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22. THEORETICAL FRAMEHere we recall very briey how the direct K+� production, via a CQM, and the CCapproach, accounts for strangeness production including KY ! KY FSI, as well as�N ! KY and KY ! KY intermediate state interactions (ISI); with Y � �;�.2.1. Direct channel: chiral constituent quark formalismThe low energy QCD Lagrangian is the starting point of this approach to pseudoscalarmeson photoproduction on nucleons, based on the SU(6) 
O(3) symmetry. The presentwork goes beyond the exact SU(6)
O(3) symmetry by introducing [9] the con�gurationmixing generated by gluon exchange interactions [10].The advantage of the quark model is the ability to relate the photoproduction datadirectly to the internal structure of the baryon resonances. It also allows one to intro-duce in the reaction mechanism all known nucleon (s-channel) and hyperon (u-channel)resonances.This formalism is proven [9] to produce realistic direct channel models in good agree-ment with the data for both p ! �p and p ! K+� processes and shows the need fora third S11 resonance.2.2. Coupled-channel intermediate and �nal state meson-baryon interactionsThe intermediate state reactions (�N ! KY and KY ! KY ) are studied [7] us-ing a dynamical coupled-channel model of meson-baryon interactions at energies wherethe baryon resonances are strongly excited. The channels included are: �N , K�, andK�. The resonances considered are: N� [S11(1650), P11(1710), P13(1720), D13(1700)]; ��[S31(1900), P31(1910), P33(1920)]; �� [S01(1670), P01(1810)]; �� [P11(1660), D13(1670)];and K�(892).The basic non-resonant �N ! KY and KY ! KY transition potentials are de-rived from e�ective Lagrangians using a unitary transformation method. The dynamicalcoupled-channel equations are simpli�ed by parametrizing the N ! �N and �N ! �Namplitudes in terms of empirical �N partial-wave amplitudes [11] and a phenomenologicalo�-shell function. A model has been constructed with the coupling constants and reso-nance parameters consistent with the SU(3) symmetry and/or the Particle Data Groupvalues [12]. Good �ts to the available data for ��p! K��; K��� have been achieved [7].3. RESULTS AND DISCUSSIONWe focus on the interpretation of recent data from the CLAS Collaboration [1], em-bodying all 920 measured di�erential cross sections [2] in our data-base. This latter hasbeen �tted, using the CERNMINUIT package. The free parameters are those of the CQM(mainly one SU(6)
O(3) symmetry breaking parameter per nucleon resonance withM �2 GeV). Parameters for the intermediate and �nal state meson-baryon interactions aretaken from the model B in Ref. [7].Results for the di�erential cross section at three angles are shown in Figure 1. The fullcurves come from our complete model, embodying all relevant ISI and FSI, and reproducethe 920 data points quite well. In order to emphasize di�erent e�ects in the reaction understudy, three other curves are depicted. They are obtained without further minimizations,
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Figure 1. Excitation functions as a function of total center-of-mass energy at � = 32�,57� and 123�. Full curves: complete results (CQM+CC). Dotted curves: direct channel(without CC e�ects). Dashed curves: full calculation, but without �nal state KY ! KYinteractions. Dot-dashed curves: full calculation, but without the third S11resonance.Fitted data (Triangles) are from CLAS [1]. SAPHIR data [3] are also depicted (Squares).but only by swicthing o� some of the parameters related to speci�c contributions.The dotted curves (Direct channel), are obtained by switching o� the coupled-channelinteractions, keeping hence only the direct channel contributions. The sizeable e�ectsobserved in the second resonance region show clearly the crucial role played by the CCphenomena.The dashed curves (No FSI) come from the CC e�ects only due to the intermediate�N ! �N; KY interactions. Here �nal state KY ! KY are discarded. The results
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