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Numerical methods for 6-D dynamics simulations in FFAG rings
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A geometrical method for 3-D modeling of the magnetic field in FFAG magnets, installed in a stepwise ray-
tracing code, is presented. It is applied for illustration to 6-D multiturn tracking in a 150 MeV radial sector
proton FFAG.

1. Introduction

The method finds applications in machine de-
sign and multiturn tracking. It is derived from
a former DIPOLE procedure implemented in the
70’s in the ray-tracing code Zgoubi [1] for the de-
sign of large acceptance spectrometers (e.g., SAT-
URNE’s SPES2, SPES3, and resorts to the sole
geometrical parameters which describe the mag-
net. It yields an efficient ray-tracing tool, high
precision tracking, and allows the use of auto-
matic fitting procedures for magnet geometry and
machine parameter optimizations.

2. Simulation of FFAG magnetic field

The two procedures so obtained, called
“DIPOLES” and “FFAG”, account for overlap-
ping fields in the case of neighboring dipoles in an
N-uplet (Fig. 1). Dipoles are defined by their pa-
rameters as wedge angles, pole curvatures, fringe
fields extents, etc., [1, b], and are positioned
within a sector region with angle AT , by means
of angles ACNi. Field dependence has the form
Bz i(r, θ) = Bz 0,i Fi(r, θ)Ri(r) (the index i stands
for the dipole of concern) . “DIPOLES” and
“FFAG” differ mostly by the radial behavior, re-
spectively

Ri(r) = b0i
+ b1i

r−R0,i

R0,i
+ b2i

(

r−R0,i

R0,i

)2

+ ...

Ri(r) = (r/R0,i)
Ki (1)

The factor Fi(r, θ) models the azimuthal de-
pendence of the field. The first form of Ri(r)
is proper to simulate fields for instance in muon
chicane magnets [2], magnets for isochronous
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Figure 1. Top : FFAG sector triplet. Middle : over-
lapping fields at constant radius (non-zero z) ; the
three field contributions are represented separately,
as well as their merging. Bottom : mid-plane field
at traversal of the triplet, on 12, 50, 100, 150 MeV
closed orbits.

rings [3], SC magnets [4], etc., by ad hoc values of
the bji

coefficients. The field fall-offs at EFBs is
modeled using FEFB(d) = (1+exp[P (d)])−1 with
P (d) = C0 + C1d/g + C2(d/g)2 + ... + C5(d/g)5

wherein d is the distance to the EFB and depends
on r and θ ; the normalizing coefficient g is in gen-
eral of the form g(r) = g0(R0/r)κ (κ ≥ 0) with
g0 the dipole gap. A dipole having two EFBs
(entrance and exit) with each one its own fringe
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field factor, the resulting form factor at (r, θ) due
to dipole (i) of the N -uplet is thus taken to be
Fi(r, θ) = FEntrance(r, θ) ×FExit(r, θ).

The total mid-plane field and field derivatives
at (r, θ) in an N -uplet are obtained by addition
of the contributions of the N dipoles taken sepa-
rately (e.g., N = 3 in Fig. 1), namely

Bz (r, θ) =
∑

i=1,N Bz 0,i Fi(r, θ)Ri(r) ,

∂k+l ~Bz (r, θ)

∂θk∂rl
=

∑

i=1,N
∂k+l ~Bz i(r,θ)

∂θk∂rl (2)

with Ri(r) defined in Eq. 1. Eventually, the 6-D

modeling ~B(r, θ, z) is deduced by z-extrapolation.
Sample Bz (r, θ) patterns are given in Fig. 1, a
simulation of the field in an FFAG triplet with
characteristics drawn from the KEK 150 MeV
proton machine [5]. Two different methods have
been implemented to calculate the field deriva-
tives in the median plane (Eq. 2), namely, ei-
ther numerical interpolation using field values in
the vicinity of the particle position, or analyti-
cal expressions drawn straightforwardly from the
geometrical description of the magnet [6]. The
first method has the merit of making it easy to
change the source code so as to modify the mid-
plane magnetic field model Bz (r, θ), for instance
if simulation of shims, defects, or other special
r, θ dependence need be introduced. The second
method insures better symplecticity in principle
and faster tracking.

3. 6-D tracking in a 150 MeV proton FFAG

To conclude, we show that these methods pro-
vide correct results. A 12-cell FFAG ring is con-
sidered, representative of the KEK 150 MeV pro-
ton FFAG [5], the cell is a 30 degree sector encom-
passing a DFD triplet with field on closed orbits
as schemed in Fig. 1. First order results, as drawn
from multiturn tracking, are displayed in the Ta-
ble below for the 12, 50, 100 and 150 MeV mo-
tions in the vicinity of the closed orbit, and show
satisfying consistency with published data [5].

E βr/βz at tunes frevdL/L
dp/p drift center (r/z)

(MeV) (m) (MHz)

150 0.1138 0.718 / 2.80 4.060 / 2.207 4.463
100 0.1140 0.692 / 2.71 4.079 / 2.219 3.865
50 0.1136 0.649 / 2.60 4.111 / 2.226 2.953
12 0.1145 0.564 / 2.58 4.194 / 2.099 1.620

Closed orbits in a cell and one-turn tunes are
displayed in Fig. 2, they have the expected behav-
ior, in particular the vertical chromaticity is not
exactly zero due to the fringe fields (zero vertical
chromaticity is obtained if a geometrical model
with hard edge is used).
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Figure 2. Left : closed orbits in a cell. Right :
machine tunes (12 cells).

Fig. 3 shows sample phase space motion at
50 MeV. The horizontal symplecticity is good.
The vertical motion shows confined emittance
spread, attributed to non-linear coupling to hor-
izontal motion.
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Figure 3. Left : pure radial motion, particles
launched with (1) : r0 = rc.o. + 1.9 cm = 4.887 m
(the stability limit), (2) : r0 = rc.o. + 0.5 cm. Right :
vertical motion, given r ≈ rc.o..

Next, stationary buckets in Fig. 4 have been
obtained assuming a single cavity located in
a straight section, with peak voltage 19 kV.
The agreement with theory (bucket height, syn-
chrotron tunes, etc.) is excellent. A full accel-
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Figure 4. Top : stationary bucket in the 100 MeV
orbit region. Middle and bottom : evolution of re-
spectively the (r, r′) and (r, z) motions during accel-
eration cycle, for a particle launched near the 12 MeV
horizontal closed orbit with z0 = 1 cm.

eration cycle, 2 104 turns from 12 to 150 MeV,
using 20 deg. synchronous phase, is displayed in
Fig. 4. The vertical motion undergoes expected√

Bρ damping.

4. Comments

Computation of field derivatives by numeri-
cal differentiation from the mid-plane geometrical
field model (Fig. 1) yields good tracking symplec-
ticity, in particular transverse motion (Fig. 3) can
be explored up to stability limits. However, us-
ing analytical expressions instead for computing
the derivatives insures best precision, and allows
faster tracking, by a factor of more than 2.

Acceleration, and in a general manner 6-D mo-
tion, are very well handled (Fig. 4). These de-
velopments yield an efficient ray-tracing tool for
beam, or long-term, tracking based studies, and,
accounting for the built-in fitting procedure, for

FFAG magnetic field and machine design studies.
It is planned to compare the magnetic fields

(Fig. 1) as obtained with the geometrical method
described in this paper and the ensuing tracking
results, with 3-D magnet calculations and track-
ing in field maps. Works have already been tack-
led on that topic and will be pursued [7].

CPU time

Computing speed tests were performed upon
acceleration in the 12 cell FFAG ring (conditions
as in Fig. 4), using two different processors, Pen-
tium III 1 GHz or Xeon 2.8 GHz, under Linux
system. Results are as follows.

An integration step size ∆s = 0.5 cm is con-
sidered, derivatives are computed with either the
analytical or the numerical method, up to either
second or fourth order as indicated in the Table.

CPU time (seconds per turn) :

Pentium III 1 GHz Xeon 2.8 GHz
Analyt. Num. Analyt. Num.

2nd order 0.17 s 0.40 s 0.10 s 0.25 s
4th order 0.44 s 1.00 s 0.17 s 0.64 s

Such computing speed means that one can envis-
age overnight runs on computer network systems,
aiming at such goals as long-term DA tracking,
6-D multi-turn beam transmission, resonance
crossing studies with thousands-particle beam.
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