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ABSTRACT 

In this paper, we carry out an analytical computation of the vector potential produced 

in the whole space by a current line located near or within a ferromagnetic cylinder or tube. 

Whenever possible, we determine the image currents that can be used to derive directly the 

contribution from the ferromagnetic material. Most of these cases are relevant to the 

determination of the magnetic field produced by accelerator magnets, and we give the 

expressions of the corresponding multipole field coefficients. 
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FREQUENTLY USED SYMBOLS AND ABBREVIATIONS 

 
ROMAN ALPHABET 

 

a    Distance between the z-axis axis and the current line axis (m). 

a    Complex coordinates of N. 

  a  ON  vector. 

A Complex vector potential.  

  A ,   Ak  Vector potential. 

    Ar , A , Az  Components of the vector potential in a cylindrical 

coordinate system (T.m).  

    Az
im  z-component of vector potential associated with an image 

current line. 

    A1z ,  A2z ,  A3z ,  A4z  z-components of vector potentials in different regions of 

space (T.m). 

b = a – r  Complex coordinates of vector   MN  

  b    MN  vector. 

B  Magnetic flux density vector. 

    Bn1,  Bn2 Normal components of the magnetic flux density on both 

sides of the boundary separating two regions of space with 

different magnetic permeability (T). 

    B
line , Byoke

, Btot   Complex magnetic flux density. 

  B
line  Magnetic flux density vector produced by a current line. 

    An
line, An

yoke, An
tot ,Bn

line,Bn
yoke,Bn

tot  Multipole field coefficients. 

    C0 ,  C0
in ,  C0

co,  C0
ex  Real constants. 

    Cn ,  Cn
in ,  Cn

co,  Cn
ex  Real constants. 

    D0 ,  D0
in ,  D0

co,  D0
ex Real constants. 

    Dn ,  Dn
in ,  Dn

co,  Dn
ex Real constants. 

dl Amplitude of   dl  (m).  

  dl  Elementary distance vector. 

    
E0,  E 2 ,  E 2  Real constants. 

    
F0,  F 2 ,  F 2  Real constants. 

  H Magnetic field vector. 

  H1,  H2  Magnetic field vector in two different regions of space. 

    Ht1,  Ht2  Tangential components of   H1 and H2  on both sides of the 

boundary separating two regions of space with different 

magnetic permeability (T). 

I Intensity of a current line (A). 

  j Current density vector per unit volume. 
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  js  Current density vector per unit area. 

k Integer number. 

Kz, K  Real constants. 

m  Integer number. 

M Given point of space. 

n Integer number. 

N Point corresponding to the position of the current line (–I) in 

the (O,x,y) plane. 

  n12  Normal vector at the interface between two regions of space. 

O Origin of coordinate system. 

r Radius (m). 

  r    OM  vector. 

    R(r ),  R0(r ),  Rk (r )  Part of
    Az which depends on r. 

    
Ry  Salient radius of ferromagnetic yoke. 

s = x + iy = rei  Complex coordinates of M. 

    ur , u ,  uz  Unit vectors of cylindrical coordinate system. 

x Abscissa (m). 

y Ordinate (m). 

z z-coordinate (m). 

 

GREEK ALPHABET 

 

 Real constant. 

    
= Ry1 / Ry2                                    Ratio of radii. 

 Azimuth (rad). 

  ( ) ,  0( ) ,
  

2 ( ), 2 ( )  Part of
    Az which depends on . 

  μ0  = 4 10-7 H/m Magnetic permeability of vacuum. 

  
μr  Relative magnetic permeabilty of ferromagnetic yoke. 

 = 3.141592653589793238462643 
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Figure 1. Cylindrical coordinate system. 

 

1 INTRODUCTION 

The goal of this note is to derive analytical expressions of the multipole field 

coefficients produced by a current line located near or within a ferromagnetic cylinder or tube.  

Such expressions may be used for several purposes, including the computation of the field 

distortions produced by bus bars outside or within accelerator magnets’ iron yokes or near the 

beam tube in a machine such as LHC. 

2 COORDINATE SYSTEM 

The coordinate systems used throughout the paper are defined in Figure 1. 

3 CASE OF A CURRENT LINE ALONE IN FREE SPACE 

3.1 SINGLE CURRENT LINE AT THE COORDINATE SYSTEM ORIGIN  

Let us first consider a current line of intensity, (-I), parallel to the z-axis, and 

crossing the (O,x,y) plane at O, as shown in Figure 2. 

Let M designate a given point of space and let b be the distance between O and M. 
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Figure 2. Single current line in free space located at the coordinate system origin. 
 

The magnetic flux density produced by the current line is given by Ampere’s 

theorem, which, in a cylindrical coordinate system, leads to  

 
    

B =  
μ0I

2 b
u  (1) 

Moreover, the vector potential, A , is defined as  

   B =  rot A  (2) 

In a cylindrical coordinate system, we get 

 

    

B =

1

r

Az A

z

 

 
 

 

 
 ur

1

r

Ar

z

Az

r

 

 
 

 

 
 u

1

r r
(rA )

1

r

Ar
 

 
 

 

 
 uz

  (3)       

Since the problem is infinite along the z-axis and is invariant when rotating around 

this axis, the vector potential does not depend on  and z, and Eq. (3) reduces to 

 

    

B =

0.ur

Az

r
u

1

r r
(rA )uz

 (4) 
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Then, by identifying Eqs. (1) and (4), we derive 

 
    

μ0I

2 b
=

Az

r
 (5) 

and 

 
    

1

r r
(r A ) = 0  (6) 

The integration of Eq. (5) simply gives 

 
    

Az =
μ0I

2
ln b + Kz   (7)  

where 
    
Kz  is a constant which can be set to zero. 

Similarly, the integration of Eq. (6) yields 

 
  

A =
K

b
 (8) 

where 
  
K  is a constant which can also be set to zero. 

Equations (7) and (8) fully determined 
    Az  and   A , while 

    Ar  can assume any 

expression.  For the sake of simplicity, let us choose 

     Ar (r ) = A (r ) = 0         for all r   (9) 

Then, we finally have 

     A = Az (r ) uz   (10) 

where   Az  is given by Eq. (7). 

3.2 SINGLE CURRENT LINE IN FREE SPACE, OUTSIDE THE ORIGIN OF 

THE COORDINATE SYSTEM 

3.2.1 EXPRESSION OF THE VECTOR POTENTIAL 

Let us consider a current line, of intensity, (-I), parallel to the z-axis, and crossing the 

(O,x,y) plane, at a point N, different from O.  The geometry and the notations are those of 

Figure 3. 

Let M designate a given point of space, let b the distance between the current line 

and the point M and r be the distance between the z-axis and the point M, and let a designate 

the distance between the z-axis and the current line. 
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Figure 3. Single current line in free space outside the coordinate system origin. 
 

Furthermore, let a and s be the coordinates in the complex plane of N and M.  In this 

case, if b is vector MN , we have  

 b  =  a – s                                                            (11) 
with 

 a = a      and      s =     re
i                                                (12) 

To pursue, let us rely on the complex formalism that has been developed for two-

dimensional fields {Chapter 7 of Ref. [1]} and let A be the complex potential such that 

       Re(A) = Az    (13) 

From Eqs. (7) and (11), we can write  

 
      

A =
μ0I

2
lnb     for r,  r < a  (14)  

and 

 
      
A =

μ0I

2
ln( b)     for r,  r > a (15) 

Note that Eqs. (14) and (15) satisfy Eq. (13).  In the case of accelerator magnets, Eq. (14) is 

useful for beam optics computation, while Eq. (15) is useful for magnetic computation. 

Let us now distinguish the two cases corresponding to Eqs. (14) and (15). 

3.2.2 DEVELOPMENT IN THE CASE WHERE ar <  

This inequality translates in the complex plane into 
      
s / a <1.  Let us introduce this 

ratio into Eq. (14).  We get 

 
        

A =
μ0I

2
ln(b) =

μ0I

2
ln(a s) =

μ0I

2
ln(a) + ln 1

s

a

 

 
 

 

 
 

 

 
 

 

 
 =
μ0I

2
ln(a) + ln 1

s

a

 

 
 

 

 
 

 

 
 

 

 
   (16) 
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The inequality 
      
s / a <1 leads us to develop       ln(1 r/a)  in Taylor’s series.  With 

Moivre’s formula, this development gives 

 

      

ln 1
s

a

 

 
 

 

 
 =

1

n

s

a

 

 
 

 

 
 

n

=
n=1

1

n

r e
i

a

 

 
  

 

 
  

n=1

n

=
1

n

r

a

 

 
 

 

 
 

n

cos(n ) + isin(n )[ ]
n=1

  (17) 

By combining Eqs. (16) and (17), we get 

      

        

Re(A) =
μ0I

2

1

nn=1

r

a

 

 
 

 

 
 

n

cos(n ) ln(a)

 

 

 
 

 

 

 
 
 (18)  

and by combining Eqs. (13) and (18), we finally obtain 

 
    

Az =
μ0I

2

1

nn=1

r

a

 

 
 

 

 
 

n

cos(n ) +
μ0I

2
ln(a)           for r, 0 < r < a (19)   

3.2.3 DEVELOPMENT IN THE CASE WHERE ar >  

A derivation similar to the one in the previous section leads to 

 
      

Az = Re
μ0 I

2
ln( b)

 

 
 

 

 
 =

μ0 I

2

1

nn=1

a

r

 

 
 

 

 
 

n

cos(n ) +
μ0 I

2
ln(r )          for r, a < r  (20)  

Note that the vector potential is continue at r = a. 

3.3 MULTIPOLE FIELD COEFFICIENTS 

Let us define s as 

       s = x + i y = r e
i  (21) 

and, as done in Ref. [1], let us introduce the complex magnetic flux density,   Bline , defined as 

 
      
Bline (s) = By (x, y) + i Bx( x, y) (22) 

By combining Eqs. (3), (9) and (19), it is easy to show that 

          

    

B
line

=
μ0 I

2

r
n 1

a
n

n=1

sin(n ) ur

cos(n ) u

0.u z

           for r, r < a  (23)     
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If we use cylindrical coordinates, Eq. (22) can be rewritten  

 
      

Bline (s) = By (x, y) + i Bx( x, y)

= (Br sin + B cos ) + i (Br cos B sin )
 (24) 

By combining Eqs. (23) and (24), we get (for r < a) 

 

      

Bline (s) =
μ0I

2

r
n 1

a
n

cos(n 1) + isin(n 1)[ ]
n=1

=
μ0I

2

sn 1

a
n

n=1

 

 (25) 

Introducing the multipole field coefficients     Bn
line

 and  An
line defined as  

 
      

Bline (s) = (Bn
line + i An

line )
s

Rref

 

 
 

 

 
 

n 1

n=1

    for r, r < a (26) 

we simply have 

 
    

Bn
line + i An

line =
μ0I

2 Rref

Rref

a

 

 
 

 

 
 

n

 (27) 

which is identical to the expression given in Ref. [1] in the case of a line of current alone in 

free space. 
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Figure 4. Current line inside a cylindrical ferromagnetic yoke. 
 
 

4 CASE OF A CURRENT LINE LOCALIZED INSIDE A 
CYLINDER CONSTITUTED OF VACUUM, WHOSE OUTSIDE 
IS FERROMAGNETIC 

4.1 GEOMETRY OF THE PROBLEM 

Let us assume that the current line, (–I), is located within a cylindrical hollow space 

of z-axis and of radius, 
y
R , surrounded by a ferromagnetic yoke of relative magnetic 

permeability 
r

μ , as shown in Figure 4.   

The method used thereafter is inspired from Ref. [2].  The vector potential will be 

noted   Ai , with i = 1 in the area 1 where ar < , i = 2 in the area 2 where yRra << , and i = 3 

in the area 3 where yRr > .  It will be determined by superimposing the solution found in the 

case when the current line is alone in free space and the one found in the case when the 

ferromagnetic yoke is alone. 

 

   vacuum  μ0    
       

y
R          

                           ( -I)  

                 O 
           
a     
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4.2 EFFECT OF THE FERROMAGNETIC YOKE WITHOUT THE CURRENT 

LINE 

4.2.1 GENERAL EQUATIONS 

Let us consider the ferromagnetic medium alone, that is to say, without the current 

line (-I), and let us determine the vector potential in the whole space. 

The problem can be solved using Laplace’s equation in cylindrical coordinates 

   A + μrμ0 j = 0  (28) 

Without currents, Eq.(28) reduces to 

   A = 0  (29) 

However, as explained in the previous section, the geometry of the problem is such 

that the vector potential can be taken parallel to the z-axis 

     A = Az uz   (30) 

and, consequently, Eq. (29) can be rewritten   

     Az = 0   (31) 

Then, in cylindrical coordinates, Laplace’s equation becomes 

 
    

r
r

r
Az

r

 

 
 

 

 
 +

2
Az

2
= 0   (32) 

The method of separation of variables leads us to search the solution of Eq. (32) 

under the form 

     Az = R(r ) ( )  (33) 

where a simple consideration of geometry imposes that )( is a   2  periodic function of .  
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Combining Eqs. (32) and (33) yields 

 
    

r

R r
r

R

r

 

 
 

 

 
 +

1
2

2
= 0   (34) 

and 

 
    

r

R r
r

R

r

 

 
 

 

 
 =

1
2

2
  (35) 

The left member of the Eq. (35) is only a function of r, whereas the right member 

only depends on .   Then, we must have 

 
    

r

R r
r

R

r

 

 
 

 

 
 =

1
2

2
= K   (36)    

where K is a real constant that does not depend on r and .  

Three cases have now to be taken into consideration depending on the value of K 

{see differential equations in Ref.  [3]}. 

4.2.2 STUDY OF THE CASE     K = 0   

Equation (36) becomes 

 
    

r

R r
r

R

r

 

 
 

 

 
 =

1
2

2
= 0   (37) 

It follows that is a linear function of the form  

     0 = E0 + F0   (38) 

where     E0  and     F0  are two real integration constants.  The   0 function must be periodical with 

a period of   2 .  Hence, we necessary have:     F0= 0, and the solution of Eq. (37) is 

     0( ) = E0   (39) 

For the radial dependence, we simply have  

         R0(r )=     C0+    D0 ln(r)  (40) 

where     C0  and     D0  are two real integration constants.    
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4.2.3 STUDY OF THE CASE K < 0 

Then, we can write 

     K = 2 (41) 

where is real, and Eq. (36) becomes 

 
    

r

R r
r

R

r

 

 
 

 

 
 =

1
2

2
= 2   (42)    

It follows that is a hyperbolic function of the form  

 
    

2 ( ) = E 2ch( ) + F 2 sh( )   (43)  

where
    
E 2 and  F 2  are two real integration constants.   

The expression given by Eq. (43) cannot be periodical with a period of   2 , except 

when 0=  or 
    
E 2 = F 2 = 0 , which is equivalent to the previous case. 

4.2.4 STUDY OF THE CASE K > 0 

Then, we can write 

     K = 2  (44) 
 
where is real, and Eq. (36) becomes 

 
    

r

R r
r

R

r

 

 
 

 

 
 =

1
2

2
= 2   (45) 

It follows that  is a trigonometric function of the form 

 
    

2 ( ) = E 2 cos( ) + F 2 sin( )  (46) 

where 
    
E 2  and 

    
F 2  are two real integration constants.   

Moreover, the periodicity of  imposes that, for any integer, m, different from zero, 

we must have 

 

    

2 ( ) = E 2 cos( ) + F 2 sin( )

= 2 ( + 2m )

= E 2 cos ( + 2m )[ ] + F 2 sin ( + 2m )[ ]

 (47)                        
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Thus 

 
    
cos( ) = cos ( + 2m )[ ]   and   

    
sin( )= sin ( + 2m )[ ]    for all m (48) 

This condition can only be satisfied if (m ) is an integer.  Since m is an integer, it 

imposes that  be an integer too.  In the following,  will be noted k, where k assumes integer 

values.   Let us simplify the notation by indexing  by k and by writing it under the form 

     k ( ) = Ek cos(k ) + Fk sin(k )  (49) 

where     Ek and Fk  are the real integration constants relative to k. 

In this case, the solution of the radial part, Rk(r), of the equation 

  
    

r

R r
r

Rk

r

 

 
 

 

 
 = k

2   (50) 

is 

     Rk (r ) = Ckr
k

+ Dk r
k   (51) 

where 
kk

 and DC are real integration constants relative to k. 

4.2.5 GENERAL SOLUTIONS 

4.2.5.1 Expressions of the solutions 

The most general solution of Laplace’s equation, taking into account the effect of the 

ferromagnetic medium, is a linear superimposition of all particular solutions   

        
    
Az = Ek cos(k ) + Fk sin(k )[ ](Ck r

k + Dk r
k ) + E0 C0 + D0 ln(r )[ ]

k=1

  (52) 

By symmetry, the vector potential must be invariant when  becomes .  This is 

only possible when kF = 0.  Hence, the general solution can be simplified as 

 
    
Az = Ek cos(k ) Ck r

k + Dk r
k( ) + E0 C0 + D0 ln(r )[ ]

k=1

 (53) 

To pursue, let us distinguish the cases 
y
Rr <  and 

y
Rr > . 
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4.2.5.2 Study of the case yRr <  

Starting from Eq. (53), the vector potential can be rewritten under the form  

 
    
Az = Cn

in cos(n )r
n + Dn

in cos(n )r
n + C0

in + D0
in ln(r )

n=1

 (54) 

where     Cn
in , Dn

in , C0
in and D0

in  are real constants defined as 

 

                                  Cn
in = En Cn ,      Dn

in = En Dn ,      C0
in = E0 C0   and      D0

in = E0 D0                 (55) 

The index ’in’ indicates that the vector potential due to the ferromagnetic yoke is 

computed inside the cylindrical hollow space of radius 
y
R . 

In this case, one can eliminate the terms     Dn
in and    D0

in in Eq. (54) because they 

induce a divergence of the vector potential when r tends towards 0.  Then, Eq. (54) becomes 

 
    
Az = Cn

in cos(n )r
n + C0

in

n=1

     for r, r < 
y
R  (56) 

4.2.5.3 Study of the case 
y
Rr >  

Starting again from Eq. (53), the vector potential can be rewritten under the form 

 
    
Az = Cn

ex cos(n )r
n + Dn

ex cos(n )r
n + C0

ex + D0
ex ln(r )

n=1

 (57) 

 

where     Cn
ex, Dn

ex, C0
ex and D0

ex  are real constants defined as 
 

                                 Cn
ex = En Cn ,  Dn

ex = En Dn ,  C0
ex = E0 C0  and D0

ex = E0 D0   (58) 

 The index ’ex’ indicates that the vector potential due to the ferromagnetic yoke is 

computed outside the cylindrical hollow space of radius 
    
Ry . 

Towards infinity, the vector potential cannot rise faster than ln (r), which imposes 

that the 
    Cn

ex terms be eliminated.  It follows that Eq. (57) can be rewritten 

 
    
Az = Dn

ex cos(n )r
n + C0

ex + D0
ex ln(r )

n=1

       for r, r > 
y
R  (59) 
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4.3 LINEAR SUPERIMPOSITION OF THE VECTOR POTENTIALS DUE TO 

THE CURRENT LINE AND TO THE FERROMAGNETIC YOKE 

To derive the solutions of the problem shown in Figure 4, we simply have to 

superimpose the vector potential due to the current line alone with the one due to the 

ferromagnetic yoke alone.  

4.3.1 EXPRESSION OF THE VECTOR POTENTIAL IN THE AREA WHERE yRar <<  

From Eqs. (19) and (56), the vector potential can be written  

 
    

A1z = Cn
in cos(n )r

n + C0
in

n=1

μ0I

2

1

nn=1

r

a

 

 
 

 

 
 

n

cos(n ) +
μ0I

2
ln(a)  (60) 

which can be simplified into  

 

    

A1z = Cn
in

r
n μ0I

2 n

r

a

 

 
 

 

 
 

n 

 

 
 

 

 

 
 n=1

cos(n ) + C0
in +

μ0I

2
ln(a)  (61) 

4.3.2 EXPRESSION OF THE VECTOR POTENTIAL IN THE AREA WHERE yRra <<  

In this case, from Eqs. (20) and (56), the vector potential can be rewritten  

 

    

A2z = Cn
in

r
n μ0I

2 n

a

r

 

 
 

 

 
 

n 

 

 
 

 

 

 
 n=1

cos(n ) + C0
in +

μ0I

2
ln(r ) (62) 

4.3.3 EXPRESSION OF THE VECTOR POTENTIAL IN THE AREA WHERE yRr >  

In this case, from Eqs. (20) and (59), the vector potential can be rewritten 

 

    

A3z = Dn
ex

r
n μ0I

2 n

a

r

 

 
 

 

 
 

n 

 

 
 

 

 

 
 
cos(n ) + C0

ex +
n=1

D0
ex +

μ0I

2

 

 
 

 

 
 ln(r )  (63) 

4.3.4 METHOD OF DETERMINATION OF THE CONSTANTS OF INTEGRATION 

We finally have to determine the coefficients     Cn
in , Dn

ex, C0
in , C0

ex et D0
ex , which 

appear in Eqs. (61) through (63).  These coefficients can be found by writing the boundary 

conditions at r =
y
R . 
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4.4 RESOLUTION AND SOLUTION OF THE PROBLEM  

The boundary conditions at r =
y
R  are (see Appendix) 

 
    

A2z = A3z( )
r=Ry

  (64) 

and 

 

    

A2z

r
=

1

μr

A3z

r

 

 
 

 

 
 
r=Ry

 (65) 

By combining Eqs. (62), (63) and (64), we find 

 
    
  Cn

in
Ry

n
Dn

ex
Ry

n 

 
 

 

 
 cos(n ) + C0

in
C0

ex
D0

ex ln Ry = 0
n=1

 (66) 

So, by identifying the harmonics terms 

 

   

    

Cn
in

Ry
n

Dn
ex

Ry
n

= 0     for n,  n 1

C0
in = C0

ex + D0
ex ln Ry

 

 
 

  
  (67)               

The vector potential involves an arbitrary constant.  Let us choose     C0
in  = 0.  Then 

 
    
C0

ex = D0
ex ln Ry  (68) 

Similarly, by identifying the harmonics terms, Eq. (65) gives 

 

    

Cn
in

Ry
n 1

+
1

μr

Dn
ex

Ry
n 1

=
μ0I

2 n
1

1

μr

 

 
 

 

 
 

a
n

Ry
n+1

for n,  n 1

D0
ex =

μ0I

2
(μr 1)

 

 

 
 

 

 
 

 (69) 

By combining Eqs. (67), (68) and (69), we find 

 

    

Cn
in =

μ0I

2 n

μr 1

μr +1

 

 
 

 

 
 

a

Ry
2

 

 

 
 

 

 

 
 

n

Dn
ex =

μ0I

2 n

μr 1

μr +1

 

 
 

 

 
 a

n

 

 

 
  

 

 
 
 

      for n, n  1 (70) 
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and 

 
    
C0

ex =
μ0I

2
(μr 1) ln Ry   and   D0

ex =
μ0I

2
(μr 1)   (71) 

By inserting these expressions into Eqs. (61), (62) and (63), we finally get 

 

    

A1z =
μ0I

2

1

n

r

a

 

 
 

 

 
 

n

+
μr 1

μr +1

 

 
 

 

 
 

ar

Ry
2

 

 

 
 

 

 

 
 

n 

 

 
 
 

 

 

 
 
 

cos(n )
n=1

+
μ0I

2
ln(a) for r, r < a < Ry  (72) 

 

    

A2z =
μ0I

2

1

n

a

r

 

 
 

 

 
 

n

+
μr 1

μr +1

 

 
 

 

 
 

ar

Ry
2

 

 

 
 

 

 

 
 

n 

 

 
 
 

 

 

 
 
 

cos(n ) +
n=1

μ0I

2
ln(r ) for r, a < r < Ry  (73)  

    

A3z =
μ0I

2

1

n

2μr

μr +1

 

 
 

 

 
 

a

r

 

 
 

 

 
 

n 

 

 
 

 

 

 
 
cos(n )

n=1

+
μ0I

2
ln(r ) + μr 1( )

μ0I

2
ln

r

Ry

 

 
 

 

 
    for r,  r > Ry  (74) 

Note that, as expected, these expressions are continuous at r = a and 
y
R . 

4.5 IMAGE CURRENT 

To analyse the last results, let us consider the vector potential,    Az
im , created by a 

current line of intensity, 
    

μr 1

μr +1

 

 
 

 

 
 ( I ) , parallel to the z-axis, and located at a distance 

    

Ry
2

a

 

 

 
 

 

 

 
 
 

from this axis.  From Eq. (19), we have 

 

    

Az
im =

μ0I

2

1

n

μr 1

μr +1

 

 
 

 

 
 

ar

Ry
2

 

 

 
 

 

 

 
 

n

cos(n ) +
μ0I

2
ln

Ry
2

a

 

 

 
 

 

 

 
 

n=1

   for r, 
a

R
Rr

2

y

y <<  (75) 

The vector potential is defined with an arbitrary constant.  Let us eliminate the term 

in 

    

ln
Ry

2

a

 

 

 
 

 

 

 
 
 from Eq. (75) and write 

 

    

Az
im =

μ0I

2

1

n

μr 1

μr +1

 

 
 

 

 
 

ar

Ry
2

 

 

 
 

 

 

 
 

n

cos(n )
n=1

    for r, 
a

R
Rr

2

y

y <<    (76) 

 

By superimposing Eqs. (19) and (76), one finds the same expression as in Eq. (72). 
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Figure 5. Image current for the problem of Figure 4 seen from inside the cylindrical hollow space. 

 

Hence, the contribution of the ferromagnetic yoke can be directly calculated with the 

help of this ’image’ current line.  This result is in agreement with the classical results 

published in the literature (p. 72–73 of Ref. [1] and p. 53 of Ref. [4]).  The image current 

method is illustrated in Figure 5. 

4.6 MULTIPOLE FIELD COEFFICIENTS 

Since the contribution from the ferromagnetic yoke is equivalent to that of a single 

current line )(
1

1

r

r
I

+μ

μ
at a distance 

    

Ry
2

a

 

 

 
 

 

 

 
 
 from the z-axis, it follows from section 3.3 that 

the resulting complex magnetic flux density, 
  
B

yoke , is 

 

      

Byoke (s) =
μ0I

2 Rref

μr 1

μr +1

 

 
 

 

 
 

aRref

Ry
2

 

 

 
 

 

 

 
 

n

s

Rref

 

 
 

 

 
 

n 1

n=1

 (77) 

Then, the corresponding multipole field coefficients,     Bn
yoke + i An

yoke, defined from  

 
      

Byoke (s) = (Bn
yoke + i An

yoke )
s

Rref

 

 
 

 

 
 

n 1

n=1

    for r, r < a (78) 

                             

      
y
R            aR /

2

y  

       

                  O    (-I) 
                        
                        a 
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are given by 

 

    

Bn
yoke + i An

yoke =
μ0I

2 Rref

μr 1

μr +1

 

 
 

 

 
 

aRref

Ry
2

 

 

 
 

 

 

 
 

n

 (79) 

Furthermore, by adding the effects of the current line and of the ferromagnetic yoke, 

it follows that the total complex magnetic flux density 
  
B

tot is 

 

      

Btot (s) =
μ0I

2 Rref

1+
μr 1

μr +1

 

 
 

 

 
 

a

Ry

 

 
 

 

 
 

2n 

 

 
 

 

 

 
 

Rref

a

 

 
 

 

 
 

n

s

Rref

 

 
 

 

 
 

n 1

n=1

 (80) 

 

while the corresponding multipole field coefficient, tot

n

tot

n  i AB +  are given by 

 

    

Bn
tot + i An

tot =
μ0I

2 Rref

1+
μr 1

μr +1

 

 
 

 

 
 

a

Ry

 

 
 

 

 
 

2n 

 

 
 

 

 

 
 

Rref

a

 

 
 

 

 
 

n

 (81) 

By comparison with Eq. (27), we find 

 

    

Bn
tot + i An

tot = 1+
μr 1

μr +1

 

 
 

 

 
 

a

Ry

 

 
 

 

 
 

2n 

 

 
 

 

 

 
 
Bn

line + i An
line( ) (82) 

This result is consistent with the results given in Refs. [1] and [4]. 
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Figure 7. Current line outside a ferromagnetic cylinder. 
 

5 CASE OF A CURRENT LINE LOCALIZED OUTSIDE A 
FERROMAGNETIC CYLINLINDER 

5.1 GEOMETRY OF THE PROBLEM 

Let us consider, in the vacuum of permeability,   μ0 , a current line, (–I), localized 

outside a ferromagnetic cylinder of radius, 
y
R , and of relative permeability, 

  
μr , as 

represented in Figure 7.  The z-axis and the current line are parallel and separated by a 

distance, referred to as a.  

The method used thereafter is similar to the one used in section 4.  The vector 

potential will be written 
i

A , with i = 1 in the area 1 where 
y
Rr < , i = 2 in the area 2 where 

arR <<
y

, and i = 3 in the area 3 where ar > . 

Once again, the solution will be determined by superimposing the potential vector 

found in the case where the current line is alone in free space [as given by Eq. (19) for 0 < a 

< r and Eq. (20) for a < r] and the one found in the case where the ferromagnetic yoke is 

alone [as given by Eq. (56) for 
y
Rr <  and Eq. (59) for 

y
Rr > ]. 

 

 

       
y
R        

  
μrμ0

        

 

      O        

        a 
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5.2 LINEAR SUPERIMPOSITION OF THE VECTOR POTENTIALS DUE TO 

THE CURRENT LINE AND TO THE FERROMAGNETIC CYLINDER 

5.2.1 EXPRESSION OF THE VECTOR POTENTIAL IN THE AREA WHERE aRr y <<  

From Eqs. (19) and (56), the vector potential can be written under the form  

 

    

A1z = Cn
in

r
n μ0I

2 n

r

a

 

 
 

 

 
 

n 

 
 

  

 

 
 

  n=1

cos(n ) + C0
in +

μ0I

2
ln(a)  (83) 

5.2.2 EXPRESSION OF THE VECTOR POTENTIAL IN THE AREA WHERE arRy <<   

In this case, from Eqs. (19) and (59), we get 

 

    

A2z = Dn
ex

r
n μ0I

2 n

r

a

 

 
 

 

 
 

n 

 
 

  

 

 
 

  n=1

cos(n ) + C0
ex + D0

ex ln(r ) +
μ0I

2
ln a  (84) 

5.2.3 EXPRESSION OF THE VECTOR POTENTIAL IN THE AREA WHERE ar >  

In this case, from Eqs. (20) and (59), we get 

 

    

A3z = Dn
ex

r
n μ0I

2 n

a

r

 

 
 

 

 
 

n 

 
 

  

 

 
 

  
cos(n ) + C0

ex +
n=1

D0
ex +

μ0I

2

 

 
 

 

 
 ln(r ) (85) 

5.2.4 METHOD OF DETERMINATION OF THE CONSTANTS OF INTEGRATION 

Now, one must determine the coefficients     Cn
in , Dn

ex ,C0
in , C0

ex and D0
ex, which appear 

in Eqs. (83), (84) and (85).  These coefficients can be found by writing the boundary 

conditions at r =
y
R . 

5.2.5 RESOLUTION AND SOLUTION OF THE PROBLEM 

The boundary conditions at r =
y
R  are (see Appendix)       

   
    

A1z = A2z( )
r=Ry

 (86)  

and 

 

    

A2z

r
=

1

μr

A1z

r

 

 
 

 

 
 
r=Ry

 (87) 
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Equation (86) yields 

 
    
 Cn

in
Ry

n
Dn

ex
Ry

n 

 
 

 

 
 cos(n ) + C0

in
C0

ex
D0

ex ln Ry = 0
n=1

  (88) 

Hence, we get 

 

    

Cn
in

Ry
n

Dn
ex

Ry
n

= 0 for n,  n 1

C0
in = C0

ex + D0
ex ln Ry

 

 
 

  
  (89) 

Furthermore, let us choose     C0
in = 0.  It follows that 

 
    
C0

ex = D0
ex ln Ry  (90) 

Equation (87) gives 

 

    

Dn
ex

Ry
2n

+
1

μr

Cn
in =

μ0I

2 n
1

1

μr

 

 
 

 

 
 
1

a
n

     for n, n 1

D0
ex = 0

 

 
 

 
 

 (91)                        

Then, by combining Eqs. (89) and (91), we find 

 

    

Cn
in =

μ0I

2 n

μr 1

μr +1

 

 
 

 

 
 
1

a

 

 
 

 

 
 

n

Dn
ex =

μ0I

2 n

μr 1

μr +1

 

 
 

 

 
 

Ry
2

a

 

 

 
 

 

 

 
 

n

 

 

 
 
 

 

 
 
 

      for n, n  1 (92) 

and by using Eq. (91) 

     C0
in = C0

ex = D0
ex = 0 (93) 

By inserting the above expressions into Eqs. (83), (84) and (85), we finally get  

 

    

A1z =
μ0I

2

1

n

2μr

μr +1

 

 
 

 

 
 

r

a

 

 
 

 

 
 

n 

 

 
 

 

 

 
 
cos(n ) +

μ0I

2
ln(a)

n=1

for r,  0 < r < Ry    (94)  

 

 

    

A2z =
μ0I

2

1

n

r

a

 

 
 

 

 
 

n

+
μr 1

μr +1

 

 
 

 

 
 

Ry
2

ar

 

 

 
 

 

 

 
 

n 

 

 
 
 

 

 

 
 
 

cos(n ) +
μ0I

2
ln(a)

n=1

for r, Ry < r < a  (95) 
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A3z =
μ0I

2

1

n

a

r

 

 
 

 

 
 

n

+
μr 1

μr +1

 

 
 

 

 
 

Ry
2

ar

 

 

 
 

 

 

 
 

n 

 

 
 
 

 

 

 
 
 

cos(n ) +
μ0I

2
ln(r )

n=1

for r,  r > a         (96)       

Note that, as expected, these expressions are continuous at r = 
    
Ry  and a. 

5.3 IMAGE CURRENTS 

Let us add and subtract 

 
    

μ0I

2

μr 1

μr +1

 

 
 

 

 
 ln(r )  (97) 

 
from Eqs. (95) and (96). 

Then, it appears that the vector potential 
    A2z  outside the yoke corresponds to the 

vector potential due to the current line, (–I), and to the effect of the ferromagnetic medium, 

represented by two current lines: a current line of intensity, 
    

μr 1

μr +1

 

 
 

 

 
 ( I ), localized at the 

origin, and a current line of intensity, 
    

μr 1

μr +1

 

 
 

 

 
 ( I ) , localized at the so called point of 

inversion of the exterior current line.  The point of inversion is situated at a distance 

    

Ry
2

a

 

 

 
 

 

 

 
 
 

from the origin.  These current lines are represented in Figure 8. 

Indeed, the potential vector created by the current line (–I), is given by Eqs. (19) and 

(20).  Hence, the one created by a line 
    

μr 1

μr +1

 

 
 

 

 
 ( I ) , located at a distance 

    

Ry
2

a

 

 

 
 

 

 

 
 
 from O, can 

be expressed as 

 

    

Az =
μ0I

2

μr 1

μr +1

 

 
 

 

 
 

1

nn=1

Ry
2

ar

 

 

 
 

 

 

 
 

n

cos(n ) +
μ0I

2

μr 1

μr +1

 

 
 

 

 
 ln(r )       for r, 

    

Ry
2

a

 

 

 
 

 

 

 
 
< r  (98) 

Moreover, the vector potential due to the current 
    

μr 1

μr +1

 

 
 

 

 
 ( I ) localized at the origin is 

 
    

Az =
μ0I

2

μr 1

μr +1

 

 
 

 

 
 ln(r ) (99) 
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Figure 8. Image currents for the problem of Figure 7 seen outside the ferromagnetic cylinder. 

 

By superimposing Eqs. (98) and (99), we eliminate the terms in (ln r) and we get the 

’image’ vector potential,     Az
im  

 

    

Az
im =

μ0I

2

1

n

μr 1

μr +1

 

 
 

 

 
 

Ry
2

ar

 

 

 
 

 

 

 
 

n

cos(n )
n=1

 (100) 

This term is present in Eqs. (95) and (96), where it is added to the contribution of the 

current line (–I) located at a. 

The result is the same as the one presented in Ref. [2] for the case of electrostatic. 
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μ
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μr + 1
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a
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Figure 9. Ferromagnetic tube surrounding a current line. 
 

6 CASE OF A FERROMAGNETIC TUBE OF FINITE INTERNAL 
AND EXTERNAL RADII SURROUNDING A CURRENT LINE 

6.1 GEOMETRY OF THE PROBLEM  

Let us consider a ferromagnetic tube, infinite along the z-axis, of internal radius y1R  

and external radius y2R , of permeability   μrμ0, and surrounding a current line, (–I), localized at 

a distance a from the z-axis.  Furthermore, les us assume that the inside and outside of the 

tube are vacuum of permeability   μ0 , as shown in Figure 9. 

The potential vector will be noted 
i

A  with i = 1 in the area 1 where ar < , i = 2 in 

the area 2 where y1Rra << , i = 3 in the area 3 where y2y1 RrR <<  and i = 4 in the area 4 

where y2Rr > . 

Once again, we will estimate the vector potential by superimposition of the vector 

potentials of the current line [as given by Eqs. (19) and (20)] and of the ferromagnetic tube.  

The potential vector of the tube can be estimated from Eq. (56) in the area y10 Rr << , 

Eq. (53) in the area y2y1 RrR <<  and Eq. (59) in the area y2Rr > . 

 2yR  

 
 
 
 
 
 
 

  μrμ0 
           

            
    
Ry1 

                   

      (-I)  

  μ0              a 
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6.2 LINEAR SUPERIMPOSITION OF THE VECTOR POTENTIAL DUE TO 

THE CURRENT LINE AND DUE TO THE FERROMAGNETIC TUBE 

6.2.1 EXPRESSION OF THE VECTOR POTENTIAL IN THE AREA WHERE ar <  

By combining Eqs. (19) and (56), the vector potential can be written under the form 

 

    

A1z = Cn
in cos(n )r

n

n=1

μ0I

2

1

n

r

a

 

 
 

 

 
 

n

n=1

cos(n ) ln(a)

 

 

 
 

 

 

 
 
+ C0

in  (101) 

6.2.2 EXPRESSION OF THE VECTOR POTENTIAL IN THE CASE WHERE y1Rra <<  

By combining Eqs. (20) and (56), the vector potential can be written under the form 

 

    

A2z = Cn
in cos(n )r

n

n=1

μ0I

2

1

n

a

r

 

 
 

 

 
 

n

n=1

cos(n ) ln(r )

 

 

 
 

 

 

 
 
+ C0

in  (102) 

6.2.3 EXPRESSION OF THE VECTOR POTENTIAL IN THE CASE WHERE y2y1 RrR <<  

By combining Eqs. (20) and (53), the vector potential can be written under the form 

 

    

A3z = (Cn
co

r
n + Dn

co
r

n )cos(n )
n=1

μ0I

2

1

n

a

r

 

 
 

 

 
 

n

n=1

cos(n ) ln(r )

 

 

 
 

 

 

 
 
+ C0

co + D0
co ln(r )  

  (103) 

6.2.4 EXPRESSION OF THE VECTOR POTENTIAL IN THE CASE WHERE rR <y2  

By combing Eqs. (20) and (59), the vector potential can be written under the form 

 

    

A4z = Dn
ex cos(n )r

n

n=1

μ0I

2

1

n

a

r

 

 
 

 

 
 

n

n=1

cos(n ) ln(r )

 

 

 
 

 

 

 
 
+ C0

ex + D0
ex ln(r )  (104) 

6.2.5 METHOD OF DETERMINATION OF INTEGRATION CONSTANTS 

The coefficients     Cn
in , Cn

co, Dn
co, Dn

ex, C0
in , C0

co,     D0
co, C0

ex and D0
ex, which appear in 

Eqs. (101), (102), (103) and (104), have now to be determined.  These coefficients can be 

found by writing the boundary conditions at r = y1R  and r = y2R . 
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6.3 RESOLUTION AND SOLUTION OF THE PROBLEM 

6.3.1 GENERAL FORM OF THE SOLUTION 

The boundary conditions at r = y1R  and r = y2R  are  

     

    

A2z = A3z( )
r=Ry1

μr
A2z

r
=

A3z

r

 

 
 

 

 
 
r=Ry1

 

 

  

 

 
 

 (105) 

and 

 

    

A3z = A4z( )
r=Ry2

μr
A4z

r
=

A3z

r

 

 
 

 

 
 
r=Ry2

 

 

  

 

 
 

 (106)  

By combining Eqs. (101), (102), (103) and (104) with Eqs. (105) and (106), we 

derive the following system 

 

    

Cn
in

Cn
co

Dn
co

Ry1

2n

= 0

Cn
co + Dn

co
Ry2

2n

Dn
ex

Ry2

2n

= 0

μrCn
in

Cn
co + Dn

co
Ry1

2n

=
μ0I

2 n

a

Ry1

2

 

 

 
 
 

 

 

 
 
 

n

(μr 1)

Cn
co + Dn

co
Ry2

2n

μr Dn
ex

Ry2

2n

=
μ0I

2 n

a

Ry2

2

 

 

 
 
 

 

 

 
 
 

n

(μr 1)

 

 

 
 
 
 
 
 

 

 
 
 
 
 
 

for n,  n 1  (107) 

and 

 

    

C0
in

C0
co

D0
co ln Ry1 = 0

C0
co

C0
ex + D0

co ln Ry2 D0
ex ln Ry2 = 0

μ0I

2
(μr 1) D0

co = 0

μ0I

2
(μr 1) + μrD0

ex
D0

co = 0 

 

 

 
 
  

 

 
 
 
 

 (108) 
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The solution of Eq. (107) are 

 

    

Cn
in =

μ0I

2 n
an(μr

2
1)

Ry2
2n Ry1

2n

Ry1
2n

(μr
2 +1)(Ry2

2n Ry1
2n ) + 2μr ( Ry2

2n + Ry1
2n )

 

 

 
 
 
 
 

 

 

 
 
 
 
 

Cn
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μ0I

2 n
an(μr 1)

2μr

(μr
2 +1)( Ry2

2n Ry1
2n ) + 2μr ( Ry2

2n + Ry1
2n )

 

 

 
 

 

 

 
 

Dn
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μ0I

2 n
an(μr 1)

Ry2
2n(μr +1) + Ry1

2n(μr 1)

(μr
2 +1)( Ry2

2n Ry1
2n ) + 2μr ( Ry2

2n + Ry1
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Dn
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μ0I

2 n
an(μr 1)2 (Ry2

2n Ry1
2n )

(μr
2 +1)(Ry2

2n Ry1
2n ) + 2μr (Ry2

2n + Ry1
2n )

 

 

 
 

 

 

 
 

 

 

 
 
 
 
 
 
  

 

 
 
 
 
 
 
 
 

for n,  n 1  (109)  

 

Furthermore, let us choose     C0
in  = 0.  It follows from Eq. (108) that 

 

    

C0
co = D0

co ln Ry1 

C0
ex = C0

co + D0
co ln Ry2   

D0
co =

μ0I

2
(μr 1) 

D0
ex = 0  

 

 

 
 
 

 

 
 
 

 (110) 

which can be simplified into 

 

    

C0
co =

μ0I

2
(μr 1) ln Ry1 

C0
ex =

μ0I

2
(μr 1) ln

Ry2 

Ry1

 

 

 
 

 

 

 
 

D0
co =

μ0I

2
(μr 1) 

C0
in = D0

ex = 0  

 

 

 
 
 
 

 

 
 
 
 

 (111) 

The expressions of the vector potential in the four areas of space are obtained by 

inserting Eqs. (109) and (111) into Eqs. (101), (102), (103) and (104). 
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In area 1, the vector potential has the expression 
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In area 2, the vector potential has the expression 
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In area 3, the vector potential has the expression 
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In area 4, the vector potential has the expression 
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 (115) 

Note that, as expected, these expressions are continuous at r = a, 
    
Ry1 and 

    
Ry2.  Also, they are 

in agreement with results published in the literature (p. 4 of Ref. [5]). 
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Let us introduce 2y1y / RR= , where  assumes values between 0 and 1.  Then, for 

1yRr , the vector potential in area 1 can be written 
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while the one in area 2 becomes 

 

    

A2z =
μ0I

2

1

n

a

r

 

 
 

 

 
 

n

+
μr 1

μr +1

 

 
 

 

 
 

1

1+
4μr

(μr +1)2

2n

1 2n

 

 

 
 
 
 

 

 

 
 
 
 

ar

Ry1
2

 

 

 
 

 

 

 
 

n

 

 

 
 

 

 
 

 

 

 
 

 

 
 

cos(n )
n=1

 +
μ0I

2
ln(r ) for r, a < r < Ry1

 (117) 

6.3.2 CASE WHEN THE EXTERNAL RADIUS TENDS TOWARDS INFINITY 

Let us verify that when the external radius of the ferromagnetic yoke tends towards 

infinity, Eqs. (116) and (117) tend toward Eqs. (72) and (73).  Indeed, when 
    
Ry2 becomes 

very large while 
    
Ry1 is kept constant,  tends towards zero.  Then, we get 
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 (118) 

where we recognize Eqs. (72) and (73).  Similarly, it can also be shown that when 
    
Ry2 tends 

towards infinity, Eq. (114) tends towards Eq. (74). 

6.3.3 CASE WHEN 
    
Ry2  TENDS TOWARDS 

    
Ry1 

Another cross check can be carried out by letting 
    
Ry2 tend towards 

    
Ry1 (which 

corresponds to  tending towards 1).  Then, the ferromagnetic tube disappears and we are left 

with the current line in free space.  In this case, it is easy to verify that Eq. (116) tend towards 

Eq. (19) and that Eqs. (115) and (117) tend towards Eq. (20).  
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6.4 MULTIPOLE FIELD COEFFICIENTS 

Referring to the definition of the complex magnetic flux density given in section 3.3, 

we get from Eq. (116) 
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Hence, the multipole field coefficients     Bn
tot + i An

tot  are given by 
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which can be written 
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It follows that, in this case,     Bn
yoke + i An

yoke are given by 
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where we can verify that when Ry2 tends towards infinity and  tends towards 0, Eq. (122) 

becomes Eq. (79). 
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Figure 10. Current line outside a ferromagnetic tube. 

 

7 CASE OF A CURRENT LINE OUTSIDE A FERROMAGNETIC 
TUBE, WITH FINITE INTERNAL AND EXTERNAL RADII 

7.1 GEOMETRY OF THE PROBLEM 

Let us consider a current line, –I, at a distance, a, from the z-axis of a ferromagnetic 

tube, of internal radius 
    
Ry1 and external radius 

    
Ry2, as shown in Figure 10. 

The vector potential will be noted   Ai , with i = 1 in the area 1 where 
    
r < Ry1, i = 2 in 

the area 2 where 
    
Ry1 < r < Ry2 , i = 3 in the area 3 where 

    
Ry2 < r < a  and i = 4 in the area 4 

where   r > a . 

Once again, we will estimate the vector potential by superimposition of the vector 

potentials of the current line and of the tube, as done in previous sections.  

 

  
    
Ry2 
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    μrμ0 

              
    
Ry1 
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7.2 LINEAR SUPERIMPOSITION OF THE VECTOR POTENTIALS DUE TO 

THE CURRENT AND DUE TO THE FERROMAGNETIC TUBE 

7.2.1 EXPRESSION OF THE VECTOR POTENTIAL IN THE AREA WHERE 
    
r < Ry1 

By combining Eqs. (19) and (56), the vector potential can be written under the form  
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7.2.2 EXPRESSION OF THE VECTOR POTENTIAL IN THE AREA WHERE 
    
Ry1 < r < Ry2 

By combining Eqs. (19) and (53), the vector potential can be written under the form 
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  (124) 

7.2.3 EXPRESSION OF THE VECTOR POTENTIAL IN THE AREA WHERE 
    
Ry2 < r < a  

By combining Eqs. (19) and (59), the vector potential can be written under the form 
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7.2.4 EXPRESSION OF THE VECTOR POTENTIAL IN THE AREA WHERE   a < r  

By combining Eqs. (20) and (59), the vector potential can be written under the form  
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7.2.5 METHOD OF DETERMINATION OF THE CONSTANTS OF INTEGRATION 

Lets now determine the coefficients     Cn
in, Cn

co, Dn
co , Dn

ex, C0
in, C0

co , D0
co, C0

ex      and D0
ex , 

which appears in Eqs. (123), (124), (125) and (126).  These coefficients can be found by 

writing the boundary conditions at r =
    
Ry1 and  r =

    
Ry2. 
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7.3 RESOLUTION AND SOLUTION OF THE PROBLEM 

7.3.1 GENERAL FORM OF THE SOLUTION 

The boundary conditions at r =
    
Ry1 and r =

    
Ry2 are similar to Eqs. (105) and (106), 

but written at the boundaries between mediums 1 and 2 and mediums 2 and 3.  By introducing 

Eqs. (123), (124) and (125), we derive the following system 
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while for the non-harmonic terms, we have 
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The latter equation can be readily simplified into 
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The solution of Eq. (127) is 
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for n,  n 1 (130)    
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Furthermore, let us choose     C0
in  = 0.  It follows from Eq. (129) that 

     C0
in = C0

co = C0
ex = D0

co = D0
ex = 0    (131) 

The expression of the vector potential in the four areas of space is obtained by 

inserting Eqs (130) and (131) in Eq. (123), (124), (125) and (126). 

In area 1, the vector potential has the expression 
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In area 2, the vector potential has the expression 
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In area 3, the vector potential has the expression 
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In area 4, the vector potential has the expression 
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Note that, as expected, these expressions are continuous at r = 
    
Ry1, 

    
Ry2 and a. 

Let us introduce 
    

= Ry1 / Ry2 , where  assumes values between 0 and 1.  Then, the 

vector potential in area 1 can be written 
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while the one in area 3 becomes 
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and we have in area 4 
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7.3.2 CASE WHEN THE INTERNAL RADIUS TENDS TOWARDS ZERO 

Let us verify that when the internal radius of the ferromagnetic yoke tends towards 

zero, Eqs. (137) and (138) tends towards Eqs. (95) and (96).  Indeed, when 
    
Ry1 becomes very 

little while 
    
Ry2 is kept constant,  tends towards zero.   Then, we get 
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where we recognize Eqs. (95) and (96).  Similarly, it can also be shown that when 
    
Ry1 tends 

towards zero, Eq. (133) tends towards Eq. (94). 

7.3.3 CASE WHEN 
    
Ry2  TENDS TOWARDS 

    
Ry1 

Another cross check can be carried out by letting 
    
Ry2 tend towards 

    
Ry1 (which 

corresponds to  tending towards 1).  Then, the ferromagnetic tube disappears and we are left 

with the current line in free space.  In this case, it is easy to verify that Eqs. (136) and (137) 

tend towards Eq. (19) and that Eq. (138) tends towards Eq. (20).  

7.4 MULTIPOLE FIELD COEFFICIENTS 

Referring to the definition of the complex magnetic flux density given in section 3.3, 

we get from Eq. (136) 
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Hence, the multipole field coefficients     Bn
tot

 and  An
totare given by 
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which can be written 
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It follows that, in this case,     Bn
yoke and  An

yokeare given by 
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Note that in Eq. (142), the total multipole coefficients generated inside the tube 

appears somewhat shielded with respect to the coefficients generated by the current line alone 

in free space [multiplication by a factor (1– ), where  is positive]. 
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APPENDIX: BOUNDARY EQUATIONS AT THE INTERFACE 
BETWEEN TWO MEDIUMS OF DIFFERENT MAGNETIC 
PERMEABILITIES 

The boundary equations at the interface between two mediums are derived from 

Maxwell’s equations, judiciously integrated over contour and surface elements on both sides 

of the interface.  In general, they can be written under the form 

 
    Bn1 = Bn2  (144) 

and 

   n12 (H2 H1) = js  (145) 

where   js  is the density of surface currents, 
  n12  is a unit vector perpendicular to the interface 

and directed from medium 1 to medium 2, 
    
Bn  is the component of the magnetic flux density 

parallel to 
  n12 ,   H is the magnetic field, and the indices 1 and 2 relate to the two mediums. 

Let us now translate the above boundary conditions on the vector potential.  

Starting from   B = rotA , we have, by definition of the rotational in cylindrical 

coordinates   
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  (146) 

As we have seen in section 3.1, the vector potential is parallel to the z-axis and is 

independent of z.  Then, Eq. (146) reduces to 
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Figure 11.  Stokes-Ampere’s outline. 
 

In the various problem considered in this paper, the tangential component at the 

interface between the two mediums corresponds to the azimuthal component.  By considering 

that   B =μ0H  in medium 1 (vacuum) and   B = μrμ0Hin medium 2 (ferromagnetic), and 

knowing that there is no real surface current at the interface between the two mediums, 

Eq. (145) can be written  

      Ht1 = Ht2  (148) 

and, with Eq. (147), gives 
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  (149) 

The second boundary condition is obtained by writing Stokes-Ampere’s theorem on 

the contour (C) around the surface (S) represented in Figure 11.  We get 

 
    

A.dl = A2zl A1zl + 0 + 0 = rot A.dS
(S)

= B.dS = Bn1
2

l Bn2
2

l

(S)(C)

 (150) 

which yields 

 
    

A2z A1z = Bn1
2

+ Bn2
2

 (151) 

Then, when  tends toward 0, and if one considers that the magnetic flux density is 

finite at the interface where there are no surface currents, we get 

 
    A1z = A2z   (152) 

 1  2 
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