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Abstract—This paper deals with the two-dimensional
computation of magnetization in an elliptic superconducting
filament by using numerical and analytical methods. The
numerical results are obtained from the finite element method
and by using Bean’s model. This model is well adapted for Low
T, superconductor studies. We observe the effect of the axis ratio
and of the field angle to the magnetic moment per unit length at
saturation, and also to the cycle of magnetization. Moreover, the
current density and the distribution of the electromagnetic fields
in the superconducting filament are also studied.

Index Terms—Filament magnetization, Persistent currents,
Current density distribution, Finite element method.

[. INTRODUCTION

NE of the major properties of superconductors is their
absence of resistance when they are supplied by direct
current. For this reason superconductors are commonly used
to manufacture windings intended for the creation of high
magnetic fields, as in the case of the electromagnets for the
guidance of the beam in particle accelerators. However, when
these materials are subjected to a variation of external
magnetic field, they react so as to protect their bulk from the
field wvariation. Shielding currents are generated at the
periphery of the filament. In the absence of dissipative
phenomena, the shielding currents are permanent, hence the
name of persistent currents, and can degrade the quality of
magnetic field produced by the magnet. In the case of particle
accelerators, it is then necessary to envisage correction
magnets whose design and powering is directly related to the
amplitude of the persistent currents. The prediction of the
persistent currents is usually based on analytical solutions
valid only for circular filaments. In reality, however, the
superconducting wires undergo large deformation during the
manufacturing process, which leads to filament cross sections
which do not have the theoretical shape of a circle. A first-
order quantification of the influence of the shape of the
filament on the electromagnetic behavior can be obtained by
considering an elliptical section.
In this paper, we present the computation of magnetization
of a superconducting, elliptical filament in two dimensions by
using numerical and analytical methods. The cross-sectional
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area of the elliptical filament is assumed to be constant, equal
to the cross-sectional area of a circular filament of 38 pm’
(corresponding to a filament diameter of 7 um as used for the
LHC magnets at CERN). The finite element method (FEM) is
used for the numerical calculation. This method allows to
compute numerically the electromagnetic characteristic
variables (penetration induction, magnetic moment per unit
volume, etc.). These can also be obtained directly in some
configurations if different integrals are performed analytically.
The geometry considered is reported in Fig. 1. At first we
have applied a magnetic field perpendicular to the x-axis (Fig.
1(b)), and then we have turned the applied field with an angle
Brespect to the x-axis (Fig. 1(a)).
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Fig. 1. (a) Elliptical cross section of superconducting filament submitted to an
applied magnetic field H(?), (b) Model of persistent magnetization current
shell with elliptical inner boundary, and (c) Altering the reference axis from x,
y axis to x/a, y/b axis (this change is used for solving the problem in the
second case).

II. PROBLEM PRESENTATION

The electromagnetic behavior of superconducting devices
can be described by Maxwell’s equations, linking the electric

field e, the magnetic field h , the magnetic induction b and
the current density ; [1]. With the elimination of magnetic

variables, we have an equation which can be written in three
dimensions as follows:
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where [ is the permeability of vacuum, Q is the

computational domain with boundary /.

In order to obtain a complete system, (1) must be
complemented by a constitutive relation between ; and é.

We have chosen to use the Bean’s model [2], defined as:
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where j:|j|, e:|é|, j//é, and j. is the critical current
density. For numerical treatment, the functional dependence of
Jj on é can be approximated by ;j=py(e) where yis a
nonlinear monotonic function discussed in [1].

III. ANALYTICAL FORMULATION

We consider an infinitely long, elliptical, superconducting
filament with a major radius » and a minor radius @ immersed
in a uniform magnetic field H(z) varying sinusoidally in time
and forming an angle & respect to the x-axis (see Fig. 1(a)).
An analytical solution can be developed to obtain global
magnetic quantities.

We consider initially the case of magnetic field applied
parallel to the y-axis (8 = 90°), and limit ourselves to the
analysis of the first field increase, for 0 < ¢ < T/4. The
persistent currents flow in a shell at the filament periphery,
and the inner boundary of the shell can be approximated by an
ellipse [3] (Fig. 1(b)). The relation between the magnetic
induction B (B = lyH) and eccentricity e, of the elliptical
inner boundary of the persistent current shell (0 < e, < 1) is
obtained by writing that the magnetic induction (or magnetic
field) created by the persistent currents at the center of the
filament is completely opposed to the source induction (or
source field), that is to say:
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where r;, and r,, are defined in Fig. 1(b). After integration,
we obtain the following relations:
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where By =2uyJ .r/m, k*> =a/b and we use an equivalent

filament radius » defined as 77/* = 7ra b. The cross-sectional
area of the elliptical filament has been conserved for all
calculations reported here, and has been taken equal to that of
a typical LHC filament (7 pm diameter (2xr), 38 pm’ cross
section (T1/%)). Note that under this hypothesis 7 is a constant.
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Total penetration of the filament by the shielding currents
is reached when e, = 0 in (4). The magnetic induction (or
magnetic field) at which this occurs is the penetration
induction B, (or penetration field), found solving (4):
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An integration similar to (3) may be used to find the magnetic
moment per unit volume:
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where S is the cross-sectional area of the elliptical filament,
explicitly given by S = 77a b. Finally, we obtain that:
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where M, is the magnetic moment per unit volume at
saturation.

Equations (4), (5) and (7) hold for 0 < ¢ < 7/4, where T is
the period of the magnetic induction. For any time ¢ > 7/4 we
can obtain the corresponding results by wusing the
superposition of several states.

The calculation of a complete magnetization cycle requires
the evaluation of e, as a function of B by solving (4). We have
fitted the solution of this implicit equation by a fourth order
polynomial:
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where the coefficients ay, a;, &>, a; and a, are a function of
the ratio a/b. To obtain a practical expression, these
coefficients have also been fitted by a polynomial in a/b.

The second case we consider is when the external field
forms an angle Arespect to the x-axis, where 0° £ €< 90°. In
this case we could only calculate the penetration induction and
the magnetic moment per unit volume at saturation, due to the
complexity of the problem. For more details we resort to
numerical techniques. Referring to Fig. 1, using the
geometries in Fig. 1(a) and 1(c), we may write that:
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Fig. 2. Comparison between the normalized magnetic moment per unit

volume at saturation My/M; cyiinder Where M cyiinaer = M at a = b (or k= 1) versus

the axis ratio a/b obtained from the numerical method and that obtained from

the analytical method.

where B, =2pyJ.ab/ 71 and 6 =tan "' (k* tan 6) .
Integrating (9) we find:

cos Htanh_l(cos GN1-k* j
kB,
" ik <1
1-k +sin¢9tan_1(sin91 k_4—1)
_J_Bo |2 o -
B, = Tk cos @cos G +sin Gsin ;k=1 (10)
cos Htan_l(cosﬁl\/k4 —1)
kB,
- Jk>1
Vi -1 +sin9tanh_1(sin6’1\/1—k_4)

The magnetic moments per unit volume at saturation, in the
directions perpendicular and parallel to the applied magnetic
field, are given by the following expressions:
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Substituting these relations in (11) and (12) we come to the

following result:
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IV. NUMERICAL FORMULATION

A numerical solution of (1) can be obtained by using the
finite element method. After integration, the weak formulation
of our problem is summarized in the following statement:
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Fig. 3. Comparison of the cycles of magnetization obtained by using the
numerical and analytical methods, where a/b = 0.64.

For h(t) given, at any time t 2 0, find e in H'(Q) such that
e=0att=0and
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where e’ is the test function which is equal to the shape

function @ used to interpolate e (Galerkin’s method), and
H'(Q) is the Sobolev’s space.

Discretizing in space we obtain an algebraic system which
can be written in the following matrix form:

% siaE=r
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where £ and J which depend on time are the vectors of
degrees of freedom of the electric field and of the current
density respectively. More details can be found in [4].

V. ANALYTICAL AND NUMERICAL RESULTS

We have carried out a first series of simulations for a
superconducting filament with an elliptical cross section (0.64
< a/b £ 1.44) immersed in a uniform magnetic field which is
parallel to the y-axis (@ = 90°) and varying sinusoidally in
time h,(f) = h sin(277ft) at 50 Hz. The critical current density
J, is taken equal to 3x10° A/m’. Fig. 2 illustrates the influence
of the shape of the ellipse on the magnetic moment per unit
volume at saturation. The analytical and numerical results are
in very good agreement, the difference between two curves is
only 1.3 %. In practice, a deformation of the filament can lead
to a significant variation of the magnetization, i.e. 20 % in the
modest range of aspect ratio explored. Fig. 3 shows the
difference between the cycles of magnetization calculated
numerically and analytically. We observe that the curves are
nearly identical.

In a second series of simulations, we have considered an
elliptical superconducting filament plunged in a sinusoidal
magnetic field whose field angle is equal to & compared with
the x-axis, where 0° < < 90°. In Figs. 4 and 5 we study the
influence of the axis ratio and the field angle on the magnetic
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Fig. 4. Normalized magnetic moment per unit volume at saturation, parallel to
the applied magnetic field, M, /M, ,inqer as a function of axis ratio a/b obtained
from the numerical and analytical methods for the different field angles &

moment per unit volume at saturation. We find that the
functional dependence of the normalized magnetic moment
per unit volume at saturation on the aspect ratio (Fig. 4) and
the field angle (Fig. 5) is almost identical in both
computations (numerical and analytical). From Figs. 4 and 5
we see that the magnetization depends both on the axis ratio
a/b and the field angle 6. If we take in particular Fig. 4, the
tendency of M, /Mg for a/b<1 is to decrease at
increasing 6, with minimum magnetization at 8= 90°. This
corresponds to the case of a thin filament, oriented vertically
and with field along the y axis. The variation of the
magnetization with a change of angle is reversed at a/b <1,
and, as expected, a flat filament, oriented horizontally, has
minimum magnetization when the field is applied along the x-
axis. Finally, the dependence on the angle is stronger at larger
aspect ratio.

With the numerical method, we could obtain the cycles of
magnetization (see Fig. 6). We observe that, except for 8= 0°
and 8= 90°, the magnetic moment is not co-linear with the
applied magnetic induction. These results are in agreement
with (13) and (14).

VI. CONCLUSION

Analytical formulae in 2D have been developed for an
elliptical superconducting filament. The analytical formulae
have been validated by comparison to numerical results
obtained using a code based on finite elements and Bean’s
constitutive law. Using these formulations, we could calculate
the magnetization and obtain the cycle of magnetization in
cases relevant to the strand used for the LHC magnets. We
have studied the influence of the aspect ratio of the ellipse and
the field angle on the magnetization and found variations of
the order of 20 % in the range of expected deformations of the
round filaments.
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Fig. 5. Normalized magnetic moment per unit volume at saturation, parallel to
the applied magnetic field, M, /M; cyiaer as a function of field angle &obtained
from the numerical and analytical methods for the different axis ratios a/b.
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Fig. 6. Cycles of magnetization, (a) parallel and (b) perpendicular to the
applied magnetic field, obtained from the numerical method for the different
field angles 6, where a/b = 1.44.
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