchrotron frequency f, = Q,/2r = £ C@#) ,givenh =1, ¢, = 0, ¢V = 19 keV ; E, is the

synchronous energy, andT,., are obtained by tracking (Tab. 1),
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Kin. energy (MeV) vs. Phase (rad) Kin. energy (MeV) vs. Phase (rad)
10 vev T - (a) 1S eV (b)
10 - o 126./5 e
e 126, v S S
10. o 4 ™ ,
/ K S 125164 / \ :
10.17 { f 125f \ / 1
‘ 124.15 \ \ , -
9.8 o
124, : R
9.6 123.15
3 2 1 I 1235 2 1 1 3

Figure 17:Stationary buckets in th@) 10 MeV and(b) 125 MeV regions.

Kin. energy (MV) VS. pass # r’ (rad) VS. r (m
(a A
e i
{/’(/ 6E-
I,Q/ AE-
o
P(/ 2E-
A
. 0.
X}% e
/
A -4E-
j/‘/ i
ST - 6E- 4
-+
100266306~ 406500~606"706-806-066"T00c "8 54 AT AT AT S 5.1

Figure 18: Acceleration cycle.(a) : two motions close synchronous particlgh) and(c) : respectively, horizontal
motion over the full cycle, 20000 turns, from 12 to 150 MeMldhe corresponding vertical motion.

- synchrotron tune vy = f5 X Tyeo,

~ N 1/2
oqht e — 41 (27
- bucket height-=F = + - <7rh(7J7Es) :

A full acceleration cycle, from 12 to 150 MeV is experimented next.

The RF is increasekinearly with turn number (this RF program is purely arbitrary) from 1.62 to 4.63 MHz,
synchronous phasg, = 20 degrees which means aba.t0* turns to complete the cycle.

Sample tracking results are displayed in Fig. 18 and showliext behavior. AAs = 1 mm integration
step size has been taken, sensibly smaller than the astilfaéquency of the second order derivatives (Fig. 8)
so to insure enough sufficient precision in computation of . Eq

It can be observed that the vertical motion undergoes reglalmping, (Bp,, Mev/Briso Mev) ' ~
0.52 from start to end of the cycle ; the radial motion does notsgathat, however it is of extremely low
amplitude in the vicinity of the closed orbit and may be sabje coupling effects due to themotion, as
already pointed out concerning Fig. 16.

5 Comments

Using the analytical derivatives method allows fast tragkiwith high accuracy, and makes the code a pow-
erful tool for long term tracking, DA tracking, transmissiefficiency calculations (a strong concern in cap-
ture/acceleration of unstable particle beams), etc. Nigaeinterpolation of the field from mid-plane field
model instead (Figs. 6, 10), is also efficient, it has the nudrallowing the field model to be changed easily
(it is just a matter of changing the mid-plane field model, Bgand yields very good accuracy as well, but
computing speed lower by a factor of slightly more than 2.
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Accounting for the built-in fitting procedure, these deymtents make Zgoubi an efficient tool for FFAG
optics and machine design studies. The code has at presamiubed with success for design studies, DA
tracking and various validations concerning linear naaiiag optics (acceleration of muons) [20], non-linear
non-scaling FFAG optics (protontherapy application) [2hH an isochronous cell (acceleration of muons,
electron-model of non-scaling FFAG) [22].

Itis planned to compare the magnetic fields (Fig. 10) as nbthwith the method described in this paper,
and the ensuing tracking results, with 3-D magnet calautatiand tracking in field maps, as addressed in
App. B. Works have already been tackled on that topic andoeilbursued [14].

CPU time - Computing speed tests were performed updrio 150 MeV acceleration in the 12 cell
FFAG ring (conditions as in Fig. 18), using two different pessors, Pentium 1ll 1 GHz or Xeon 2.8 GHz,
under Linux system. Derivatives are computed with eitherathalytical or the numerical method, up to either
second or fourth order as indicated in the Table below, wdgeen integration step sizks = 0.5 cm is
considered so to insure convergence of the numerical etiegrin any of these cases.

CPU time (seconds per turn per particle) :

Pentium Ill 1 GHz Xeon 2.8 GHz

Analyt. ~ Num.  Analyt. Num.
2nd order 0.17 s 0.40s 0.10s 0.25s
Adth order 0.44s 1.00s 0.17s 0.64s

Such computing speed means that one can envisage ovemighom computer network systems, aiming at
such goals as long-term DA tracking, 6-D multi-turn beamsraission, resonance crossing studies.
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Appendix
A The “DI POLE” procedure

Post pr ocessor / Zgoubi Y ( rr) VS. X ( n*)
The Figure shows the iso-field 3. J)DnE.éSISer
regions in the median plane ]
of the large acceptance Elbeck 2.

spectrometer SPES3 once oper-
ated at SATURNE for rare decay
experiments (typically3.4 T.m
rigidity) [15, 16]. That field
model had been obtained us- \
ing the ‘DI POLE” procedure s
whereas magnet edges and cor- 1.

responding field fall-offs where I

optimized using POISSON and 0.5}

VLT N
W\
matched for DI POLE” purpose e

as described in Section 3.1. 0.0 0.5 1. 1.5 2. 2.5 3.

The same method has been used to design several other spetetr® as SPES2 [17, 16], SPEG at
GANIL [18], the 1.8 GeV Kaon QD spectrometer at GSI [19].

B 3-D field map versus geometrical model

In the main text, a 3-dipole representation of the 150 MeV GB&ctor magnet is involved Fig. 9. However,
a characteristic feature of the actual magnet is in its rem-fringe field over the drift (Fig. 19-a), about
700 Gauss independent of the radius. This feature can bedwd using 5 dipoles with th&=FAG’
procedure as schemed in Fig. 19-b,c instead of just 3 as i®Fig

Nevertheless, for the sake of simplicity in the modeling amecumerical demonstration experiments,
and in order to stay as close as possible to the theoretigadthgsis, namelyR;(r) = (r/Ry;)* and
g(r) = go(Ro/r)", the the 3-dipole model is used in the present work.

Bz (T) VS. angl e (rad) Bz (T vs. X
1.5 125.INeV. ( a) 1.5 - — ( D)
85 {MeV e
1. 457Tvev 1. .
22 IMeV
0.5 /S T 0.5
/10 [MeV "\
) \
0. Oftee] ’ ‘ S 0.0
Y |S=
B B 0 1 2

Figure 19:Comparison of magnetic field along closed orbits in the chs@p: TOSCA 3-D map representative of the
KEK 150 MeV FFAG [13, 14] and(b) : a “3+2"-dipole geometrical model. IfT) is represented the geometry of the
“3+2"-dipole design, involving two regions (hatched) ofoaib 700 G field over the two end drifts.
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C

1.5

0.5

Sharp edge field model

Bz (T) vs. theta (rad The geometrical model also allows hard edge fall-offs
TR (Fig. 20). Compared top the soft edge model (field in
e Fig. 10, closed orbits in Fig. 11) the closed orbit radialipos
a3 | tions are but slightly changed, at the millimeter scale.
22 5 Tunes have constant values = 3.773, v, = 1.574 over
D 10 D the all energy span as expected from the theory [23], to be
compared to soft-edge values in Fig. 14. The horizontal tune
E— F — is practically independent of the model either hard- or-soft
S - edge, as expected since fringe fields have no effect to first
S E i S S i order on horizontal motion. Such is not the case for the ver-

tical motion that shows non-negligible first order effect of

Figure 20: Field on closed orbits, hard edgefringe fields Av, > 0.17).
model.
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