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Abstract

We reanalyze the most recent data on elastic electron proton scattering. We look for a deviation

from linearity of the Rosenbluth fit to the differential cross section, which would be the signature of

the presence of two photon exchange. The present data does not show evidence for such deviation.
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I. INTRODUCTION

Form factors (FFs) characterize the internal structure of composite particles. Since the

first measurements [1], electromagnetic probes are traditionally preferred to the hadronic

beams, since the electromagnetic leptonic interaction is exactly calculable in QED, and one

can safely extract the dynamical information about the hadronic vertex. Unfortunately, it

is not a direct procedure, because, one has to introduce radiative corrections, which become

very large for experiments with good energy resolution. Radiative corrections for elastic

electron-hadron scattering were firstly calculated by Schwinger [2] and are important for

any discussion of the experimental determination of the differential cross section. They are

also calculable in QED, within some assumptions concerning the hadronic interaction. There

are standard procedures applied to elastic eN scattering data, but question may arise if the

necessary accuracy has been reached [3].

Assuming form factor scaling, GEp = GMp/µp, where GEp and GMp are the electric and

magnetic proton FFs and µp = 2.79 is the magnetic moment of the proton, GMp has been

extracted up to a value of the four momentum squared, Q2 ≃ 31 GeV2 [4] and fall with Q2

according to a dipole form:

GD(Q2) = (1 + Q2[GeV2]/0.71)−2. (1)

Recently, new developments, due to the very precise and surprising data obtained at the

Jefferson Laboratory (JLab), in ~e+p → e+~p elastic scattering [5, 6], based on the polarization

transfer method show that the electric and magnetic distributions in the proton are different.

The application of the polarization transfer method, proposed about 30 years ago, [7]

has been possible only recently, as it needs high intensity polarized beams, large solid angle

spectrometers and advanced techniques of polarimetry in the GeV range. Experiments

have been performed at JLab up to Q2 = 5.6 GeV2 and an extension up to 9 GeV2 is in

preparation [8].

The following parametrization for the ratio R of the electric and magnetic form factors

well describes these experimental data [9]:

R = µpGEp/GMp = 1 − 0.13(Q2 [GeV2] − 0.04) (2)

which implies that the ratio monotonically decreases and deviates from unity, as Q2 increas-

ing, reaching a value of ≃ 0.3 at Q2 ≃ 5.5 GeV2.
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Therefore, a clear discrepancy appears between the Q2-dependence of the ratio R of the

electric to the magnetic proton form factors, whether derived with the standard Rosenbluth

separation or with the polarization transfer method. This statement is confirmed by a

reanalysis of the existing data [10] and by recent measurements [11, 12]. This discrepancy is

very puzzling, as no evident experimental bias has been found in the data or in the method

used, and it has been sources of different speculations.

One has to stress, at this point, that FFs extracted with the polarization method, are

not incompatible with the measured cross section: it has been shown that, constraining

the ratio R from polarization measurements and extracting GMp from the measured cross

section, leads to a renormalization of 2-3% only, with respect to the Rosenbluth data [9],

well inside the error bars.

Instead, the problem is related to the slope of the ǫ dependence of the reduced cross

section, (ǫ is the polarization of the virtual photon, ǫ = [1 + 2(1 + τ) tan2(θ/2)]−1) which is

directly related to GEp. The difference of such slope especially appears with respect to the

last, precise data [12].

A possible question arises on the validity of the one-photon mechanism at large Q2, and,

generally, on the radiative corrections to the differential cross section and to polarization

observables in elastic eN -scattering. If these corrections are large (in absolute value) for

the differential cross section [13], in particular for high resolution experiments, a simplified

estimation of the radiative corrections to polarization phenomena [14] shows that they are

small for the ratio PL/PT of longitudinal to transverse polarization of the proton emitted in

the elastic collision of longitudinally polarized electrons with an unpolarized proton target.

In the standard calculations of the radiative corrections [13], the two-photon exchange

mechanism is only partially taken into account considering the special part of the complicated

loop integral, where one virtual photon carries all the momentum transfer and the second

virtual photon is almost real. This contribution allows to overcome the problem of the

’infrared’ divergence. But it has been pointed out [15] that, at large momentum transfer,

the role of another part of the integral, where the momentum transfer is shared between the

two photons, can be relatively increased, due to the steep decreasing of the electromagnetic

form factors with Q2. This effect can eventually become so large (especially at large Q2)

that the traditional description of the electron-hadron interaction in terms of electromagnetic

currents (and electromagnetic form factors) can become incorrect.
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Numerous tests of the possible 2γ contribution for elastic ep scattering have been done

in the past, using different methods: test of the linearity of the Rosenbluth formula for the

differential cross section, comparison of the e+p and e−p-cross sections, attempts to measure

various T-odd polarization observables, but no effect was visible beyond the precision of

the experimental data. Only recently the non-zero T-odd asymmetry in the scattering of

transversally polarized electrons, ~e− + p → e− + p has been detected [16].

Note that the two-photon exchange should appear at smaller Q2 for heavier targets: d,

3He, 4He, because the corresponding form factors decrease faster with Q2 in comparison

with protons. From these considerations, one would expect to observe the two-photon

contribution in eN -scattering at larger momentum transfer, for Q2 ≃ 10 GeV2. In Ref.

[17] the possible effects of 2γ-exchange have been estimated from the precise data on the

structure function A(Q2), obtained at JLab in electron deuteron elastic scattering, up to

Q2 = 6 GeV2 [18, 19]. The possibility of a 2γ-contribution has not been excluded by this

analysis, starting from Q2 = 1 GeV2, and the necessity of dedicated experiments was pointed

out.

No complete calculations has been done yet, but on the basis of ad-hoc assumptions,

one can - semiempirically- reconcile the data, assuming that the radiative corrections are

negligible for polarization data, and contribute to the cross section linearly in ǫ [20, 21], or

in framework of other model-dependent assumptions [22].

An analysis of the existing data on electron and positron elastic scattering on proton,

seems to show that such effect would be more pronounced at low Q2-value [23], adding

confusion to a possible evidence of a two-photon contribution.

We previuosly showed [17, 24–26], in a model independent way, that the presence of two-

photon exchange destroys the linearity of the Rosenbluth fit, inducing a specific dependence

of the differential cross section on the variable ǫ, which is especially large for ǫ ≤ 1.

The purpose of this paper is to re-analyse the data about the differential ep scattering,

with respect to the deviation of linearity of the Rosenbluth fit, according to this predicted

dependence.
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II. PARAMETRIZATION OF THE 2γ CONTRIBUTION

The traditional way to measure electromagnetic proton form factors consists in the mea-

surement of the ǫ dependence of the reduced elastic differential cross section σred, at fixed

Q2. Assuming that the interaction occurs through the exchange of one photon, one can

write:

σred(Q
2, ǫ) = ǫ(1 + τ)[1 + (2E/m) sin2(θ/2)]

1

σMott

dσ

dΩ
= τG2

Mp(Q
2) + ǫG2

Ep(Q
2), (3)

with τ = Q2/(4m2), m is the proton mass, E and θ are the incident electron energy and the

scattering angle of the outgoing electron, respectively.

The Rosenbluth separation [27] allows to extract the electric and the magnetic form fac-

tors, from a linear fit to the reduced cross section, as a function of ǫ, at a fixed Q2. The

slope is directly related to GEp and the intercept to GMp. However, due to the coefficient

τ , the weight of the magnetic contribution becomes larger, as the momentum transfer in-

creases, reducing the sensitivity of the elastic cross section to the electric contribution. As

an example, at Q2 ≃ 4 GeV2, the term related to the electric FF contributes for less than

10% to the reduced cross section, assuming the dipole scaling, whereas it would be as low

as 2%, if one assumes the Q2 dependence of R from Eq. 2. One can estimate the level of

precision required to extract the electric FFs from the experimental cross section at large

Q2.

In presence of 2γ exchange, Eq. (3) can be rewritten in the following general form:

σred(Q
2, ǫ) = ǫG2

E(Q2) + τG2
M(Q2) + αF (Q2, ǫ), (4)

where α = e2/(4π), and F (Q2, ǫ) is a real function (of both independent variables Q2 and

ǫ), describing the effects of the 1γ
⊗

2γ interference.

Note that, in the general case, F (Q2, ǫ) contains two different contributions, one due to

the effect of the two-photon contribution on the form factors GE,M , and another one due to

the third spin structure in the matrix element of eN scattering, induced by 2γ exchange.

Both contributions can be calculated only in framework of some model, considering different

intermediate states for the 2γ box diagrams.

In such situation, any model independent statement concerning the function F (Q2, ǫ)

is important, in particular concerning its ǫ dependence, due to the large sensitivity of the

extraction of G2
E to the additional contribution F (Q2, ǫ), at large Q2.
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We proved earlier [24], that the C-invariance and the crossing symmetry of hadron elec-

tromagnetic interaction, result in the following symmetry properties of F (Q2, ǫ) with respect

to the variable x =

√

1 + ǫ

1 − ǫ
:

F (Q2, x) = −F (Q2,−x). (5)

This means that the 1γ
⊗

2γ contribution F (Q2, ǫ) has an essential non linear ǫ dependence,

at any Q2. For example, the additional (third) spin structure is generating the following

ǫ-dependence:

F (Q2, x) → ǫ

√

1 + ǫ

1 − ǫ
f (T )(Q2, ǫ) or F (Q2, x) →

√

1 + ǫ

1 − ǫ
f (A)(Q2, ǫ), (6)

where the upper index, (T ) or (A), corresponds to the tensor [25] or axial [26] parametrization

for the third amplitude.

In order to estimate the upper limit for a possible 2γ contribution to the differential

cross section and the corresponding changing to GE,M(Q2), we analyzed four sets of data

[3, 11, 12, 28], applying Eq. (4) with the following parametrization for F (Q2, x):

F (Q2, x) → ǫ

√

1 + ǫ

1 − ǫ
f (T )(Q2). (7)

It is important to stress that Eq. (7) is a simple expression which contains the necessary

symmetry properties of the 1γ
⊗

2γ interference, through a specific (and non linear) ǫ de-

pendence.

We checked that the parametrization:

F (Q2, x) →

√

1 + ǫ

1 − ǫ
f (A)(Q2)

gives qualitatively similar results.

For the Q2 dependence of f (T,A) we take:

f (T,A)(Q2) =
C

(1 + Q2[GeV] 2/0.71)2(1 + Q2[GeV]2/m2
T,A)2

, (8)

where C is a fitting parameter, mT,A is the mass of a tensor or vector meson with positive

C-parity. For mT,A ≃ 1.5 GeV (typical value of the corresponding mass), one can predict

that the relative role of the 2γ contribution should increase with Q2.
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III. RESULTS AND DISCUSSION

In presence of 2γ, the dependence of the reduced cross section con ǫ can be parametrized

as a function of three parameters, G2
E , G2

M and C, according to Eqs. (4) and (8).

In Fig. 1, we show σred as a function of the variable ǫ for different Q2 values, together

with the results of the three parameters fit, for the data from Ref. [28]. Fits of similar

quality can be obtained for all the considered sets of data.

In Fig. 2, from top to bottom, the electric and magnetic FFs, as well as the two photon

parameter C, are shown as a function of Q2 (solid symbols). The previously published data,

derived from the traditional Rosenbluth fit are also shown (open symbols).

The numerical values of FFs and of the 2γ-coefficient for the data set analyzed here are

reported in Table I. The resulting parameter C is compatible with zero. The effect of

including a third fitting parameter, the 2γ term, is to increase the error on FFs. For the

three points of Ref. [11], at higher Q2, the coefficient C becomes quite large, but is still

compatible with zero within the error. For this reason, these points are reported in the table

but not in Fig. 2.

The present analysis does not give any evidence of a 2γ contribution, as the possible 2γ

term is always vanishes, within the error bars. The new values of GE and GM are compatible

with the published values, deduced in frame of a standard ǫ fit. Furthermore, there is no

systematic effect that could allow, at least, to guess the sign of the 2γ coefficient. If one

could determine at least the sign of the interference contribution, it would be possible to

predict the relative value of the differential cross section for e−p and e+p-scattering. The

following relation holds:

σ(e+p) − σ(e−p)

σ(e+p) + σ(e−p)
=

αF (Q2, ǫ)

ǫG2
E(Q2) + τG2

M(Q2)
.

Another approach - introducing ad − hoc a linear ǫ contribution to the differential cross

section - results in a corresponding decreasing of the G2
E contribution, bringing the results

in agreement with the polarization measurements. This can not be considered a proof of

the presence of the 2γ contribution, but shows that a small correction to the slope of the

reduced cross section is sufficient to solve the discrepancy. Such correction may arise, for

example, from a revision of the standard procedure of the calculation of radiative corrections,

especially at ǫ → 1, which would produce a large effect on the value of G2
E, as extracted

from the Rosenbluth fit.
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Q2[GeV 2]
GE

GD

± ∆

(

GE

GD

)

GM

GD

± ∆

(

GM

GD

)

C ± ∆C Ref.

1 0.7± 0.4 0.11± 0.04 2.6± 3.0 [3]

2 1.1± 0.2 0.1± 0.03 0.68± 1.2 [3]

2.5 0.7± 0.4 1.06± 0.03 2.5± 1.5 [3]

3 1.1± 0.5 1.02± 0.07 1.5± 3.9 [3]

1.75 1.0± 0.1 1.05± 0.01 -1±2 [28]

2.5 0.5± 0.3 1.07± 0.02 2±3 [28]

3.25 1.0± 0.3 1.04± 0.03 -3± 6 [28]

4.0 0.8± 0.3 1.04± 0.03 1± 3 [28]

5.0 0.9± 0.4 1.02± 0.05 0.1± 5 [28]

0.65 1.0± 0.2 0.98± 0.03 0.4± 2 [11]

0.9 1.1± 0.1 0.99 ± 0.02 -2± 2 [11]

2.2 1.2 ±0.3 1.03 ± 0.04 -3± 3 [11]

2.75 0.8 ±0.3 1.06 ± 0.03 0.6± 4 [11]

3.75 1.6 ±0.5 1.0 ±0.1 -17± 15 [11]

4.25 1.8± 0.6 1.0 ±0.2 -19± 26 [11]

5.2 4.1± 2.3 0.8 ±1.5 -166± 195 [11]

2.64 0.9 ±0.1 1.05 ±0.01 0.4± 2 [12]

3.2 0.8± 0.2 1.05 ±0.02 4± 4 [12]

4.1 0.99± 0.4 1.03 ±0.05 5± 12 [12]

TABLE I: Form factors and 2γ-coefficient, Eq. (8).

The radiative corrections are taken into account in the data analysis, according to the

prescription of Ref. [13]. Typically, the experimental results on the measured elastic cross

section, are corrected by a global factor δR:

σred = σred
mease

δR ≃ σred
meas(1 + δR). (9)

This factor contains a large ǫ dependence, and a smooth Q2 dependence, and it is common

for the electric and magnetic part. At the largest Q2 considered here, it can reach 30-40%.

A linear ǫ dependence can be considered a good approximation for the radiative corrections:
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δR = ǫδ′, but our conclusions hold for any monotonically increasing function.

Therefore, Eq. (3) can be rewritten as:

σred
meas(Q

2, ǫ) = σred(Q2, ǫ)[1 − δR(Q2, ǫ)] = G2
M(Q2)

(

τ + ǫ
G2

E(Q2)

G2
M (Q2)

)

[1 − ǫδ′(Q2)]

= G2
M(Q2)

[

τ + ǫ

(

G2
E(Q2)

G2
M(Q2)

− τδ′(Q2)

)]

. (10)

At a fixed Q2 (dropping the Q2-dependence) we can see that the slope of the measured cross

section has also a linear behavior with ǫ, with an effective slope a:

a =
G2

E

G2
M

− τδ′. (11)

This shows that the slope of the measured reduced cross section, as a function of ǫ (which

is related to the electric FF squared), can vanish, and, for δ′ ≥
G2

E

τG2
M

can even be negative.

In Fig. 3 we show σred as a function of ǫ, with and without radiative corrections. One can

see that the slope is compatible with zero, for the uncorrected data, starting from Q2 ≤ 2

GeV2, and, then, becomes negative.

The extraction of GE from the data requires a large precision in the calculation of radiative

corrections, and in the procedure used to apply to the data. In particular at large ǫ, an

overestimate of the radiative corrections, can be source of a large change in the slope.

A similar study has been done from the other sets of data and leads to similar results.

IV. CONCLUSIONS

From this analysis it appears that the available data on ep elastic scattering does not

show any evidence of deviation from the linearity of the Rosenbluth fit, and hence of the

presence of the two photon contribution, when parametrized according to Eq. (7).

A careful study of radiative corrections when applied to the experiment seems necessary.

Radiative corrections at large Q2 are huge, and have a large influence on the slope of the

reduced cross section, changing even its sign.

The new generation of experiments performed at large Q2 makes use of large acceptance

detectors and requires huge corrections of the raw data for acceptance and efficiency. The

factor of radiative corrections is obtained after integration over the acceptance. It appears as

a global factor on the reduced cross section, equally affecting the electric and the magnetic
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term. Its (important) ǫ dependence is the main factor determining the slope of the reduced

cross section, which is directly related to the extracted electric form factor.
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FIG. 1: Reduced cross section from at Q2=1.75, 2.5, 3.25, 4, and 5 GeV2. Data are from [28]. The

lines are three-parameters fits according to 4.
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FIG. 2: From top to bottom: GEp/GD, GMp/µGD, and two-photon contribution, C according to

Eq. (4) with mt,A = 1.5. Data are from [3] (squares);[28] (circles); [11] (triangles) (the three points

at the highest Q2 are not shown, due to the large error bar); [12] (stars). The published data, from

the traditional Rosenbluth fit are shown as open symbols, the results including the 2γ contribution

as solid symbols.

13



FIG. 3: Reduced cross section with (solid circle) and without (open circles) radiative corrections,

for Q2=1.75, 2.5, 3.25, 4, 5, 6, and 7 GeV2. Data are from [28]. Two-parameters linear fits are

shown as solid lines. The dashed lines show the slopes suggested by the polarization data.
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