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Abstract. A major quest in cosmology is the understanding of the nature of dark energy. It is now well known that a combination
of cosmological probes is required to break the underlying degeneracies on cosmological parameters. In this paper, we present a
method, based on a frequentist approach, to combine probes without any prior constraints, taking full account of the correlations
in the parameters. As an application, a combination of current SNIa and CMB data with an evolving dark energy component
is first compared to other analyses. We emphasise the consequences of the implementation of the dark energy perturbations
on the result for a time varying equation of state. The impact of future weak lensing surveys on the measurement of dark
energy evolution is then studied in combination with future measurements of the cosmic microwave background and type Ia
supernovae. We present the combined results for future mid-term andlong-term surveys and confirm that the combination with
weak lensing is very powerful in breaking parameter degeneracies. Asecond generation of experiment is however required to
achieve a 0.1 error on the parameters describing the evolution of dark energy.

Key words. cosmology: cosmological parameters – supernovae – CMB – gravitational lensing – large-scale structure in the
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1. Introduction

Supernovae type Ia (SNIa) observations (Knop et al. 2003, Riess et al. 2004) provide strong evidence that the universe
is accelerating, in very good agreement with the WMAP Cosmic Microwave Background (CMB) results (Bennett et al. 2003,
Spergel et al. 2003) combined with measurements of large scale structures (Hawkins et al. 2003, Tegmark et al. 2004). The
simplest way to explain the present acceleration is to introduce a cosmological constant in Einstein’s equations. Combined with
the presence of Cold Dark Matter, it forms the so-calledΛCDM model. Even if this solution agrees well with current data, the
measured value of the cosmological constant is very small compared to particle physics expectations of vacuum energy, requiring
a difficult fine tuning. A favourite solution to this problem involves the introduction of a new component, called ”dark energy”
(DE), which can be a scalar field as in quintessence models (Wetterich 1988, Peebles & Ratra 1988).

The most common way to study this component is to measure its ”equation of state” (EOS) parameter, defined asw = p/ρ ,
wherep is the pressure andρ the energy density of the dark energy. Most models predict anevolving equationw(z). It has been
shown (e.g., Maor et al. 2001, Maor et al. 2002, Virey et al. 2004a, Gerke & Efstathiou 2002) that neglecting such evolution
biases the discrimination betweenΛCDM and other models. The analysis of dark energy propertiesneeds to take time evolution
(or redshiftz dependence) into account.

Other attractive solutions to the cosmological constant problem imply a modification of gravity (for a review, cf., e.g., Lue
et al. 2004, or Carroll et al. 2005 and references therein). In this case, there is no dark energy as such and thus no dark energy
equation of state. In this paper, we consider only the dark energy solution, keeping in mind that Lue et al. (2004), among others,
have shown that the induced changes in the Friedmann equations could be parameterised in ways very similar to a dark energy
evolving solution.

⋆ “Centre de Physique Théorique” is UMR 6207 - “Unit́e Mixte de Recherche” of CNRS and of the Universities “de Provence”,“de la
Méditerrańee” and “du Sud Toulon-Var”- Laboratory affiliated to FRUMAM (FR 2291).
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As various authors have noted (e.g., Huterer & Turner 2001, Weller & Albrecht 2002), SNIa observations alone will not be
able to distinguish between an evolving equation of state and ΛCDM. This technique indeed requires prior knowledge of the
values of some parameters. In particular, the precision on the prior matter densityΩm has an impact on the constraints on the
time evolution of the equation of statew, even in the simplest flat Universe cosmology (e.g., Virey etal. 2004b).

Extracting dark energy properties thus requires a combinedanalysis of complementary data sets. This can be done by com-
bining SNIa data with other probes such as the CMB, the large scale distributions of galaxies, Lymanα forest data, and, in the
near future, the observation of large scale structure with the Sunyaev-Zeldovich effect (SZ) (Sunyaev & Zeldovich 1980) or with
weak gravitational lensing surveys (WL), which provide an unique method to directly map the distribution of dark matter in the
universe (for reviews, cf., e.g., Bartelmann & Schneider 2001, Mellier et al. 2002; Hoekstra et al. 2002, Refregier 2003, Heymans
et al. 2005 and references therein).

Many combinations have already been performed with different types of data and procedures, (e.g., Bridle et al. 2003, Wang
& Tegmark 2004, Tegmark et al. 2004, Upadhye et al. 2004, Ishak 2005, Seljak et al. 2004, Corasaniti et al. 2004, Xia et al.
2004). All studies have shown the consistency of existing data sets with theΛCDM model and the complementarity of the
different data sets in breaking degeneracies and constraining dark energy for future experiments. But the results differ by as
much as 2σ on the central values of the parameters describing an evolving equation of state.

In this paper, we have chosen three probes, which seem to bestconstrain the parameters of an evolving equation of state
when combined, namely, SNIa, CMB and weak lensing. Considering a flat Universe, we combine the data in a coherent way,
that is to say, under identical assumptions for the dark energy properties for the three probes, and we completely avoid the use
of priors. This had not always been done systematically in all previous combinations. We also adopt a frequentist approach for
the data combination, where the full correlations between the cosmological parameters are taken into account. This method
allows us to provide, simultaneously, confidence intervalson a large number of distinct cosmological parameters. Moreover, this
approach is very flexible as it is easy to add or remove parameters in contrast with other methods.

The paper is organised as follows: In Sec. 2, we describe our framework and statistical procedure, based on a frequentistap-
proach, which can accommodate all parameters without marginalisation. For our simulation and analysis, we use the CMBEASY
package for CMB (Doran 2003), the Kosmoshow program for SNIa(Tilquin 2003) and an extension of the calculations from
Refregier et al. (2003) for weak lensing. In each case, the programs take into account the time evolution of the equation of state
(cf Sec. 2.2 for details).

In Sec. 3, we apply this method to current data sets of SNIa andWMAP data. We first verify that the constraints on the
cosmological parameters estimated with a Fisher matrix technique (Fisher 1935), are consistent with those obtained with a
complete error analysis. We then compare these errors with other works and discuss the differences. In particular, we discuss how
the treatment of the dark energy perturbations can explain some of the differences found in the literature.

In Sec. 4, we study the statistical sensitivities of different combinations of future surveys. We simulate expectations for the
ground surveys from the Canadian French Hawaii Telescope Legacy Surveys (CFHTLS) and new CMB data from Olimpo as
well as the longer term Planck and SNAP space missions. For these future experiments, the results are combined with a Fisher
matrix technique, compared and discussed.

Finally, our conclusions are summarised in Sec. 5.

2. Combination method

In this section, we first summarise the framework used in thispaper, and describe our approach based on frequentist statistics.

2.1. Dark Energy Parametrization

The evolution of the expansion parameter is given by the Hubble parameterH through the Friedmann equation

(

H(z)
H0

)2

= (1+ z)3Ωm +
ρX(z)
ρX(0)

ΩX + (1+ z)2Ωk, (1)

with

ρX(z)
ρX(0)

= exp

[

3
∫ z

0

(

1+ w(z′)
)

d ln(1+ z′)

]

(2)

where the ratio of the dark energy density to the critical density is denotedΩX in a general model andΩΛ in the simplest case
of a Cosmological Constant (w = −1).ΩM is the corresponding parameter for (baryonic+cold dark) matter. Note that we have
neglected the radiation componentΩR. The present total and curvature density parameters areΩ andΩκ = 1 − Ω, respectively.
The present value of the Hubble constant is parameterised asH0 = 100h km s−1 Mpc−1.
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As it is not possible to constrain a completely unknown functional formw(z) of the time evolution of the equation of state,
we adopt a parametric representation of thez dependence of the equation of state. We need this parametricform to fit all the data
sets over a large range ofz: from z ≃ 0 − 1 for the SNIa and weak lensing, up toz ≃ 1100 for the CMB. For this purpose, we
choose the parametrization proposed by Chevallier & Polarski (2001) and Linder (2003) :

w(z) = w0 + waz/(1+ z), (3)

which has an adequate asymptotic behaviour. In this paper, we thus use two parameters,w0 andwa, to describe the time evolution
of the equation of state (see justifications in Linder & Huterer 2005). For this parametrization ofw(z), Eq. 2 reduces to:

ρX(z) = ρX(0)e−3waz/(1+z) (1+ z)3(1+w0+wa). (4)

For a constantw ≡ w0 (wa = 0), the usual formρX(z) = ρX(0) (1+ z)3(1+w0) is recovered.
The comoving distanceχ is defined as

χ(z) =
∫ z

0

c
H(z′)

dz′, (5)

and the comoving angular-diameter distancer(χ) is equal, respectively, toχ, R0sin(χ/R0), R0 sinh(χ/R0), for a flat, closed and
open Universe where the present curvature radius of the universe is defined asR0 = c/(κH0) with respectivelyκ2 ≡ 1,−Ωκ, and
Ωκ.

2.2. Statistical approach

Most recent CMB analysis use Markov Chains Monte Carlo simulations (Gilks et al. 1996, Christensen & Meyer 1998) with
bayesian inference. The philosophical debate between the bayesian and the frequentist statistical approaches is beyond the scope
of this paper (for a comparison of the two approaches see, forinstance, Feldman & Cousins 1998 and Zech 2002). Here, we
briefly review the principles of each approach.

For a given data set, the bayesian approach computes the probability distribution function (PDF) of the parameters describing
the cosmological model. The bayesian probability is a measure of the plausibility of an event, given incomplete knowledge. In
a second step, the bayesian constructs a ’credible’ interval, centered near the sample mean, tempered by ’prior’ assumptions
concerning the mean. On the other hand, the frequentist determines the probability distribution of the data as a function of the
cosmological parameters and gives a confidence level that the given interval contains the parameter. In this way, the frequentist
completely avoids the concept of a PDF defined for each parameter. As the questions asked by the two approaches are different,
we might expect different confidence intervals. However, the philosophical difference between the two methods should not
generally lead, in the end, to major differences in the determination of physical parameters and their confidence intervals when
the parameters stay in a physical region.

Our work is based on the ’frequentist’ (or ’classical’) confidence level method originally defined by Neyman (1937). This
choice avoids any potential bias due to the choice of priors.In addition, we have also found ways to improve the calculation
speed, which gives our program some advantages over other bayesian programs. Among earlier combination studies (e.g.,Bridle
et al. 2003, Wang & Tegmark 2004, Tegmark et al. 2004, Upadhyeet al. 2004, Ishak 2005, Seljak et al. 2004, Corasaniti et
al. 2004, Xia et al. 2004) only that of Upadhye et al. (2004) uses also a frequentist approach.

2.2.1. Confidence levels with a frequentist approach

For a given cosmological model defined by then cosmological parametersθ = (θ1, . . . , θn), and for a data set ofN quantities
x = (x1, . . . , xN) measured with gaussian experimental errorsσx = (σ1, . . . , σN), the likelihood function can be written as:

L(x, σx; θ) =
1
√

2πσi

exp

(

−
(xi − xi,model)2

2σ2
i

)

. (6)

wherexmodel = (x1,model, . . . , xN,model) is a set of corresponding model dependent values.
In the rest of this paper, we adopt aχ2 notation, which means that the following quantity is minimised:

χ2(x, σx; θ) = −2 ln(L(x, σx; θ)) (7)

We first determine the minimumχ2
0 of χ2(x, σx; θ) letting free all the cosmological parameters. Then, to seta confidence level (CL)

on any individual cosmological parameterθi, we scan the variableθi: for each fixed value ofθi, we minimise againχ2(x, σx; θ)
but with n − 1 free parameters. Theχ2 difference,∆χ2(θi), between the new minimum andχ2

0, allows us to compute the CL on
the variable, assuming that the experimental errors are gaussian,
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1− CL(θi) =
1

√
2Ndo f Γ(Ndo f /2)

∫ ∞

∆χ2(θi)
e−t/2tNdo f /2−1dt (8)

whereΓ is the gamma function and the number of degrees of freedomNdo f is equal to 1. This method can be easily extended
to two variables. In this case, the minimisations are performed forn − 2 free parameters and the confidence level CL(θi, θ j) is
derived from Eq. 8 withNdo f = 2.

By definition, this frequentist approach does not require any marginalisation to determine the sensitivity on a single individual
cosmological parameter. Moreover, in contrast with bayesian treatment, no prior on the cosmological parameters is needed. With
this approach, the correlations between the variables are naturally taken into account and the minimisation fit can explore the
whole phase space of the cosmological parameters.

In this study, the minimisations ofχ2(x, σx; θ) are performed with the MINUIT package (James 1978). For the9 parameter
study proposed in this paper, each fit requires around 200 calculations ofχ2. The consumed CPU-time is dominated by the
computation of the angular power spectrum (Cℓ) of the CMB in CMBEASY (Doran 2003). In practice, to get the CLfor one
variable, as shown, for instance, in Fig. 1, the computationof theCℓ is done around 10000 times. The total number of calls to
perform the study presented in Tab. 1, is typically 3 or 4 times smaller than the number of calls in the MCMC technique used by
Tegmark et al. (2004). This method is very powerful for studying the impacts of the parameters: it is not costly to add or remove
parameters because the number ofCℓ computations scales with the number of parameters, in contrast with the MCMC method,
which requires the generation of a new chain.

2.2.2. Combination of cosmological probes with Fisher matrices

In parallel with this frequentist approach, to study the statistical sensitivities of different combinations of future surveys, we
perform a prospective analysis based on the Fisher matrix technique (Fisher 1935). We validate this approach by comparing its
estimates of the statistical errors for the current data setwith those obtained with the frequentist method described above.

The statistical errors on then cosmological parametersθ = (θ1, . . . , θn) are determined by using the inverse of the covariance
matrix V called the Fisher matrixF defined as:

(V−1)i j = Fi j = −
∂2 lnL(x; θ)
∂θi∂θ j

, (9)

whereL(x; θ) is the likelihood function depending on then cosmological parameters and a data set ofN measured quantities
x = (x1, . . . , xN). A lower bound, and often a good estimate, for the statistical error on the cosmological parameterθi is given by
(Vii)1/2.

When the measurements of several cosmological probes are combined, the total Fisher matrixFtot is the sum of the three
Fisher matricesFS N , FWL and FCMB corresponding respectively to the SNIa, weak lensing and CMB observations. The total
covariance matrixF−1

tot allows us to estimate both, the expected sensitivity on the cosmological parameters, with the diagonal
terms, and the correlations between the parameters, with the off-diagonal terms. The Fisher matrices for each probe are computed
as follows.

CMB: In the case of CMB experiments, the data set vectorx corresponds to the measurements ofCℓ, the angular power spectrum
of the CMB fromℓ = 2 to some cutoff ℓmax. Using Eq. 9, the Fisher matrix is written as

(FCMB)i j =

ℓmax
∑

l=2

1

σ2
Cℓ

· ∂Cℓ
∂θi
· ∂Cℓ
∂θ j

(10)

whereσCℓ is the statistical error onCℓ obtained directly from published results or estimated as (see Knox 1995):

σCℓ =

√

2
(2ℓ + 1) fsky

[

Cℓ + (θ f whms)2 · e
ℓ2θ2f whm

8 ln(2)

]

(11)

where the second term incorporates the effects of instrumental noise and beam smearing. In Eq. 11,θ f whm, fsky, ands are respec-
tively the angular resolution, the fraction of the sky observed and the expected sensitivity per pixel.

The Cℓ and their derivatives with respect to the various cosmological parameters are computed with CMBEASY (Doran
2003), an object oriented C++ package derived from CMBFAST (Seljak & Zaldarriaga 1996).

SNIa: The SNIa apparent magnitudesm can be expressed as a function of the luminosity distance as

m(z) = Ms0 + 5log10(DL) (12)
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whereDL(z) ≡ (H0/c) dL(z) is theH0-independent luminosity distance to an object at redshiftz. The usual luminosity distance
dL(z) is related to the comoving angular-diameter distancer(χ) by dL(z) = (1+ z) · r(χ), with the definition ofr(χ) andχ(z) given
in Sec. 2.1. The normalisation parameterMs0 thus depends onH0 and on the absolute magnitude of SNIa.

The Fisher matrix, in this case, is related to the measured apparent magnitudemk of each object and its statistical errorσmk

by

(FS N)i j =
∑

k

1
σ2

mk

· ∂mk

∂θi
· ∂mk

∂θ j
. (13)

Weak lensing: The weak lensing power spectrum is given by (e.g., Hu & Tegmark 1999, cf, Refregier 2003 for conventions)

Cℓ =
9
16

(H0

c

)4

Ω2
m

∫ χh

0
dχ

[

g(χ)
ar(χ)

]2

P

(

ℓ

r
, χ

)

, (14)

wherer(χ) is the comoving angular-diameter distance, andχh corresponds to the comoving distance to horizon. The radialweight
functiong is given by

g(χ) = 2
∫ χh

χ

dχ′ n(χ′)
r(χ)r(χ′ − χ)

r(χ′)
, (15)

wheren(χ) is the probability of finding a galaxy at comoving distanceχ and is normalised as
∫

dχ n(χ) = 1.
The linear matter power spectrumP(k, z) is computed using the transfer function from Bardeen et al.(1986) with the con-

ventions of Peacock (1997), thus ignoring the corrections on large scales for quintessence models (Ma et al. 1999). The linear
growth factor of the matter overdensitiesδ is given by the well known equation:

δ̈ + 2Hδ̇ − 3
2

H2Ωm(a)δ = 0, (16)

where dots correspond to time derivatives, andΩm(a) is the matter density parameter at the epoch correspondingto the dimen-
sionless scale factora. This equation is integrated numerically with boundary conditions given by the matter-dominated solution,
G = δ/a = 1 andĠ = 0, asa → 0 (see eg. Linder & Jenkins 2003). We enforce the CMB normalisation of the power spectrum
P(k,0) atz = 0 using the relationship between the WMAP normalisation parameterA andσ8 given by Hu (2004). Considerable
uncertainties remain for the non-linear corrections in quintessence models (cf. discussion in Hu (2002)). Here, we usethe fitting
formula from Peacock & Dodds (1996).

For a measurement of the power spectrum, the Fisher matrix element is defined as:

(FWL)i j =
∑

ℓ

1

σ2
Cℓ

∂Cℓ
∂θi

∂Cℓ
∂θ j
, (17)

where the summation is over modesℓ which can be reliably measured. This expression assumes that the errorsσCℓ on the lensing
power spectrum are gaussian and that the different modes are uncorrelated. Mode-to-mode correlations have been shown to
increase the errors on cosmological parameters (Cooray & Hu2001) but are neglected in this paper.

Neglecting non-gaussian corrections, the statistical error σCℓ in measuring the lensing power spectrumCℓ (cf., e.g.,
Kaiser 1998, Hu & Tegmark 1999, Hu 2002) is given by:

σCℓ =

√

2
(2l + 1) fsky















Cl +
σ2
γ

2ng















, (18)

where fsky is the fraction of the sky covered by the survey,ng is the surface density of usable galaxies, andσ2
γ = 〈|γ|2〉 is the shear

variance per galaxy arising from intrinsic shapes and measurement errors.

2.3. Cosmological parameters and models

For the studies presented in this paper, we limit ourselves to the 9 cosmological parameters:θ = Ωb,Ωm, h, ns, τ,w0,wa, A
andMs0, with the following standard definitions:
- (Ωi , i=b,m) are densities for baryon and matter respectively (Ωm includes both dark matter and baryons),
- h is the Hubble constant in units of 100 km/s/Mpc,
- ns is the spectral index of the primordial power spectrum,
- τ is the reionisation optical depth,
- A is the normalisation parameter of the power spectrum for CMBand weak lensing (cf Hu & Tegmark (1999) for definitions).
The matter power spectrum is normalised according to the COBE normalisation (Bunn & White 1997), which corresponds
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to σ8 = 0.88. This is consistent with the WMAP results (Spergel et al. 2003) and with the average of recent cosmic shear
measurements (see compilation tables in Mellier et al. 2002, Hoekstra et al. 2002, Refregier 2003).
- Ms0 is the normalisation parameter from SNIa (cf Sec. 2.2.2),
- Dark energy is described by thew0 parameter corresponding to the value of the equation of state atz=0. When thez dependence
of the equation of state is studied, an additional parameterwa is defined (cf Sec. 2.1).

The reference fiducial model of our simulation is aΛCDM model with parametersΩm = 0.27,Ωb = 0.0463,ns = 0.99,
h = 0.72,τ = 0.066,A = 0.86, consistent with the WMAP experiment (see tables 1-2 in Spergel et al. 2003). In agreement with
this experiment, we assume throughout this paper that the universe is flat, i.e.,Ω = Ωm + ΩX = 1. We also neglect the effect of
neutrinos, using 3 degenerate families of neutrinos with masses fixed to 0.

In the following, we will consider deviations from this reference model. For the equation of state, we use as a reference
w0 = −0.95 andwa = 0 as central values (we have not used exactlyw0 = −1 to avoid transition problems in the CMB
calculations). To estimate the sensitivity on the parameters describing the equation of state, we also consider two other fiducial
models: a SUGRA model, with (w0 = −0.8,wa = 0.3) as proposed by, e.g., Weller & Albrecht (2002) to represent quintessence
models, and a phantom model (Caldwell 2002) with (w0 = −1.2,wa = −0.3).

In this analysis, the full covariance matrix on all parameters is used with no prior constraints on the parameters, avoiding
biases from internal degeneracies. We have implemented thetime evolving parametrization of the equation of state in simulations
and analysis of the three probes we consider in this paper, i.e. CMB, SNIa and weak lensing.

3. Combination of current surveys

We first apply our statistical approach to the combination ofrecent SNIa and CMB data, without any external constraints
or priors. The comparison of the statistical errors obtained with a global fit using this frequentist treatment, with those predicted
with the Fisher matrix technique, also allows us to validatethe procedure described in Sec. 2. Finally, we compare our results
with other published results.

3.1. Current surveys

We use the ’Gold sample’ data compiled by Riess et al. (2004),with 157 SNIa including a few atz > 1.3 from the Hubble
Space Telescope (HST GOODS ACS Treasury survey), and the published data from WMAP taken from Spergel et al. (2003).

We perform two distinct analyses: in the first case, the equation of state is held constant with a single parameterw0 and we fit
8 parameters, as described in Sec. 2.2; in the second case, the z dependence of the equation of state is modelled by two variables
w0 andwa as defined in Sec. 2.1, and we fit 9 parameters.

3.2. Results

The results of this frequentist combination of CMB and SNIa data are summarised in Tab. 1. When the equation of state
is considered constant, we obtainw0 = −0.92+0.10

−0.13 (1-σ) and the shape of the CL is relatively symmetrical around thevalue
of w0 obtained at theχ2 minimum. When az dependence is added to the equation of state, the CL is still symmetrical with
w0 = −1.09+0.13

−0.15 but wa becomes asymmetrical with a long tail for smaller values ofwa, as can be seen in Fig. 1. The 1-D CL for
wa gives the resulting CL at 68%(1σ) and 95%(2σ): wa = 0.82+0.21

−0.26
+0.42
−0.80.

Tab. 1 compares the 1σ errors obtained with the frequentist method and the errors predicted with the Fisher matrix techniques.
The agreement is good, and in the remaining part of this paper, for the combination of expectations from future surveys, we will
use the Fisher matrix approach.

However Upadhye et al. (2004) noticed that the high redshiftlimit of the parametrization of the EOS plays an important role
when we consider CMB data which imposew(z → ∞) < 0. With our choice of parametrization (see definition in Eq. 3), we get
the conditionw0 + wa < 0. When a fit solution is found close to this boundary condition, as is the case with the current data, the
CL distributions are asymmetric, giving asymmetrical errors. The Fisher matrix method is not able to represent complicated 2-D
CL shapes, as those shown in Fig. 2. For example, the error onwa increases when the (w0,wa) solution moves away from the
’unphysical’ regionw0 +wa > 0. To avoid this limitation, we will thus use fiducial values of wa closer to zero for the prospective
studies with future surveys.

It is worth noting that the solution found by the fit corresponds to a value ofw slightly smaller than -1 forz = 0, and a value
of w slightly larger than -1 for highz. The errors are such that the value ofw is compatible with -1. However, this technically
means that the Universe crosses the phantom line in its evolution. This region (w < −1) cannot be reached by the fit, if dark
energy perturbations are computed in the CMBEASY version weuse. To obtain a solution and compare with other published
results, we therefore probed two different conditions, both illustrated in Fig. 2.
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Table 1. Results of the frequentist fit to WMAP and Riess et al. (2004) SNIa data. For the 8 parameter fit with a constant EOS, the first column
gives the value of the variable at theχ2 minimum, with the confidence interval at 68% (1σ), the second column shows the 1σ error computed
with the Fisher matrix techniques. The third and fourth columns present thesame information for the 9 parameter fit with az dependent EOS.
The 1σ errors are symmetrical for all the variables except forwa. Its error goes from+0.21

−0.26 for CL at 68% to+0.42
−0.80 for CL at 95% (see text).

constant EOS z dependent EOS
fit σFisher fit σFisher

Ωb 0.049+0.005
−0.003 ±0.003 0.055+0.003

−0.003 ±0.003
Ωm 0.29+0.05

−0.04 ±0.04 0.33+0.04
−0.04 ±0.04

h 0.69+0.03
−0.02 ±0.03 0.69+0.03

−0.02 ±0.03
nS 0.97+0.03

−0.03 ±0.03 0.97+0.03
−0.03 ±0.03

τ 0.13+0.04
−0.04 ±0.04 0.14+0.04

−0.04 ±0.04
w0 −0.92+0.10

−0.13 ±0.11 −1.09+0.13
−0.15 ±0.14

wa - - 0.82+0.21
−0.26 ±0.25

A 0.79+0.08
−0.07 ±0.10 0.80+0.08

−0.07 ±0.10
Ms0 15.94+0.03

−0.03 ±0.03 15.95+0.03
−0.03 ±0.03

 0 w
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Fig. 1. Confidence level (CL) plots on parametersw0 (left) andwa (right), using WMAP and Riess et al. 2004 SNIa data for a 9 parameter fit
with evolving EOS. The dashed lines correspond to the 68%(1σ) and 90%(1.64σ) confidence intervals.

First, we removed altogether the perturbations for the darkenergy, which gives the results presented above. This allows a
comparison with Seljak et al. (2004), who have likely removed dark energy perturbations. Their central value corresponds to
w0 = −0.98+0.38

−0.37 andwa = −0.05+1.92
−1.13 at 95%(2σ). It is closer tow = −1 than our result and gives errors forwa larger than the

ones we get. The comparison is however not exact, since Seljak et al. use a bayesian approach for the fits, and give results for
an evolving equation of state, only for the total combination of the WMAP and SNIa data with other SDSS probes (galaxies
clustering, bias, and Lymanα forest).

We also performed the fits, including dark energy perturbations, only whenw > −1 (which is the default implementation in
CMBFAST). Caldwell & Doran (2005) have argued convincinglythat crossing the cosmological constant boundary leaves no
distinct imprint, i.e., the contributions ofw < −1 are negligible, becausew < −1 dominates only at late times and dark energy
does not generally give strong gravitational clustering. Our analysis, including dark energy perturbations only whenw > −1,
gives a minimum (cf. right hand side plot in Fig. 2) forw0 = −1.32+0.15

−0.19 andwa = 1.2+0.5
−0.8 at 1σ. This is some 2σ away from

the no perturbation case. We remark that these values are very close to those obtained by Upadhye et al.(2004), who use a
procedure similar to ours, without any marginalisation on parameters, a weak constraintw0 +wa ≤ 0 inside their fit. Their result,
w0 = −1.3+0.34

−0.39 andwa = 1.25+0.40
−2.17 at 95%(2σ), has almost the same central value as our fit, when we switch on the dark energy

perturbation forw > −1. The errors we get are also compatible, and are much larger than in the no perturbation case.
The importance and impact of introducing dark energy perturbations has been discussed by Weller & Lewis (2003). Their

combined WMAP and SNIa analysis with a constant sound speed also gives a more negative value ofw, when a redshift
dependence is taken into account. Although Rapetti et al. (2004) observe a reduced effect when they add cluster data, they still
indicate a similar trend. Finally, when dark energy perturbations are included, we observe that the minimisation is more difficult
and correlations between parameters increase.

We conclude that our results are compatible with other published papers using various combinations of cosmological probes.
There is a good agreement of all analysis whenw0 is constant, showing that data agree well with theΛCDM model. However,
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Fig. 2. Confidence level contour plots with WMAP and Riess et al. 2004 SNIa data,for the 9 parameter fit with az dependent EOS in the plane
(w0,wa). The plot on the left hand side corresponds to the case when we introduce no dark energy perturbation. For the plot on the right hand
side, we introduce dark energy perturbations only whenw > −1.

large uncertainties remain for the location of the minimum in the (w0,wa) plane, when a redshift variation is allowed. We
emphasise that this is not due to the statistical method but to internal assumptions. Upadhye et al.(2004) mention the sensitivity
to the choice of parametrization. We show that the introduction of dark energy perturbations forw > −1, can change the minimum
by nearly 2σ and that the minimum is not well established as correlationsbetween parameters increase, and errors, in this zone
of parameter space are very large.

For the sake of simplicity, we decided to present, in the restof this paper, a prospective study without dark energy perturba-
tions, using a Fisher matrix technique.

4. Combination of future surveys

In this section, we study the sensitivity of the combinationof future CMB, SNIa and weak lensing surveys for dark energy
evolution. We expect new measurements from the CHTLS surveys in SNIa and weak lensing in the next few years, which can
be combined with the first-year WMAP together with the expected CMB data from the Olimpo CMB balloon experiment. These
are what we call ’mid term’ surveys.

The combined mid term results will be compared to the ’long term’ expectations from the next generation of observations in
space which are under preparation, i.e., the Planck Surveyor mission for CMB, expected in 2007, and the SNAP/JDEM mission,
a large imaging survey, expected for 2014, which includes both SNIa and weak lensing surveys.

4.1. Mid term surveys

The different assumptions we use for the mid term simulations are as follows, and are summarised in Tab. 3.

CMB: We add to the WMAP data, some simulated CMB expectations from the Olimpo balloon experiment (Masi et al. 2003),
equipped with a 2.6 m telescope and 4 bolometers arrays for frequency bands centered at 143, 220, 410 and 540 GHz. This
experiment will also allow us to observe the first ”large” survey of galaxies cluster through the SZ effect. For this paper, we will
limit our study to CMB anisotropy aspects.

For a nominal 10 days flight with an angular resolutionθ f whm = 4′ and with fsky ≃ 1%, the expected sensitivity per pixel is
s = 3.4× 10−6. We use Eq. 11 to estimate the statistical errorσCℓ on the angular power spectrum.

SNIa: We simulate future SNIa measurements derived from the largeSNLS (2001) ground based survey within the CFHTLS
(2001). This survey has started in 2003 and expects to collect a sample of 700 identified SNIa in the redshift range 0.3 < z < 1, af-
ter 5 years of observations. We simulate the sample, as explained in Virey et al. (2004a) with the number of SNIa shown in Tab. 2,
in agreement with the expected SNIa rates from SNLS. We assume a magnitude dispersion of 0.15 for each supernova, constant
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in redshift after all corrections. This uncertainty corresponds to the most favourable case in which experimental systematic errors
are not considered.

A set of 200 very well calibrated SNIa at redshift< 0.1 should be measured by the SN factory (Wood-Vasey et al. 2004)
project. This sample is needed to normalise the Hubble diagram and will be called the ’nearby’ sample.

Table 2. Number of simulated SNIa by bins of 0.1 in redshift for SNLS+HST and SNAP respectively.

z 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7
SNLS + HST - 44 56 80 96 100 104 108 10 14 7 12 5 2 3 1
SNAP 35 64 95 124 150 171 183 179 170 155 142 130 119 107 94 80

Finally, to be as complete as possible, we simulate a set of 54SNIa, expected from HST programs, with a magnitude disper-
sion of 0.17 for each supernova, at redshifts between 1 and 1.7. Tab. 3 summarises the simulation parameters.

Weak lensing: The coherent distortions that lensing induces on the shape of background galaxies have now been firmly measured
from the ground and from space. The amplitude and angular dependence of this ‘cosmic shear’ signal can be used to set strong
constraints on cosmological parameters.

Earlier studies of the constraints on dark energy from generic weak lensing surveys can be found in Hu & Tegmark (1999),
Huterer (2001), Hu (2002). More recently, predictions for the constraints on an evolvingw(a) were studied by several authors
(e.g., Benabed & van Waerbeke 2004, Lewis & Bridle 2002). We expect, in the near future, new cosmic shear results from the
CFHTLS wide survey (CFHTLS 2001).

In this paper, we will consider measurements of the lensing power spectrumCℓ with galaxies in two redshift bins. We will
only consider modes betweenℓ = 10 and 20000, thus avoiding small scales where instrumentalsystematics and theoretical
uncertainties are more important.

For the CFHTLS survey, we assume a sky coverage of 170◦2. The rms shear error per galaxy is taken asσγ = 0.35 and the
surface density of usable galaxies as 20 amin−2 which is divided evenly into to redshift bins with median redshiftszm = 0.72 and
1.08. The redshift distribution of the galaxies in each redshift bin is taken to be as in Bacon et al. (2000) with the above median
redshifts (cf Tab. 3 for a summary of the survey parameters).We use Eq. 18 to estimate the statistical errorσCℓ .

4.2. Long term survey

The future will see larger surveys both from the ground and space. To estimate the gain for large ground surveys compared
to space, critical studies taking into account the intrinsic ground limitation (both in distance and in systematics) should be done,
and systematic effects, not included here, will be the dominant limitation. Inthis paper, we limit ourselves to the future space
missions.

We simulate the Planck Surveyor mission using Eq. 11 with theperformances described in Tauber et al. (2004). Assuming
that the other frequency bands will be used to identify the astrophysical foregrounds, for the CMB study over the whole sky, we
consider only the three frequency bands (100, 143 and 217 GHz) with respectively (θ f whm = 9.2′, 7.1′ and 5.0′) resolution and
(s = 2.0 10−6, 2.2 10−6 and 4.8 10−6) sensitivity per pixel.

We also simulate observations from the future SNAP satellite, a 2 m telescope which plans to discover around 2000 identified
SNIa, at redshift 0.2< z <1.7 with very precise photometry and spectroscopy. The SNIadistribution, given in Tab. 2, is taken
from Kim et al. (2004). The magnitude dispersionσ(m)disp is assumed to be 0.15, constant and independent of the redshift, for
all SNIa after correction. Moreover, we introduce an irreducible systematic errorσ(m)irr following the prescription of Kim et al.
(2004). In consequence, the total error on the magnitudeσ(m)tot per redshift bini, is defined as:σ(m)2

tot,i = σ(m)2
disp/Ni +σ(m)2

irr
whereNi is the number of SNIa in the ith 0.1 redshift bin. In the case ofSNAP,σ(m)irr is equal to 0.02.

The SNAP mission also plans a large cosmic shear survey. The possibilities for the measurement of a constant equation of
state parameterw with lensing data were studied by Rhodes et al. (2004), Massey et al. (2004), Refregier et al. (2004). We extend
here the study in the case of an evolving equation of state. Weuse in the simulation the same assumptions as in Refregier etal.
(2004) with a measurement of the lensing power spectrum in 2 redshift bins, except for the survey size, which has increased from
300◦2 to 1000◦2 (Aldering et al. 2004) and for the more conservative range ofmultipolesℓ considered (see§4.1).

The long term survey parameters are summarised in Tab. 3.

4.3. Results

The combination of the three data sets is performed with, andwithout, a redshift variation for the equation of state, forboth
mid term and long term data sets.
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Table 3. Simulation inputs for CMB, SNIa and Weak Lensing observations

CMB surveys
fsky f(GHz) θfwhm(′) s(10−6)

Current WMAP (Spergel et al.(2003)) full sky 23/33/41/61/94 13 -
Data

Mid term Olimpo 0.01 143/220/410/540 4 3.4
Data +WMAP

Long term full Sky 100 9.2 2.0
data Planck 143 7.1 2.2

217 5.0 4.8
SN surveys

SN # Redshift range Statistical error Systematic error
Current Riess et al. (2004)+ HST 157 z < 1.7 ∼ 0.25 -
Data

Mid term SNfactory 200 z < 0.1 0.15 -
Data SNLS 700 0.3 < z < 1 0.15 -

HST 54 1< z 0.17

Long term SNfactory 300 z < 0.1 0.15
Data SNAP 2000 0.1 < z < 1.7 0.15 0.02

WL surveys
zm (2 bins) A(deg2) total ng(amin−2) σγ

Mid term CFHTLS 0.72, 1.08 170 20 0.35
Data

Long term SNAP 0.95, 1.74 1000 100 0.31
Data

The different plots in Fig. 3 show the results for individual mid termprobes and for their combination. The results are for a
constantw0, plotted as a function of the matter densityΩm. The combined contours are drawn using the full correlationmatrix
on the 8 parameters for the different sets of data.

The SNLS survey combined with the nearby sample will improvethe present precision onw by a factor 2. The expected
contours from cosmic shear have the same behaviour as the CMBbut provide a slightly better constraint onΩm and a different
correlation withw: CMB and weak lensing data have a positive (w,Ωm) correlation compared to SNIa data, which have a negative
correlation. This explains the impressive gain when the three data sets are combined, as shown in Tab. 4. Combining WMAP
with Olimpo data, helps to constrainw through the correlation matrix as Olimpo expects to have more information for the large
ℓ of the power spectrum.

Fig. 4 gives the expected accuracy of the mid term surveys on the parameters of an evolving equation of state. The CL
contours plots ofwa versusw0, are obtained with a 9 cosmological parameter fit. Here also,we observe a good complementarity:
there is little information on the time evolution from SNIa with no prior, while the large redshift range from CMB data is adding
a strong anti-correlated constraint onwa.

A combined analysis proves far superior to analysis with only SNIa. In the favourable case, where we add more SNIa from
HST survey, we expect a gain of a factor 2 on the errors, but it is not enough to lift degeneracies and the expected precisionon
wa with these data will not be sufficient to answer questions on the nature of the dark energy.

The simulated future space missions show an improved sensitivity to the time evolution of the equation of state. The accuracy
on wa for the different combinations are summarised in Tab. 4. There is again alarge improvement from the combination of the
three data sets. The precision, for the long term surveys, will be sufficient to discriminate between the different models we have
chosen, as shown in the left hand side plot of Fig. 5 and in Tab.5, while it is not the case for the mid term surveys. This figure
illustrates, moreover, that the errors onwa andw0, and the correlation between these two variables are strongly dependent on the
choice of the fiducial model.

More generally, the combination of the probes with the full correlation matrix allows the extraction of the entire information
available. For instance, the large correlation betweennS andwa observed for the weak lensing probe combined with the precise
measurement ofns given by the CMB, gives a better sensitivity onwa than the simple combination of the twowa values, obtained
separately for the CMB and weak lensing. Such an effect occurs for several other pairs of cosmological parameters considered
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Fig. 3. CL contours for mid term CMB (WMAP+Olimpo), SNIa and weak lensing data from CFHTLS and the combination of the three probes
for the 8 parameter fit in the plane (Ωm,w0) (see also Tab. 4). The solid lines represent 68% (1σ), 95% (2σ), and 99% CL contours.

Table 4. Expected sensitivity on cosmological parameters for three scenarii: Current supernova and CMB experiments (WMAP and Riess et
al.2004), mid term experiments (CFHT-SNLS (supernova surveys),CFHTLS-WL (weak lensing) and CMB (WMAP+Olimpo)), long term
experiments (CMB (Planck) and SNAP (supernovae and weak lensing)). For each scenario, the first column gives the 1σ error computed
with the Fisher matrix techniques for the 8 free parameter configuration and the second columns gives the 1σ error for the 9 free parameter
configuration.

Scenario Today Mid term Long Term
Ωb 0.003 0.004 0.001 0.002 0.0008 0.0008
Ωm 0.04 0.04 0.01 0.01 0.004 0.004
h 0.03 0.03 0.01 0.01 0.006 0.006
ns 0.03 0.03 0.006 0.009 0.003 0.003
τ 0.05 0.04 0.01 0.01 0.01 0.01
w0 0.11 0.22 0.02 0.10 0.02 0.04
wa − 0.99 − 0.43 − 0.07
A 0.10 0.10 0.02 0.02 0.02 0.02
Ms0 0.03 0.03 0.01 0.01 0.01 0.01

in this study. The plot, in the right hand side of Fig 5, is an illustration of this effect. It shows the combination of the 3 probes in
the (w0,wa) plane. The 1σ contour for the combined three probes, is more constrainingthan the 2-D combination in the (w0,wa)
plane of the three probes.

Finally, in the long term scenario, the weak lensing probe provides a sensitivity on the measurement of (w0,wa) comparable
with those of the combined SN and CMB probes, whereas in the mid term scenario the information brought by weak lensing
was marginal. This large improvement observed in the information provided by the weak lensing, can be explained by the larger
survey size and the deeper volume probed by SNAP/JDEM, compared to the ground CFHTLS WL survey. We thus conclude
that adding weak lensing information will be an efficient way to help distinguishing between dark energy models. If systematic
effects are well controlled, the future dedicated space missions may achieve a sensitivity of order 0.1 onwa.
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Fig. 4. CL contours for mid term CMB (WMAP+Olimpo), SNIa and weak lensing data from CFHTLS and the combination of the three probes
for the 9 parameter fit in the plane (w0,wa) (see also Tab. 4). The solid lines represent 68% (1σ), 95% (2σ), and 99% CL contours.

Table 5. Expected sensitivity on cosmological parameters for the long term missions with CMB (Planck) and SNAP (supernova surveys and
weak lensing) for the 9 free parameter configuration.

Model ΛCDM SUGRA Phantom
Ωb 0.0008 0.0008 0.0007
Ωm 0.004 0.004 0.003
h 0.006 0.006 0.005
nS 0.003 0.003 0.003
τ 0.01 0.01 0.01
w0 0.04 0.04 0.03
wa 0.07 0.06 0.14
A 0.02 0.02 0.02
Ms0 0.015 0.014 0.013

The SNAP/JDEM space mission is designed, in principle, to control itsobservational systematic effects for SNIa to the %
level, which is probably impossible to reach for future ground experiments. In this study, we assign an irreducible systematic
error on SNIa magnitudes of 0.02 and systematic effects have been neglected for CMB and weak lensing. This can have serious
impacts on the final sensitivity, in particular, on the relative importance of each probe.

Other probes, whose combined effects we have not presented in this paper, but intend to do in forthcoming studies, remain
therefore most useful. For example, the recent evidence forbaryonic oscillations (Eisenstein et al. 2005) is a proof that new
probes can be found. The present constraints that these results provide, do not improve the combined analysis we presenthere.
However, getting similar results from different probes greatly contributes to the credibility of a result, in particular, when the
systematical effects can be quite different, as is the case for the different probes we consider. Finally, the joint analysis of cluster
data observed simultaneously with WL, SZ effect and X-rays, will allow the reduction of the intrinsic systematics of the WL
probe.
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Fig. 5. CL contours for future space data from SNAP (SNIa and WL) and Planck (CMB) for a 9 parameter fit in the plane (w0,wa). The left hand
side figure shows the combination of SNAP (SNIa+WL) and CMB for three different models (ΛCDM, SUGRA and Phantom). The solid lines
represent 68% (1σ), 95% (2σ), and 99% CL contours. The right hand side figure shows the CL for thecombined three ”long term” probes.
The solid lines are the 1σ contours for different combinations: WL alone, combined SNIa and CMB, and the three combined probes.

5. Conclusions

In this paper, we have presented a statistical method based on a frequentist approach to combine different cosmological
probes. We have taken into account the full correlations of parameters without any priors, and without the use of Markov chains.

Using current SNIa and WMAP data, we fit a parametrization of anevolving equation of state and find results in good
agreement with other studies in the literature. We confirm that data prefer a value ofw less than -1 but are still in good agreement
with theΛCDM model. We emphasise the impact of the implementation of the dark energy perturbations. This can explain the
discrepancies in the central values found by various authors. We have performed a complete statistical treatment, evaluated the
errors for existing data and validated that the Fisher matrix technique is a reliable approach as long as the parameters (w0,wa) are
in the ‘physical’ region imposed by CMB boundary condition:w(z→ ∞) < 0.

We have then used the Fisher approximation to calculate the expected errors for current surveys on the ground (e.g., CFHTLS)
combined with CMB data, and compared them with the expected improvements from future space experiments. We confirm that
the complete combination of the three probes, including weak lensing data, is very powerful for the extraction of a constantw.
However, a second generation of experiments like the Planckand SNAP/JDEM space missions is required, to access the variation
of the equation of state with redshift, at the 0.1 precision level. This level of precision needs to be confirmed by furtherstudies
of systematical effects, especially for weak lensing.
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