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Superconducting Filament Magnetization 
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Abstract—This paper deals with the two-dimensional 

computation of magnetization in an elliptic superconducting 
filament by using numerical and analytical methods. The 
numerical results are obtained from the finite element method 
and by using Bean’s model. This model is well adapted for Low 
Tc superconductor studies. We observe the effect of the axis ratio 
and of the field angle to the magnetic moment per unit length at 
saturation, and also to the cycle of magnetization. Moreover, the 
current density and the distribution of the electromagnetic fields 
in the superconducting filament are also studied. 
 

Index Terms—Filament magnetization, Persistent currents, 
Current density distribution, Finite element method. 

I.  INTRODUCTION 

O NE of the major properties of superconductors is their 
absence of resistance when they are supplied by direct 

current. For this reason superconductors are commonly used 
to manufacture windings intended for the creation of high 
magnetic fields, as in the case of the electromagnets for the 
guidance of the beam in particle accelerators. However, when 
these materials are subjected to a variation of external 
magnetic field, they react so as to protect their bulk from the 
field variation. Shielding currents are generated at the 
periphery of the filament. In the absence of dissipative 
phenomena, the shielding currents are permanent, hence the 
name of persistent currents, and can degrade the quality of 
magnetic field produced by the magnet. In the case of particle 
accelerators, it is then necessary to envisage correction 
magnets whose design and powering is directly related to the 
amplitude of the persistent currents. The prediction of the 
persistent currents is usually based on analytical solutions 
valid only for circular filaments. In reality, however, the 
superconducting wires undergo large deformation during the 
manufacturing process, which leads to filament cross sections 
which do not have the theoretical shape of a circle. A first-
order quantification of the influence of the shape of the 
filament on the electromagnetic behavior can be obtained by 
considering an elliptical section. 

In this paper, we present the computation of magnetization 
of a superconducting, elliptical filament in two dimensions by 
using numerical and analytical methods. The cross-sectional 

area of the elliptical filament is assumed to be constant, equal 
to the cross-sectional area of a circular filament of 38 µm2 
(corresponding to a filament diameter of 7 µm as used for the 
LHC magnets at CERN). The finite element method (FEM) is 
used for the numerical calculation. This method allows to 
compute numerically the electromagnetic characteristic 
variables (penetration induction, magnetic moment per unit 
volume, etc.). These can also be obtained directly in some 
configurations if different integrals are performed analytically. 
The geometry considered is reported in Fig. 1. At first we 
have applied a magnetic field perpendicular to the x-axis (Fig. 
1(b)), and then we have turned the applied field with an angle 
θ respect to the x-axis (Fig. 1(a)). 
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Fig. 1.  (a) Elliptical cross section of superconducting filament submitted to an 
applied magnetic field H(t), (b) Model of persistent magnetization current 
shell with elliptical inner boundary, and (c) Altering the reference axis from x, 
y axis to x/a, y/b axis (this change is used for solving the problem in the 
second case). 

II.  PROBLEM PRESENTATION 
The electromagnetic behavior of superconducting devices 

can be described by Maxwell’s equations, linking the electric 
field e

r
, the magnetic field h

r
, the magnetic induction b

r
 and 

the current density j
r

[1]. With the elimination of magnetic 
variables, we have an equation which can be written in three 
dimensions as follows:  
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where µ0 is the permeability of vacuum, Ω is the 
computational domain with boundary Γ. 

                                                           
In order to obtain a complete system, (1) must be 

complemented by a constitutive relation between j
r

 and e
r

. 
We have chosen to use the Bean’s model [2], defined as:  
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Total penetration of the filament by the shielding currents 
is reached when ev = 0 in (4). The magnetic induction (or 
magnetic field) at which this occurs is the penetration 
induction Bp (or penetration field), found solving (4): 
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, and jc is the critical current 

density. For numerical treatment, the functional dependence of 
r

 on e
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 can be approximated by )(ej γ=  where γ is a 
nonlinear monotonic function discussed in [1]. )5(
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III.  ANALYTICAL FORMULATION 
We consider an infinitely long, elliptical,  superconducting 

filament with a major radius b and a minor radius a immersed 
in a uniform magnetic field H(t) varying sinusoidally in time 
and forming an angle θ respect to the x-axis (see Fig. 1(a)). 
An analytical solution can be developed to obtain global 
magnetic quantities. 

An integration similar to (3) may be used to find the magnetic 
moment per unit volume: 
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We consider initially the case of magnetic field applied 

parallel to the y-axis (θ = 90°), and limit ourselves to the 
analysis of the first field increase, for 0 ≤ t ≤ T/4. The 
persistent currents flow in a shell at the filament periphery, 
and the inner boundary of the shell can be approximated by an 
ellipse [3] (Fig. 1(b)). The relation between the magnetic 
induction B (B = µ0H) and eccentricity ev of the elliptical 
inner boundary of the persistent current shell (0 < ev < 1) is 
obtained by writing that the magnetic induction (or magnetic 
field) created by the persistent currents at the center of the 
filament is completely opposed to the source induction (or 
source field), that is to say:  

where S is the cross-sectional area of the elliptical filament, 
explicitly given by S = π a b. Finally, we obtain that:  
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where Ms is the magnetic moment per unit volume at 
saturation. 
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where rin and rout are defined in Fig. 1(b). After integration, 
we obtain the following relations: 

Equations (4), (5) and (7) hold for 0 ≤ t ≤ T/4, where T is 
the period of the magnetic induction. For any time t ≥ T/4 we 
can obtain the corresponding results by using the 
superposition of several states. 

The calculation of a complete magnetization cycle requires 
the evaluation of ev as a function of B by solving (4). We have 
fitted the solution of this implicit equation by a fourth order 
polynomial:  
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where πµ /2 00 rJB c= bak /2 =,  and we use an equivalent 
filament radius r defined as π r2 = π a b. The cross-sectional 
area of the elliptical filament has been conserved for all 
calculations reported here, and has been taken equal to that of 
a typical LHC filament (7 µm diameter (2×r), 38 µm2 cross 
section (π r2)). Note that under this hypothesis r is a constant. 
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where the coefficients α0, α1, α2, α3 and α4 are a function of 
the ratio a/b. To obtain a practical expression, these 
coefficients have also been fitted by a polynomial in a/b. 

The second case we consider is when the external field 
forms an angle θ respect to the x-axis, where 0° ≤ θ ≤ 90°. In 
this case we could only calculate the penetration induction and 
the magnetic moment per unit volume at saturation, due to the 
complexity of the problem. For more details we resort to 
numerical techniques. Referring to Fig. 1, using the 
geometries in Fig. 1(a) and 1(c), we may write that:  
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Fig. 2.  Comparison between the normalized magnetic moment per unit 
volume at saturation Ms/Ms,cylinder where Ms,cylinder = Ms at a = b (or k = 1) versus 
the axis ratio a/b obtained from the numerical method and that obtained from 
the analytical method. 

 
Fig. 3.  Comparison of the cycles of magnetization obtained by using the 
numerical and analytical methods, where a/b = 0.64. 

For h(t) given, at any time t ≥ 0, find e in H1(Ω) such that 
e = 0 at t = 0 and  where πµ /2 01 abJB c=  and . 

Integrating (9) we find:  
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where e′ is the test function which is equal to the shape 
function ϕ used to interpolate e (Galerkin’s method), and 
H1(Ω) is the Sobolev’s space. 

Discretizing in space we obtain an algebraic system which 
can be written in the following matrix form:  
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where E and J which depend on time are the vectors of 
degrees of freedom of the electric field and of the current 
density respectively. More details can be found in [4]. The magnetic moments per unit volume at saturation, in the 

directions perpendicular and parallel to the applied magnetic 
field, are given by the following expressions:  V.  ANALYTICAL AND NUMERICAL RESULTS 
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Substituting these relations in (11) and (12) we come to the 
following result: 

[ ]
[ )14(coscossinsin

3
2

)13(sincoscossin
3

2

11
20

,

11
20

,

θθθθ

θθθθ

+−=

−−=

k ]
k
BM

k
k
BM

st

sn
 

We have carried out a first series of simulations for a 
superconducting filament with an elliptical cross section (0.64 
≤ a/b ≤ 1.44) immersed in a uniform magnetic field which is 
parallel to the y-axis (θ = 90°) and varying sinusoidally in 
time hy(t) = h sin(2π f t) at 50 Hz. The critical current density 
Jc is taken equal to 3×109 A/m2. Fig. 2 illustrates the influence 
of the shape of the ellipse on the magnetic moment per unit 
volume at saturation. The analytical and numerical results are 
in very good agreement, the difference between two curves is 
only 1.3 %. In practice, a deformation of the filament can lead 
to a significant variation of the magnetization, i.e. 20 % in the 
modest range of aspect ratio explored. Fig. 3 shows the 
difference between the cycles of magnetization calculated 
numerically and analytically. We observe that the curves are 
nearly identical. IV.  NUMERICAL FORMULATION 

In a second series of simulations, we have considered an 
elliptical superconducting filament plunged in a sinusoidal 
magnetic field whose field angle is equal to θ compared with 
the x-axis, where 0° ≤ θ ≤ 90°. In Figs. 4 and 5 we study the 
influence of the axis ratio and the field angle on the magnetic 

A numerical solution of (1) can be obtained by using the 
finite element method. After integration, the weak formulation 
of our problem is summarized in the following statement:  
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Fig. 4.  Normalized magnetic moment per unit volume at saturation, parallel to 
the applied magnetic field, Mt,s/Ms,cylinder as a function of axis ratio a/b obtained 
from the numerical and analytical methods for the different field angles θ. 

 
Fig. 5.  Normalized magnetic moment per unit volume at saturation, parallel to 
the applied magnetic field, Mt,s/Ms,cylinder as a function of field angle θ obtained 
from the numerical and analytical methods for the different axis ratios a/b. 
 

 

 
Fig. 6.  Cycles of magnetization, (a) parallel and (b) perpendicular to the 
applied magnetic field, obtained from the numerical method for the different 
field angles θ, where a/b = 1.44. 

(b) 

(a) 

moment per unit volume at saturation. We find that the 
functional dependence of the normalized magnetic moment 
per unit volume at saturation on the aspect ratio (Fig. 4) and 
the field angle (Fig. 5) is almost identical in both 
computations (numerical and analytical). From Figs. 4 and 5 
we see that the magnetization depends both on the axis ratio 
a/b and the field angle θ. If we take in particular Fig. 4, the 
tendency of Mt,s/Ms,cylinder for a/b < 1 is to decrease at 
increasing θ, with minimum magnetization at θ = 90°. This 
corresponds to the case of a thin filament, oriented vertically 
and with field along the y axis. The variation of the 
magnetization with a change of angle is reversed at a/b < 1, 
and, as expected, a flat filament, oriented horizontally, has 
minimum magnetization when the field is applied along the x-
axis. Finally, the dependence on the angle is stronger at larger 
aspect ratio. 

With the numerical method, we could obtain the cycles of 
magnetization (see Fig. 6). We observe that, except for θ = 0° 
and θ = 90°, the magnetic moment is not co-linear with the 
applied magnetic induction. These results are in agreement 
with (13) and (14). 

VI.  CONCLUSION 
Analytical formulae in 2D have been developed for an 

elliptical superconducting filament. The analytical formulae 
have been validated by comparison to numerical results 
obtained using a code based on finite elements and Bean’s 
constitutive law. Using these formulations, we could calculate 
the magnetization and obtain the cycle of magnetization in 
cases relevant to the strand used for the LHC magnets. We 
have studied the influence of the aspect ratio of the ellipse and 
the field angle on the magnetization and found variations of 
the order of 20 % in the range of expected deformations of the 
round filaments. 
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