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Abstract

A geometrical method for 3-D modeling of the magnetic field in scaling and non-scaling
FFAG magnets has been installed in the ray-tracing code Zgoubi. The method in partic-
ular allows a good simulation of transverse non-linearities, of field fall-offs and possible
merging fields in configurations of neighboring magnets, while using realistic models of
magnetic fields. That yields an efficient tool for FFAG lattice design and optimizations, and
for 6-D tracking studies. It is applied for illustration to the simulation of an acceleration
cycle in a 150 MeV radial sector proton FFAG.

Key words: FFAG, non-scaling FFAG, fixed field synchrotron, 6-D tracking, fringe field
PACS: 29.20.c, 29.27.a, 41.85.p

1 Introduction

Fixed field alternating gradient (FFAG) synchrotron science is subject to a regain of
interest [1,2] in the context of muon acceleration for the neutrino factory [3], with
an increasing number of projects in various domains as hadrontherapy [4], high
power beams [5], and other acceleration of ion beams [6].

Stepwise ray-tracing is considered, from the very beginning [7], a good technique to
track particles in the non-linear FFAG fields, allowing to draw machine parameters
from single- or multi-turn tracking. The developments presented here are based on
such methods using the computer code Zgoubi [8].

A strong concern that motivates these software developments is in simulating in
a correct manner the field in FFAG magnets. This has various aims, as : offering
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tools for fast optimization of magnet geometry and fields as constrained by accel-
erator design parameters ; providing correct simulation of periodic motion, with
such outcomes as the right computation of lattice parameters as tunes, amplitude
and momentum detunings, time of flight, etc. ; yielding precision 6-D multiturn
tracking and motion stability limits.

These tools have been successfully applied to scaling FFAG lattices as detailed in
this paper, and are now used in studies of non-scaling lattices as the isochronous
cell and the “adjusted field profile” cell [9–11].

In addition, the present developments can be applied to various other magnetic
devices involved in manipulation of the large emittance muon beam in the neutrino
factory, as for instance compression chicanes [12], muon beam cooling rings [13],
with the potential of magnet/field parameters adjustments thanks to the built-in
fitting procedure, whereas optimizations based on 3-D magnet code calculations
strongly lack flexibility in that matter.

The paper is organized as follows. Section 2 first recalls the principles of the Zgoubi
method relevant to the simulation of large acceptance dipoles, Section 3 describes
the method for simulating dipole N -uplets, possibly featuring strong radial non-
linearity, and the particular case of FFAG magnets, with illustration by a radial-
sector FFAG triplet, Section 4 shows a simulation of the KEK 150 MeV proton
ring based on an DFD cell.

2 The ray-tracing method, ingredients
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Fig. 1. Zgoubi frame and coordinates.

We first recall the ingredients of the
Zgoubi method that intervene in the
implementation of dipole N -uplet
simulations.

Position and velocity. The inte-
gration method is based on step-
wise resolution of Lorentz equation
by a technique of Taylor series. The
working frame is shown in Fig. 1.

Position and velocity of a particle subject to md~v/dt = q ~v × ~b are tracked using
truncated Taylor expansions in the integration step ∆s

~R(M1) ≈ ~R(M0) + ~u(M0) ∆s + ~u′(M0)
∆s2

2!
+ ... + ~u′′′′′(M0)

∆s6

6!
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~u(M1)≈ ~u(M0) + ~u′(M0) ∆s + ~u′′(M0)
∆s2

2!
+ ... + ~u′′′′′(M0)

∆s5

5!
(1)

wherein ~u = ~v/v, ∆s = v ∆t, ~u′ = d~u/ds, m~v = mv~u = q Bρ~u, and with the
derivatives ~u(n) = dn~u/dsn given by ~u′ = ~u × ~B, ~u′′ = ~u′ × ~B + ~u × ~B′, ~u′′′ =

~u′′
× ~B + 2~u′

× ~B′ + ~u × ~B′′, etc.

Taylor coefficients. Computation of the coefficients in Eqs. 1 requires the knowl-
edge of the magnetic field ~B(s) and derivatives dn ~B/dsn in the orthogonal frame
(O,X,Y,Z) (Fig. 1). On the other hand, the magnetic field in a dipole can be ob-
tained from a mid-plane model of the vertical field component (the horizontal com-
ponent is zero by symmetry), in cylindrical coordinates, of the form Bz(r, θ) =
Bz0 F(r, θ)R(r), with factors F(r, θ) and R(r) accounting for the longitudinal
(e.g., field fall-offs at dipoles’ ends) and for the transverse (e.g., transverse non-
linearities) variation of the dipole field. The way the mid-plane field and its deriva-
tives

Bz(r, θ),
∂k+lBz

∂θk∂rl
(2)

at all (r, θ) are obtained from this model is detailed in Section 3.

Once this is done, a transformation from the cylindrical frame of the magnet into
the Cartesian frame in Fig. 1 is performed using

∂Bz

∂X
=

1

r

∂Bz

∂θ
,

∂Bz

∂Y
=

∂Bz

∂r
,

∂2Bz

∂X2
=

1

r2

∂2Bz

∂θ2
+

1

r

∂Bz

∂r
,

∂2Bz

∂X∂Y
=

1

r

∂2Bz

∂θ∂r
−

1

r2

∂Bz

∂θ
, etc.

Next, Z-derivatives and extrapolation off mid-plane are obtained from Maxwell
equations and Taylor expansions, thus yielding the 3-D field description

~B(X, Y, Z),
∂k+l+m ~B

∂Xk∂Y l∂Zm

Eventually, ~B(s) and dn ~B/dsn needed in Eqs. 1 are derived using the transforma-
tions

~B′(s) =
∑

i

∂ ~B(X,Y,Z)

∂Xi
ui(s) ,

~B′′(s) =
∑

ij

∂2 ~B(X,Y,Z)

∂Xi∂Xj
ui(s)uj(s) +

∑

i

∂ ~B(X,Y,Z)

∂Xi
u′

i(s), etc.

wherein the Xi,j,...( i,j,...=1−3) stand for X, Y or Z.
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Fig. 2. Description of the geometry of a single dipole.
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Fig. 3. Definition of a dipole triplet using “DIPOLES” or “FFAG” procedure.

3 An N -uplet magnet procedure. FFAG magnet

This Section describes the way the vertical field component Bz(r, θ) and derivatives
(Eq. 2) at all position in the median plane of a magnet composed of N neighboring
dipoles with overlapping fields are calculated.

The method is derived from an existing procedure, “DIPOLE”, generally used
for the design of large acceptance spectrometers (see Appendix for details), and
will yield two new procedures named respectively “DIPOLES” and “FFAG”, that
mostly differ by the radial dependence of the magnetic field and of the magnet gap
as described below. Principles of the “DIPOLE” method are recalled in Fig. 2 : a
reference radius RM and a reference angle ACN together with angles ω± serve for
the positioning of the ENTRANCE, EXIT and possibly LATERAL EFBs (effective
field boundary). These can be more or less curved (using the R1, R2, u1, u2 param-
eters) and given a wedge angle (the θ parameters). The total sector angle AT of the
field extent accounts for the fringe field regions at both ends.
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Now, let us write the magnetic field at all (r, θ) in the median plane (z = 0) due a
single one (index i) of the dipoles of a N -uplet magnet under the form

Bzi(r, θ) = Bz0,i Fi(r, θ)Ri(r) (3)

wherein Bz0,i is a reference field. The factor Ri(r) models the r dependence of the
field. In the case of the “DIPOLES” procedure Ri(r) has the form

Ri(r) = b0i
+ b1i

(r − R0,i)/R0,i + b2i
(r − R0,i)

2/R2
0,i + ... (4)

proper to simulate for instance chicane dipoles [12], isochronous [14] or supercon-
ducting [15] FFAG magnets, whereas in the case of the “FFAG“ procedure

Ri(r) = (r/R0,i)
Ki (5)

with R0,i being a reference radius and Bz0,i the field at R0,i (see Fig. 3), and K
being the field index. The factor Fi(r, θ) models the azimuthal dependence of the
field. In the present work we will not address the spiral-sector case and will restrict
the role of Fi(r, θ) to simulating the field fall-offs (fringe fields) at EFBs, and the
field variation in the intermediate region between two neighboring dipoles, in the
way described hereafter.

3.1 Field fall-offs
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  F_EFB   vs.   d/g                                          

Fig. 4. Typical fringe field FEFB(d/g).

The field fall-off (Fig. 4) at a par-
ticular EFB (e.g., Entrance, Exit
EFB, see Fig. 2) is modeled by [16,
p. 240]

FEFB(d)= 1 / (1 + exp[p(d)]) , (6)

p(d)=C0 + C1d/g + C2(d/g)2 + ... + C5(d/g)5

wherein d is the distance to that EFB and depends on r and θ (Fig. 5), and the
normalizing coefficient g is normally homogeneous to the gap and can be a function
of r, see below. The numerical coefficients C0 − C5 may be determined from prior
matching with realistic fringe field data.

An adequate positioning of the EFB makes possible to satisfy (referring to the
frame as defined in Fig. 4)

0
∫

d=−∞

FEFB(u) du =

∞
∫

d=0

(1 − FEFB(u)) du
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which entails that varying g will not change the magnetic length, it will just change
the fall-off steepness.

Entrance
Lateral

   

particle

trajectory M

r

EFB
EFB

EFBExit
θ

P

d

Lat.d

Exit

Entr.d

Fig. 5. Ingredients in computation of fringe
field form factors.

A convenient consequence of this is
that g can be made dependent of r as
for instance in the case of pole shap-
ing FFAG magnets whose gap satis-
fies

g(r) = g0(R0/r)
κ (7)

with normally κ ≈ K. Each one
of the three possible EFBs (Figs. 2
and 5) has its own fringe field factor,
FEntrance, FExit, FLateral. The
resulting form factor at particle po-
sition (r, θ) due to dipole (i) of the N -uplet is thus taken to be

Fi(r, θ) = FEntrance(r, θ) × FExit(r, θ) ×FLateral(r, θ) (8)

3.2 Full field at arbitrary position

Now, accounting for N neighboring dipoles in an N -uplet, the mid-plane field and
field derivatives are obtained by addition of the contributions of the N dipoles taken
separately, namely

Bz(r, θ) =
∑

i=1,N

Bzi(r, θ) =
∑

i=1,N

Bz0,i Fi(r, θ)Ri(r)

∂k+l ~Bz(r, θ)

∂θk∂rl
=

∑

i=1,N

∂k+l ~Bzi(r, θ)

∂θk∂rl
(9)

with Ri(r) being defined by either Eq. 4 or Eq. 5. Note that, in doing so it is not
meant that field superposition does apply in reality, it is just meant to provide the
possibility of obtaining a realistic field shape, that would for instance closely match
(using adequate C0 −C5 sets of coefficients - Eq. 6) 3-D field simulations obtained
from magnet codes.

Eventually, the 6-D field model ~B(r, θ, z) and derivatives ∂k+l+m ~B/∂rk∂θl∂zm are
deduced by z-extrapolation accounting for Maxwell equations (see Sec. 2).

This procedure is illustrated in Fig. 6 in the case of an FFAG triplet with character-
istics drawn from the KEK 150 MeV proton machine [17], with field fall-offs as in
Fig. 4 and g(r) given by Eq. 7.
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Fig. 6. Typical magnetic field Bz(r0, θ, z) (Eq. 9) as observed at traversal of the 30 degree
sector FFAG triplet for r0 = 4.87 m (the 50 MeV closed orbit region) and for either, (a) :
z = 0 or, (b) : z = 5 cm as obtained by off mid-plane extrapolation. On both plots the solid
curve represents the full field, as obtained by superposition of the separate contributions of
each one of the three dipoles represented by the dashed curves.

3.3 Calculation of the mid-plane field derivatives

Two methods have been implemented to calculate the field derivatives in the me-
dian plane (Eq. 9), based on either analytical expressions derived from the magnet
geometrical description, or classical numerical interpolation.

The first method has the merit of insuring best symplecticity in principle and fastest
tracking. The interest of the second method is in its facilitating possible changes in
the mid-plane magnetic field model Bz(r, θ), for instance if simulations of shims,
defects, or special r, θ field dependence need to be introduced.

Analytical formulation. The analytical formulations of the field derivatives in
Eq. 9 to be fed into the source Fortran have been obtained using Mathematica. The
starting ingredients are, on the one hand distances to the EFBs (Fig. 5), d(r, θ) =
√

(x(r, θ) − x0(r, θ))2 + (y(r, θ) − y0(r, θ))2 to be computed for all three cases,
dEntrance, dExit, dLateral, on the other hand the expressions of the coordinates
of particle position M and its projection P on the EFB in terms of the magnet
geometrical parameters

x(r, θ) = cos(ACN − θ) − R0
y(r, θ)= r sin(ACN − θ)
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xP (r, θ) = sin(u) (y(r, θ) − yb)/2 + xb sin2(u) + x(r, θ) cos2(u)
yP (r, θ) = sin(u) (x(r, θ) − xb)/2 + yb cos2(u) + y(r, θ) sin2(u)

with xb, yb, u parameters drawn from the magnet geometry (sector angle, wedge
angle, face curvatures, etc.). These ingredients allow calculating the derivatives
∂u+vx(r,θ)

∂θu∂rv , ∂u+vy(r,θ)
∂θu∂rv , ∂u+vx0(r,θ)

∂θu∂rv , ∂u+vy0(r,θ)
∂θu∂rv . which in turn which intervene

the derivatives of the compound functions ∂u+vF (r,θ)
∂θu∂rv , ∂u+vp(r,θ)

∂θu∂rv , ∂u+vd(r,θ)
∂θu∂rv .

B

interpolation
grid

trajectory

m
0

m 1
BB

1 3

2

particleδs

Fig. 7. Interpolation method. m0 and m1 are the pro-
jections in the median plane of particle positions M0

and M1 (see Fig. 1) separated by one integration step
∆s.

Numerical interpolation.
The expression Bz(r, θ) in
Eq. 9 is computed at the n×n
nodes (n = 3 or 5 in prac-
tice) of a “flying” interpola-
tion grid in the median plane
centered on the projection m0

of the actual particle position
M0 as schemed in Fig. 7. A
polynomial interpolation is in-
volved, of the form
Bz(r, θ) = A00 + A10θ + A01r + A20θ

2 + A11θr + A02r
2

that yields the requested derivatives, using Akl = 1
k!l!

∂k+lB
∂θk∂rl . Note that, the source

code contains the explicit analytical expressions of the coefficients Akl solutions of
the normal equations, so that the operation is not so CPU time consuming.
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Fig. 8. Field derivatives at traversal of the FFAG sector triplet at constant radius, after Eq. 9.
(a) : ∂Bz(r, θ)/∂θ, (b) : ∂2Bz(r, θ)/∂θ2.

Typical shapes of the derivatives so obtained are displayed in Fig. 8. Note that, their
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rapid variation with θ indicate that accordingly small integrations step size (∆s in
Eq. 1) should be employed. In addition, when using the numerical interpolation
method (Fig. 7), a small enough mesh size should be used 3 .

4 Acceleration in a 150 MeV proton FFAG ring

The goal here is to show that these simulations provide the right results. For that
purpose the geometrical model is submitted to various numerical experiments. A
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Fig. 9. 150 MeV DFD triplet.
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     43         

     85        
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  Bz  (T)   vs.   theta  (rad)                                         

  Z=0             

Fig. 10. Field along various closed orbits in a
cell of the 150 MeV proton FFAG addressed in
Section 4.

12-cell machine is considered, representative of the KEK 150 MeV FFAG [17,18].
The cell is a 30 degree sector DFD (Fig. 9). Its design parameters are as follows :
reference radius R0 = 5.4 m and K = 7.6 (in Eq. 5), gap shape determined by
κ = 3 (in Eq. 7), field fall-offs as in Fig. 4. This yields field along closed orbits as
schemed in Fig. 10, no too far from computed 3-D field maps representative of the
actual magnets, this is discussed in App. B. As a consequence the working tunes
are in reasonable agreement with those considered in Ref. [20], which one can refer
to for detailed comparisons with 3-D field map tracking results.

4.1 First order data

Fig. 11 shows the closed orbits in a cell at various energies, Fig. 12 gives sample
beam envelopes for εr,z/π = 200 mm.mrad. Betatron functions can be drawn from
this type of output using paraxial rays, sample values at the center of the drift are
displayed in Fig. 13.

3 The same remark holds as to using dense mesh when tracking through magnetic field
maps, as pointed out in Ref. [20].

9



-.1 0.0 0.1 0.2-.6

-.4

-.2

0.0

0.2

0.4
   100 MeV        

    85 MeV        

    43 MeV        

    22 MeV        

    12 MeV        

    10 MeV        

r (m)   vs.   theta (rad)                                         

Fig. 11. Closed orbits in the
DFD cell at various ener-
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Fig. 12. Horizontal (a) and vertical (b) beam envelopes in a
cell for εr,z/π = 200 mm.mrad.
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Fig. 13. Betatron function values at cen-
ter of drift.
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                        Fig. 14. Machine tunes.

Total tunes (12 cell ring) are given in Fig. 14 ; the way their integer part has been
obtained is described below. It can be observed that the horizontal tune is constant
as can be expected from the zero-chromaticity conditions resulting from the rK

dependence of the magnetic field ; on the other hand the vertical chromaticity is
not zero, which is attributed to the field fall-offs, i.e., the azimuthal variation of the
field in our geometrical model is not quite independent of radius - in contrast, a
sharp edge field model yields zero chromaticities and constant values νr = 3.773,
νz = 1.574, this is discussed in App. C.

The momentum compaction α = dL/L /dp/p is computed from ∆p induced dif-
ference in closed orbit lengths, sample values are given in Tab. 1 and fairly satisfy
the theoretical relation α ≈ 1/(1 + K) given K = 7.6.

All these results demonstrate on the one hand very good consistency with theory,
and on the other hand reasonable agreement with published material [17,18,20].

Note : The integer part of the tunes in Fig. 14 has been calculated as follows. We
note β(s) = β + δβ(s) with β =

∫

cell β(s)ds /Lcell the average beta value over a
cell so that

∫

cell δβ(s)ds = 0, and Lcell = L/12. We assume that the beta functions

are smooth enough that 1/β(s) ≈ (1 − δβ(s)/β)/β. That yields
(

1
β

)

≈
1
β
−

1

Lcellβ
2

∫

cell δβ(s)ds = 1
β

so that cell tunes satisfy νr,zcell
= 1

2π

∫

cell
ds

β(s)
= Lcell

2π

(

1
β

)

=
Lcell

2πβ
. On the other hand, numerical results (or grossly, the square root of the mean
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Fig. 15. Horizontal phase space, the limits of stable motion (accuracy better than
∆r = ±0.1 mm) for 5 energies.

4.862 4.863 4.864 4.865 4.866 4.867 4.868

-.004

-.002

0.0

0.002

0.004

r’ (rad)   vs.   r (m)                                         

                           (a) 

-.03 -.02 -.01 0.0 0.01 0.02 0.03

-.01

-.005

0.0

0.005

0.01

* FFAG triplet. 150MeV machine. CPU time, analyt. :  *                          

z’ (rad)   vs.   z (m)                                         

                           (b) 

Fig. 16. Horizontal (a) and vertical phase space (b), for a particle launched on 50 MeV
horizontal closed orbit with non-zero z-motion.

value of the envelopes in Fig. 12) show that Lcell/βr ≈ 2.5 and Lcell/βz ≈ 1/2,
so that both cell tunes have zero integer part, and full tunes are just 12 times the
fractional cell-tune values as delivered for instance by multiturn Fourier analysis.

4.2 Large amplitude transverse motion

Fig. 15 shows horizontal phase space trajectories at the limit of stable motion in
the ring, as observed at center of a drift, together with the related fractional tunes
whose values differ from first order ones (Fig. 14) due to amplitude detuning in-
duced by the non-linear field ; the triangle shape of phase space motion is related
to the presence of strong sextupole component in B(r) (Eq. 5) and the proxim-
ity to third integer tune. Fig. 16 shows phase space motion at 50 MeV, observed
at center of drift ; the horizontal motion clearly shows non-linear r − z coupling
induced horizontal emittance given that the particle was launched on closed orbit
(r0 = rc.o., 50 MeV , r′0 = 0). The horizontal symplecticity is very good, up to separa-
trix regions (Fig. 15) ; it is to be determined whether the vertical motion spreading
in Fig. 16-right is effectively free of non-symplecticity effects, although a good in-
dication is that the motion stays confined within the finite limits actually displayed
in both r and z phase-spaces.

Another feature revealed in Fig. 15 is the large geometrical acceptance characteris-
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tic of FFAG optics : the surface of the 10 MeV stability limit portrait is εx = 1 cm
about, 2.5 times the nominal emittance practiced at the KEK 150 MeV FFAG [17].

4.3 Synchrotron motion

Peak RF voltage V̂ = 19 kV is considered here, a value somewhat larger than that
used at KEK [18], for the sake of faster tracking.

Table 1
Parameters of longitudinal motion. (num. : numerical values, from tracking ; th. : theoreti-
cal values from formulas in the text).

E orbit length frev α νs bucket height

(MeV) L (m) (MHz) ±∆p/p (%)

num. num. num.(a) num. / th. num. & th.(b)

10 28.6333 1.516522 0.11605 0.011325 / 0.011451 2.654

22 29.9794 2.124539 0.11611 0.007593 / 0.007649 1.824

43 31.1885 2.808931 0.11616 0.005339 / 0.005367 1.344

125 33.2724 4.238662 0.11619 0.002909 / 0.002917 0.881

(a) The theoretical value is α = 1/(1 + K) = 0.11628.

(b) The agreement is better than 10−4, relative.

Stationary bucket dynamics is investigated first, as illustrated in Fig. 17. Com-
plete tracking results are given in Tab. 1, they are in excellent agreement with the-
oretical data, also given in Tab. 1, as drawn from :
- phase slippage factor η = 1

γ2 − α = 1
γ2 −

1
1+K

and taking K = 7.6,

- synchrotron frequency : fs = Ωs/2π = c
L

(

hη cos φsqV̂
2πEs

)1/2
, given h = 1, φs = 0,

qV̂ = 19 keV ; Es is the synchronous energy, L and Trev are obtained by tracking
(Tab. 1),
- synchrotron tune : νs = fs × Trev,

- bucket height ±∆p
p

= ±
1
βs

(

2qV̂
πhηEs

)1/2
.

A full acceleration cycle, from 12 to 150 MeV is experimented next. The RF is
increased linearly with turn number (this RF program is purely arbitrary) from 1.62
to 4.63 MHz, synchronous phase φs = 20 degrees which means about 2 104 turns
to complete the cycle.
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Fig. 17. Stationary buckets in the (a) 10 MeV and (b) 125 MeV regions.
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Fig. 18. Acceleration cycle. (a) : two motions close synchronous particle. (b) and (c) :
respectively, horizontal motion over the full cycle, 20000 turns, from 12 to 150 MeV, and
the corresponding vertical motion.

Sample tracking results are displayed in Fig. 18 and show excellent behavior. A
∆s = 1 mm integration step size has been taken, sensibly smaller than the oscilla-
tion frequency of the second order derivatives (Fig. 8) so to insure enough sufficient
precision in computation of Eqs. 1.

It can be observed that the vertical motion undergoes regular damping, of the form
(Bρ12 MeV/Bρ150 MeV)1/2 ≈ 0.52 from start to end of the cycle ; the radial motion
does not satisfy that, however it is of extremely low amplitude in the vicinity of the
closed orbit and may be subject to coupling effects due to the z motion, as already
pointed out concerning Fig. 16.
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5 Comments

Using the analytical derivatives method allows fast tracking, with high accuracy,
and makes the code a powerful tool for long term tracking, DA tracking, trans-
mission efficiency calculations (a strong concern in capture/acceleration of unsta-
ble particle beams), etc. Numerical interpolation of the field from mid-plane field
model instead (Figs. 6, 10), is also efficient, it has the merit of allowing the field
model to be changed easily (it is just a matter of changing the mid-plane field
model, Eq. 3) and yields very good accuracy as well, but computing speed lower
by a factor of slightly more than 2.

Accounting for the built-in fitting procedure, these developments make Zgoubi
an efficient tool for FFAG optics and machine design studies. The code has at
present been used with success for design studies, DA tracking and various valida-
tions concerning linear non-scaling optics (acceleration of muons) [26], non-linear
non-scaling FFAG optics based on the so-called “adjusted field profile” cell [10],
and isochronous cell optics (acceleration of muons, electron-model of non-scaling
FFAG) [9].

It is planned to compare the magnetic fields (Fig. 10) as obtained with the method
described in this paper, and the ensuing tracking results, with 3-D magnet calcula-
tions and tracking in field maps, as addressed in App. B. Works have already been
tackled on that topic and will be pursued [20].

CPU time - Computing speed tests were performed upon 12 to 150 MeV
acceleration in the 12 cell FFAG ring (conditions as in Fig. 18), using two different
processors, Pentium III 1 GHz or Xeon 2.8 GHz, under Linux system. Derivatives
are computed with either the analytical or the numerical method, up to either second
or fourth order as indicated in the Table below, whereas an integration step size
∆s = 0.5 cm is considered so to insure convergence of the numerical integration
in any of these cases.

CPU time (seconds per turn per particle) :

Pentium III 1 GHz Xeon 2.8 GHz

Analyt. Num. Analyt. Num.

2nd order 0.17 s 0.40 s 0.10 s 0.25 s

4th order 0.44 s 1.00 s 0.17 s 0.64 s

Such computing speed means that one can envisage overnight runs on computer
network systems, aiming at such goals as long-term DA tracking, 6-D multi-turn
beam transmission, resonance crossing studies.
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Appendix

A The “DIPOLE” procedure

0.0 0.5 1. 1.5 2. 2.5 3.

0.5

1.

1.5

2.

2.5

3.

Postprocessor/Zgoubi                                                            

  SPES3                           
spectrometer                           

*   SIMULATION  OF  KAON  IN-FLIGHT  DECAY  IN  SPES3 *                          

   Y  (m)     vs.    X  (m)                                         

 0.4                   1.2             
GeV/c                  GeV/c                  

 Min-max. Hor.:   0.000       3.151    ; Ver.:  0.2431       3.200              
 Part#    1-10000 (*) ; Lmnt# * all; pass#     1-    1;  1144 points            

The Figure shows the iso-field
regions in the median plane
of the large acceptance Elbeck
spectrometer SPES3 once op-
erated at SATURNE for rare
decay experiments (typically,
3.4 T.m rigidity) [21,22]. That
field model had been obtained
using the “DIPOLE” proce-
dure whereas magnet edges
and corresponding field fall-offs were optimized using POISSON and matched for
“DIPOLE” purpose as described in Section 3.1. The same method has been used
to design several other spectrometers as SPES2 [23,22], SPEG at GANIL [24], the
1.8 GeV Kaon QD spectrometer at GSI [25].

B 3-D field map versus geometrical model

In the main text, a 3-dipole representation of the 150 MeV FFAG sector magnet,
“DFD”, is involved (Fig. 9). However, a characteristic feature of the actual magnet
is in its non-zero fringe field over the drift (Fig. B.1-a), about 700 Gauss indepen-
dent of the radius. This feature can be reproduced by means of 5-dipole geometry,
“ODFDO”, using the “FFAG” procedure, as shown in Fig. B.1-b.

Nevertheless, a 3-dipole model with zero field in the “O” regions has been used
in the present work, for the sake of simplicity in the modeling and in numerical
demonstration experiments, and in order to stay as close as possible to the theoret-
ical hypothesis, namely Ri(r) = (r/R0,i)

Ki and g(r) = g0(R0/r)
κ.

C Sharp edge field model

The geometrical model also allows hard edge fall-offs (Fig. C.1). Compared to the
soft edge model (field in Fig. 10, closed orbits in Fig. 11) the closed orbit radial
positions are but slightly changed, at the millimeter scale.

Tunes have constant values νr = 3.773, νz = 1.574 over the all energy span as
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Fig. B.1. Comparison of magnetic field along closed orbits in the case of, (a) : TOSCA
3-D map representative of the KEK 150 MeV FFAG [19,20] and, (b) : a “3+2”-dipole
geometrical model, “ODFDO”, featuring about 700 G field in the “O” dipole regions.

expected from the theory [27], to be compared to soft-edge values in Fig. 14. The
horizontal tune is practically independent of the model either hard- or soft-edge, as
expected since fringe fields have no effect to first order on horizontal motion. Such
is not the case for the vertical motion that shows non-negligible first order effect of
fringe fields (∆νz > 0.17).
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Fig. C.1. Field on closed orbits, hard edge model.
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