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ABSTRACT

We propose a method which allows the matching of two classes of models

which have been well developed so far, but largely independently from each

other: (i) Convection zone (CZ) models, which generally either end up below

the photosphere or are matched with an external potential field. (ii) Coronal

models of eruptive processes and heating, which usually consider the evolution

of current carrying magnetic fields driven by given photospheric changes. In our

approach, the thin turbulent photospheric layer between the two large regions

is modelled by a resistive layer across which the physical quantities suffer stiff

variations. We show that this layer enables the transport of an electric current

into the corona through the tangential component of the electric field (continuous

across the various interfaces), as well as a good conservation of the global mag-

netic helicity. To illustrate our general approach, we present in details the model

problem in which the rising of an initially twisted flux rope throughout the CZ

is described kinematically while the physics inside the corona is described by a

full MHD model. We show that the evolution leads to the emergence of magnetic

flux and electric current into the corona, with the creation of a flux rope suffering

eventually a dynamical transition towards a fast expansion.
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1. INTRODUCTION

It is now well admitted that, in the solar corona, the heating processes and the big

eruptive phenomena are powered by the energy of the magnetic field generated by both global

and localized dynamo actions at the bottom and inside the convection zone (CZ; see, e.g., Fan

(2004)). Actually, there are subtle interactions between the field and turbulent convection

and rotation which lead to many interesting features. Various patterns are produced, such as

granulation, supergranulation, and magnetic field concentrations in the photospheric layer.

Large scale flux tubes escape occasionally from the strong toroidal field production zone and

find their way through the CZ, eventually piercing the photosphere and emerging into the

corona as twisted ropes. More generally, emerging tubes feed the network outside active

regions where they contribute via reconnection processes to the coronal heating.

Most of the MHD CZ models are largely disconnected from the solar atmosphere. For

instance, in standard dynamo or convection simulations, the vertical component of the ve-

locity is imposed to vanish at the top of the numerical box, while the field is assumed either

to be confined by that boundary or to match thereon with an external potential field (e.g.,

Brun et al. (2004)). Smaller scales are considered in another class of models in which it

is the emergence through the stiff photosphere of an individual flux rope launched not too

deep in the CZ which is tentatively tackled (Fan 2001; Magara & Longcope 2003; Abbett

& Fisher 2003; Magara 2004; Manchester IV et al. 2004). In these works, there is a large

horizontal component of the velocity field and then a cell-like structure of the motions. Fi-

nally, there are also recent alternative attempts in which it is the role of purely vertical

motions in the transfer of energy and helicity which is investigated (Fan & Gibson 2003,

2004; Amari et al. 2004), but of course such an approach neglects the cell-like character of

the convection structure. On the other hand, most of the coronal models presented so far

(e.g., Amari et al. (2003b,a)) qualify to be members of the class of tangential electric field

boundary value problems, as they try to determine the evolution of a current carrying (at

least force-free) magnetic field driven by given flows or magnetic flux variations occurring

at the photospheric level (see Zhang & Low (2005) for a review). In particular, they have

focussed in that framework on the question of the storage and release of energy and helicity.

It thus appears that an important task is to make a large scale CZ model to match with

a realistic coronal model, which would ensure in particular the consistent transfer of helicity

from the CZ into the corona and would make the CZ state being dependent on the coronal

one. The main purpose of this Letter is to make a step towards such a goal by introducing

the Resistive Layer Model (RLM). Precisely, we would like with the latter to address the

following issue: How to “close” a subphotospheric MHD model in order to naturally allow the

transfer of magnetic energy and helicity into the solar corona through non current-free fields.
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This problem represents a serious numerical challenge as we have to solve a global MHD

problem including both the large scale CZ and atmosphere and their small scale boundary

layer interface through which the physical quantities suffer very stiff changes.

The key quantity controlling the transfer of energy and helicity between two regions

has been abundantly shown in our previous studies to be the parallel component Es of

the electric field. Thus our approach here is based on following up the value of the latter

throughout a turbulent photospheric boundary layer in which the effective resistivity is larger

than in the CZ just below and in the corona above, and that we modelize by a resistive layer.

Basically, Es is continuous during this crossing, but its expression changes from an inductive

form (related to the convection flow) near the top of the CZ to a resistive form inside the

photospheric layer and again to an inductive form at the basis of the corona, where it acts

as the driver of an evolution in which force-free magnetic fields are naturally produced.

The RLM is described in general terms in Sect. 2. In Sect. 3, it is illustrated by the

computation of a case in which an initially twisted flux rope is kinematically raised by a

convection cell in the CZ and evolves in a full MHD way after its emergence in the corona.

2. THE RESISTIVE LAYER MODEL

We take the solar corona, the CZ, and their interface to be represented, respectively, by

the upper half-space Ω+ = {z > 0}, the lower one Ω
−

= {z < 0}, and the plane Γ = {z = 0}.

We assume that two MHD models are available for determining for all t > 0 the evolution

in Ω+ and Ω
−
, respectively, of a state {B,v, p, ρ} (with standard notations). Moreover, we

suppose that the normal component of the velocity vanishes on Γ (vz = 0). We recall that,

from Ohm’s law, we have for the horizontal component of the electric field at any point

Es = ẑ × (Bzvs − vzBs) + ηjs, (1)

where η is the magnetic diffusivity and Xs = Xxx̂+Xyŷ. This quantity which is continuous

accross any interface will play a basic role hereafter.

Let us first take the plasma to be perfectly conducting in both domains, whence Es =

ẑ × v+
s Bz = ẑ × v−

s Bz on Γ by Eq. (1) (the +/− indicate a value just above/under an

interface). Therefore v+
s = v−

s and we just get a generic shearing-like boundary condition

for the field in Ω+, with the associated injection of magnetic helicity depending on the only

component Bz of B (the component Bs has disappeared from the expression of Es, in con-

trast with the situation considered in Amari et al. (2004)). But Bs contributes in general to

the creation of a nonzero normal component of the electric current on Γ
−,+.
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Let us now introduce at the top of Ω
−

a thin resistive layer ΩRBL of width zRBL –

i.e., a region of nonzero resistivity which may be thought to mimic the turbulent pho-

tosphere at the top of the CZ in which an effective resistivity enhancement is expected.

Then ΩRBL is comprised between the upper plane Γu
RBL = Γ and the new lower interface

Γl
RBL = {z = −zRBL}, and Es is continuous across both of them. On Γu

RBL, we have now

Es = ẑ×v−

s Bz + ηj−s = ẑ×v+
s Bz. The second term in the middle member is crucial since it

shows that the MHD state in Ω
−

depends on the one in Ω+ through B. In principle, the ker-

nel in Ω+ could be : (i) Potential : B = ∇Φ, with ∆Φ = 0, ∂zΦ(x, y, 0, t) = g(x, y, t).

(ii) Force-free: ∇ × B = αB, Bz(x, y, 0, t) = g(x, y, t) and α(x, y, 0, t) = h(x, y, t) on

{r ∈ Γ | Bz(r, t) > 0}, with h being determined by Bs in ΩRBL. (iii) MHD: B is ob-

tained by solving the full set of MHD equations. As noted in the Introduction, option (i) is

often adopted for closing dynamo models (e.g., Brun et al. (2004)); option (ii) seems to have

never been implemented so far, while option (iii) is the one considered here.

In order to fix an adequate value of zRBL, we consider the various length and time

scales involved in the problem. We first define the return layer in Ω
−

to be the layer of

thickness ∆RL in which v switches from an almost vertical direction to an horizontal one in

order to match the condition vz |Γ= 0, and assume that ∆RL << LC , with LC the global

length scale of the domain. As shown in Amari et al. (2003b,a, 2004), the key quantity to

transfer magnetic helicity into Ω+ is Es, and the latter was efficiently determined in our

previous kinematic model (Amari et al. 2004) by the imposed purely vertical velocity field

v
−

= vz(x, y)ẑ. We therefore choose as a first condition (C1): ∆RL ≈ zRBL. Accross Γl
RBL,

the expression of Es switches from the ideal form Es = −ẑ × vzB
−

s valid below (we neglect

here the weak horizontal velocity) to a resistive form, and it switches back from a resistive

form to an ideal one on Γu
RBL. The net effect may be described as a transfer through ΩRBL

of the parallel component Bs of the field from the region in Ω
−

where vz is non zero into Ω+.

Next we introduce the diffusion time τD associated to zRBL, the characteristic convection

time τC associated to LC and the characteristic time τMHD associated to the coronal MHD

evolution (typically τMHD = τAlfven). In order to have the magnetic field convected in

Ω
−

not diffusing before being transferred upwards, we impose τD ≫ τC . As zRBL ≪ LC

(C1), this is obtained by requiring (C2) η being not too large. As a last condition (C3),

we demand that τC > τMHD so that the coronal evolution should adapt to subphotospheric

changes (either quasi-statically or at most on the wave crossing time scale). This is fullfiled

by taking vC 6 vMHD (vC ≪ vAlfven in the case considered below).
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3. RESULTS AND DISCUSSION

We consider in this section a version of the RLM in which the model in Ω
−

describes

kinematically the convection of a flux rope. All the quantities used below are written in

nondimensionalized form as in Amari et al. (1999). We first fix the conditions in Ω
−
, rep-

resented in our simulations by the domain Ωh
−

= [0, 200]× [0, 200]× [−10, 0]. Following Fan

(2001) and Amari et al. (2004), we take the initial magnetic field to be given by

B0 = B0e
−[y2+(z−z0)2]/a2

[x̂ − q(z − z0)ŷ + qyẑ], (2)

with q = −2, z0 = −5, a = 2, and B0 = 2. B0 describes a rope which is cylindrically

symmetric about the axis {y = 0, z = z0} and has a twist controlled by the parameter q.

The shape of the field lines are shown in Figure 1.

The velocity field advecting B for t ≥ 0 is chosen to be of the form v(x, y, z) =

v0f(x)∇Ψ(y, z) × x̂, with f(x) = e
−

(x−xc)2

σ
2
x and

Ψ(y, z) = (y − yc)
2 n+1

(

1 −
(y − yc)

2 p

R1

2 p

)(

1 −
(y − yc)

2 q

R2

2 q

)

×

tanh
(z

d

)

tanh

(

z + Lz

d

)

(

1 +
(y − yc)

2 s

R3

2 s

)

−1

. (3)

The following values of the parameters are selected: xc = yc = 100, σx = 10, R1 = 10,

R2 = 100, R3 = 10, p = 1, q = 1, s = 4, d = 1, Lz = 10, and v0 = 10−2 (as vA = 1 in our

units, condition C3 is fulfilled). v is clearly incompressible, contrarily to the velocity used

in Amari et al. (2004), and it may be shown to describe the motion taking place in: (i) A

simple generic convection cell forcing the central part of the rope to rise, with a return layer

of width ∆RL = 2 in which matching with the tangential boundary condition is achieved –

see Figure 2 representing the contours of the Ψ function; note that the invariance along the

x-axis is broken by the introduction of the function f . (ii) Two weak external half-cells in

which the flow decreases very rapidly near the boundaries. In the upper part of Ω
−
, we im-

pose a resistivity of the form η(x, y, z) = η0 exp[−(z− zc)
2/σ2

z ], with η0 = 10−3 and zc = −1.

This defines our resistive layer Ωh
RBL, which has zRBL = σz = 0.5 – hence C1 is fulfilled.

In the representation Ωh
+ of the coronal part Ω+, there is initially no background field,

and the evolution of the field and the plasma for t ≥ 0 is controlled by only imposing on the

boundary the tangential electric field defined by equation (1) with vz = 0.
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In Ωh
−

, the convection-diffusion equation for B is solved numerically on a nonuniform

mesh of size 160x158x110 nodes. In Ωh
+, the evolution is governed by the usual system of

MHD equations with zero resistivity (see Sect. 4.1 of Amari et al. (2003a)). Small values

are used for the kinematic viscosity (ν = 10−2 − 10−3), the plasma β is either set to zero or

to 10−3 – the actual coronal value – with no differences appearing, and the initial density ρ

is set to 1. The MHD equations are discretized on a nonuniform mesh of size 160x158x110

nodes, and solved by using our semi-implicit scheme (Amari et al. 1999). Note that due to

the definition of the RBL through a resistivity profile, the transition between Ωh
+ and Ωh

−

is

sharp but much less than in the idealized case of two non-overlapping domains.

We now describe the main features of the evolution of B: (i) While in the case η = 0

(which was run for a test) the twisted flux rope in Ω
−

is strongly deformed, but no flux is

transferred through Γ, emergence occurs when η 6= 0 as clearly shown by panels (b)-(d) of

Figure 1. (ii) As seen on Figure 1, there is emergence of both magnetic flux (see also panel

(b) of Fig. 3) and electric current (shear appears to be present in Ω+). This shows that a

closure of the MHD model in Ω
−

by a current carrying solution in Ω+ can be performed only

in the presence of resistivity when the condition vz = 0 is imposed on Γ. (iii) As magnetic

flux and electric current emerge, there exists a critical time tfl > 0 at which the magnetic

topology switches from an arcade type to a flux rope type (see panel (b) of Fig. 1). This

transition occurs while the rate of increase of the magnetic flux on Γ starts decreasing. (iv)

As t increases the configuration inflates much more rapidly as shown by the variation of the

kinetic energy (panel (a) of Fig. 3). Eventually, it reaches the top of the domain, exhibiting

a dynamic transition at some critical time tc, 0 < tfl < tc ( panel (c) of Fig. 1). (v) The

energy Wpot of the potential field having a distribution of Bz on {z = 0} identical to that of

B, first increases and thus decreases at a finite rate as shown on panel (1) of Figure 3. It is

worth noticing that the energy W of the configuration decreases at a much smaller rate than

Wpot. Unlike the case of the purely vertical CZ flow considered in Amari et al. (2004), the

total relative magnetic helicity (panel (b) of Fig. 3) does not keep increasing at the same

rate, but seems to saturate at a value outside the limits of the simulations.

We conclude with a brief summary of the main characteristics of the RLM: (i) By

introducing a resistive layer of width equal to that of the return layer where the convection

flow matches the photosphere, it is possible to transfer a part of the transverse component of

B from the region where vz is strong to the corona. This allows the closure of the CZ model

by a current carrying coronal solution. (ii) An important role is played by the resistivity

inside the photosphere even if it is not too large: the absence of resistivity inhibits indeed the

transfer of the parallel component of B. (iii) In the case where the rising of a twisted flux rope

is described by a kinematical convection model, the RLM exhibits several features observed

in full MHD simulations of the transition between the CZ and the chromosphere, such as
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concentration of magnetic flux and transfer of magnetic helicity. However, it shows that a

divergence-free velocity field closing up at the boundary implies a tendency for magnetic

energy and helicity to saturate, a feature not seen when imposing vertical compressible

nonuniform motions (Amari et al. 2004). As in several previous studies (Amari et al. 2000,

2003a, 2004), a twisted flux rope is produced during an equilibrium phase of the evolution

rather than during a major disruption as in Amari et al. (2003b) and Antiochos et al. (1999).

(iv) The RLM could be used to couple coronal models with more elaborate large scale CZ

models such as anelastic spherical harmonics or compressible models.

We thank the anonymous referee for his comments which helped us to improve the

presentation of the paper. Our numerical simulations have been performed on the NEC SX5

supercomputer of the Institute I.D.R.I.S of the Centre National de la Recherche Scientifique.
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(a) (b)

(d)(c)

Fig. 1.— Selected field lines of the global configuration obtained at different stages of the

evolution: (a) Initial flux rope sitting in the CZ at t = 0, at a depth equal to −5. (b) At

t = 800, emergence of flux and electric currents leads to an arcade like current carrying

configuration. (c) At t = 1000, further emergence leads to a change of magnetic topology

from the previous arcade type to the new flux rope type (this transition occurs after the

magnetic axis has emerged). (d) At t = 3000, the configuration evolves more rapidly and

experiences strong inflation.
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Fig. 2.— Velocity field used for the kinematic MHD model in Ω
−
. The velocity field is

divergence-free and describes the motion in a main central convection cell and two closing

external weak half-cells.
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Fig. 3.— Variations of some relevant global quantities during the evolution. (a) Magnetic

energy W in Ω+, showing an injection from Ω
−
. The magnetic energy Wpot of the corre-

sponding potential field is shown as a reference. At some time, Wpot starts suffering a net

decrease related to the magnetic flux decrease shown on panel (b), unlike W which saturates

before suffering a slight decrease associated to an increase of the kinetic energy K and later

slow diffusion. (b) Total net magnetic flux on Γ
−,+ and relative helicity in Ω+.


