
CERN-2004-007
15 July 2004
Accelerators and Beams
Department
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ABSTRACT

A synchrotron light monitor will be used to carry out diagnostics using the transverse
profiles of the Large Hadron Collider (LHC) proton beams. In order to optimize the
performance over the whole LHC energy range (from 450 GeV up to 7 TeV), a com-
parative study of various types of source was undertaken. Analytical models for the
determination of the angular spectral energy density emitted by these sources were
studied; then simplifying models like the low-frequency model or the interference
between source were used for some derivations. The study was then completed by nu-
merical simulations to evaluate the sources’ performance in more realistic conditions.
The results obtained led to propose and launch the construction of a superconducting
undulator with two 28 cm long periods. Combined with a separation dipole, the set-up
makes it possible to measure beam profiles over the whole LHC energy range. The
evaluation of the monitor’s performance is supplemented by a detailed analysis of the
optical system. The components of the telescope are described in order to evaluate
the thresholds of detection. Then, the effects of diffraction and depth of field that
constitute the limits of the system’s resolution were studied numerically.

iii





CONTENTS

FREQUENTLY USED SYMBOLS AND ABBREVIATIONS ix

1 INTRODUCTION 1

2 LHC AND BEAM DIAGNOSTICS 1

2.1 Presentation of the machine. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2.2 The LHC beam. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2.2.1 Definition of the beam emittance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2.2.2 Beam dimensions in IR4 and IR5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.3 Various methods of beam profile measurement. . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.4 Use of synchrotron radiation for diagnostics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.4.1 General principle of the monitor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.4.2 Working hypotheses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3 SYNCHROTRON RADIATION: THEORETICAL REMINDER 8

3.1 Field emitted by a moving particle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.1.1 The time-scales. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.1.2 Radiated field. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.2 Various expressions of the electric field. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.2.1 In particle timet′ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.2.2 In observer timet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.3 Angular spectral energy density and intensity at the observer. . . . . . . . . . . . . . . . . . . . 11

4 MODELS FOR THE CALCULATION OF THE INTENSITY 12

4.1 Various models of sources. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4.1.1 Dipole. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4.1.2 Short magnet. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4.1.3 Edge effect. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4.1.4 Undulator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4.2 The low-frequency approximation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4.2.1 With order 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4.2.2 With higher orders. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.3 Interference between two sources. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.3.1 Formalism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.3.2 Interference between two successive edges. . . . . . . . . . . . . . . . . . . . . . . . . 21

4.3.3 Interference between the edges of a long dipole. . . . . . . . . . . . . . . . . . . . . . . 22

4.3.4 Application in the case of the low-frequency model. . . . . . . . . . . . . . . . . . . . . 24

4.4 Conclusions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

5 IMPLEMENTATION OF NUMERICAL CALCULATIONS 26

5.1 Computer codes employed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

5.1.1 Calculation of the trajectory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5.1.2 Calculation of the electric field. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

v



5.1.3 Calculation of the Fourier transform. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5.1.4 Space or frequency integration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5.2 Extension to the undulator radiation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5.3 Comparison between models and simulations. . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.3.1 The LHC dipole case. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.3.2 The short magnet case. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5.3.3 Undulator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5.4 Conclusions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

6 SYNCHROTRON RADIATION SOURCES IN THE LHC 35

6.1 Intensities emitted by the different possible sources. . . . . . . . . . . . . . . . . . . . . . . . . 36

6.1.1 The D2 dipole . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

6.1.2 Superconducting miniwiggler. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

6.1.3 Room-temperature undulator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

6.1.4 Superconducting undulator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

6.2 Comparison of the different sources. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

6.3 Sources considered for beam diagnostics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

6.3.1 For the whole energy range: undulator and D3 edge. . . . . . . . . . . . . . . . . . . . . 54

6.3.2 From 2 TeV to 7 TeV: D2 dipole. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

6.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

7 OPTICAL ANALYSIS OF THE DIAGNOSTICS SYSTEM 57

7.1 Choice of the optical device. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

7.1.1 Detector. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

7.1.2 Optical set-up. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

7.2 Image formation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

7.2.1 Synchrotron light specificity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

7.2.2 Propagation through a diaphragm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

7.2.3 Action of a lens on a wave front. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

7.3 Method with operators. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

7.3.1 Definition of operators. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

7.3.2 Application to an SR monitor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

7.3.3 Characteristics of the synchrotron light source. . . . . . . . . . . . . . . . . . . . . . . . 72

7.4 Optical analysis of the SR monitor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

7.4.1 Use of SRW with protons. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

7.4.2 Qualitative approach. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

7.4.3 Study of the influence of the various parameters. . . . . . . . . . . . . . . . . . . . . . . 80

7.4.4 Use of a slit in the focal plane. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

7.5 Conclusions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

8 CONCLUSION 93

A APPENDIX LOW-FREQUENCY DERIVATION UP TO ORDER 2 95

A.1 Calculation of order 0:R0 =
∫ +∞
−∞ E(φ, ψ, t)dt . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

A.2 Calculation of order 1:R1 =
∫ +∞
−∞ E(φ, ψ, t)t dt . . . . . . . . . . . . . . . . . . . . . . . . . . 96

A.3 Calculation of order 2:R2 =
∫ +∞
−∞ E(φ, ψ, t)t2dt . . . . . . . . . . . . . . . . . . . . . . . . . . 97

vi



B APPENDIX CALCULATION OF THE PHASE DELAY 98

C APPENDIX MAGNETIC SIMULATIONS OF THE UNDULATOR 99

D APPENDIX OPTICAL EQUIVALENT TO THE TELESCOPE 101

REFERENCES 102

vii





FREQUENTLY USED SYMBOLS AND ABBREVIATIONS

α = B.L
Bρ = L

ρ [rad] deflection of a long magnet of lengthL and magnetic fieldB

β = v
c =

√
γ2−1
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βh,v [m] betatron function in the horizontal (H) or vertical (V) plane
Bρ = p

q [T.m] rigidity of the particle
c = 2.998× 108 [m.s−1] speed of light in vacuum
ε0 = 8.854× 10−12 [F.m−1] permittivity in vacuum
εh,v [m] particle beam emittance, defined at 1 r.m.s., in the horizontal or vertical plane
εn = εh,vβγ [m.rad] particle beam normalized emittance
E0 = m0c

2 [GeV] proton rest energy
E = γm0c

2 [TeV] proton beam energy
f̃(ω) = 1√

2π

∫ +∞
−∞ f(t)e−iωtdt definition of the Fourier transform

γ = E
E0

= 1√
1−β2

Lorentz factor

G optical magnification
g1 spectral range 1.3–6.2 eV, or 200–900 nm
g2 spectral range 1.46–2.75 eV, or 450–850 nm
g3 spectral range 1.13–3.54 eV, or 350–1100 nm
IP beam interaction point in LHC
IR interaction region (straight section that houses an IP)
ku = 2π

λu
spatial frequency of the undulator

λ [m] wavelength
λ1(θ) [m] wavelength emitted by an undulator in theθ direction on harmonic 1
λu [m] undulator spatial period
µ0 = 4π × 10−7 [N.A−2] permeability (ε0µ0 = 1/c2)
m0 [kg] mass of a particle,m0 = 1.672× 10−27 kg = 938.272 MeV for protons
ν = c

λ [Hz ] frequency
(φ, ψ) angular coordinates defined in Fig.7
p = γm0c [kg.m.s−1] for v ≡ c momentum of the particle
q = 1.602× 10−19 [C] electric charge of the particle
ρ [m] curvature radius of the trajectory in a magnetic field

r0 = q2

4πε0m0c2
= 1.535× 10−15 m classical radius of the proton

σ =
√
Esp ([X − Esp(X)]2) r.m.s. value, withEsp(X) the average ofX

t ‘observer’ time
t′ ‘particle’ time
(x, y, z) Cartesian coordinate axes
ω0 = c

ρ angular velocity

ω1 = 4πγ2c
λu(1+γ2θ2) [rad.s−1] frequency radiated in an undulator in the directionθ

ωc = 3γ3c
2ρ [rad.s−1] critical frequency

ωl [rad.s−1] limit frequency defining the low-frequency approximation
· scalar product
∗ convolution product
× vector product
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1 INTRODUCTION

Any relativistic charged particle emits electromagnetic radiation, called synchrotron radiation, when it follows a
curved trajectory [1]. Observed for the first time on 24 April 1947 [2] in a 70 MeV electron synchrotron, this
radiation corresponds to a particle energy loss and was regarded for a long time as a limiting factor for the con-
struction of high energy circular electron accelerators. The studies undertaken thereafter for a better understanding
of the characteristics of this type of radiation made possible the development of electron storage rings dedicated
to the production of intense synchrotron radiation for the analysis of the intrinsic properties of matter. Following
the development of circular accelerators, another application also appeared: the use of synchrotron radiation for
beam diagnostics [3]. This method, used on electron machines, is more difficult to implement for proton machines
because of the much lower levels of emitted signals. However, the increase in the energy of accelerators and the
development of increasingly sensitive optical detectors made beam profile measurement on proton synchrotrons
possible [4]. The work completed here presents the developments which were necessary to design a synchrotron
light installation intended to measure proton beam profiles over the whole energy range of the Large Hadron Col-
lider (LHC).

Section 2 introduces the machine characteristics, the questions related to the transverse diagnostics, and
the working constraints. In Section 3 the principal results of synchrotron radiation theory used for our study
are recalled. Section 4 gathers various analytical calculations which were carried out to evaluate synchrotron
radiation for various types of source, under various conditions of approximation. Without being an exhaustive
catalogue of all the possible sources, it reviews sources usable in the LHC in order to compare them in terms of
effectiveness for the diagnostics and for the choice of monitor. Section 5 presents the computer code Zgoubi, which
was used where analytical calculation are no longer possible. After having confronted the numerical and analytical
results in simple cases, this code was used to evaluate the spectral energy distribution under real conditions, in
particular with magnetic field maps and in configurations with several interferential sources. In Section 6, the
performance of the various sources studied for the LHC are presented. They are then compared in order to explain
the choice of the solution proposed, according to the constraints of space and performance. Section 7 deals with
the optical performance of the final monitor. It first presents the optical chain of the monitor, called telescope, then
evaluates the different sources of resolution loss introduced by the optics (diffraction and depth of field) by taking
into account the particular properties of the light source retained for the LHC.

2 LHC AND BEAM DIAGNOSTICS

2.1 Presentation of the machine
The Large Hadron Collider (LHC) is a proton–proton collider designed to allow high-energy physicists to answer
the questions which the Standard Model still raises: the origin of the mass related to the existence of the Higgs
field and its associated particle (Higgs boson), the existence of supersymmetric particles, extension of the Standard
Model to gravity, etc.

In the LHC, the nominal centre-of-mass energy is 14 TeV in order to reach the interesting masses for the
physics studies. The two proton beams are injected from the SPS at 450 GeV and then accelerated until the
collision energy of 7 TeV.

In practice, the LHC (Fig.1) is a machine of about 27 km circumference that uses superconducting magnets.
It is made up of eight arcs and eight straight sections (IR) accommodating the four principal experiments (ATLAS
in IR1, ALICE in IR2, CMS in IR5 and LHCb in IR8), acceleration (IR4), the cleaning sections (IR3 and IR7), and
the extraction to the beam dump (IR6). The two beams circulate in two different vacuum chambers which cross
each other only at the locations of the four experiments. The dipoles are of the two-in-one concept: the two beam
pipes are incorporated in the same iron yoke.

The parameters of the LHC [5] are shown in Table1.

2.2 The LHC beam

2.2.1 Definition of the beam emittance

The layout of an accelerator is defined for a nominal orbit of the particles. However, because of the presence of
the various optical elements of the machine, the particles deviate from the nominal orbit while following ‘betatron’
oscillations. In the case of a circular machine, this movement is described by Hill’s equations [6]:

u′′ +K(s)u = 0 (1)
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Table 1: LHC nominal parameters

Injection Collision
Beam data

Energy [TeV] 0.45 7
Luminosity [cm−2s−1] 1034

Normalized transverse emittance [µm.rad] 3.75
Mean circulating current per beam [A] 0.56
Number of particles per nominal bunch 1.1× 1011

Number of particles per pilot bunch 5× 109

Number of bunches 2808
Bunch spacing [ns] 25
r.m.s. length of bunch [cm] 13 7.7
r.m.s. length of bunch [ns] 0.434 0.257

Geometry
Circumference [m] 26658.883
Vacuum chamber diameter [mm] 56
Separation between the vacuum chambers [mm] 194
Revolution frequency [kHz] 11.25

Main Dipole
Number of main dipoles 1232
Length [m] 14.2
Magnetic field [T] 0.539 8.386
Radius of curvature [m] 2784.32

Separation dipole: type D2
Length [m] 9.45
Magnetic field [T] 0.17 2.65
Radius of curvature [m] 8829.5

Separation dipole: type D3
Length [m] 9.45
Magnetic field [T] 0.25 3.9
Radius of curvature [m] 5993
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Fig. 1: Layout of the LHC

with K(s) a periodic function,s the curvilinear coordinate andu the coordinate in the transverse plane (y or z).
The general solution of this equation can be put under the formu(s) = a

√
β(s) cos[µ(s)− S], with a andS two

constants,β(s) called betatron function, andµ(s) the phase function having the same periodicity asK(s). From
this general solution, it is possible to define an invariant of the movement, called the Courant–Snyder invariant:

γ(s)u2(s) + 2α(s)u(s)u′(s) + β(s)u′2(s) = a2 (2)

with 2 α, β andγ Twiss parameters [7], bound by the relationβ(s)γ(s) = 1 + α2(s) and defined by the geometry
of the machine. For a givens, Eq. (2) defines an ellipse of surfaceπa2 in the space of (u, u′), called the phase
space (Fig.2). The Twiss parameters then determine the shape and the orientation of this ellipse.

In this space, each couple (u, u′) represents a particle of the beam, and the ellipse of parametera includes the
particles having ana ‘amplitude’ of betatron oscillation. When the parametera is such that 63% of the particles
of the beam are contained in the ellipse thena =

√
ε andε is calledbeam emittance3. The projection of the

distribution n(u) of the particles in the beam on the coordinateu in the phase space (u, u′) defines the beam profile
(Fig. 2). The r.m.s. sizes of the Gaussian beam at the point of measurement, H for horizontal (u = y) and V for
vertical (u = z), are written then for a non-dispersive region:

σH, V =
√
βH,V εH,V (3)

with βH, V the horizontal or the vertical betatron function andεH, V the horizontal or vertical emittance. Along the
trajectory, the ellipse continuously changes in shape and orientation with the evolution of the Twiss parameters,
but its surface remains constant and it returns to its initial shape after having described one complete period.
Equation (2) describes the evolution of the Twiss parameters alongs. Knowing two initial conditionsu0 andu′0 at
a reference points0 of the trajectory, the solution at any other points is written using the transfer matrix:

(
u(s)
u′(s)

)
=

(
C(s) S(s)
C ′(s) S′(s)

)(
u0

u′0

)

=
(

cosµ+ α(s) sinµ β(s) sinµ
−γ(s) sinµ cosµ− α(s) sinµ

)(
u0

u′0

)
. (4)

2Twiss parameterγ(s) has not to be confused with the Lorentz factorγ = E
E0

.
3Another definition of the emittance is also used for machine optics. One defines the emittance as the surface containing

95% of the particles. The definition retained in this document is that used for the transverse diagnostics, namely the surface
containing 63% of the particles.
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σu

u [m]

u [m]

n(u) distribution

63% of the particlesparticle εof amplitude

’u   [rad]

Fig. 2: Definition of the beam profile: projection on the H and V planes of the particle distribution

This transfer matrix gives the Courant–Snyder invariant at points with the transport rule of the Twiss
parameters:




β(s)
α(s)
γ(s)


 =




C2(s) −2C(s)S(s) S2(s)
−C(s)C ′(s) S′(s)C(s) + S(s)C ′(s) −S(s)S′(s)
C ′2(s) −2S′(s)C ′(s) S′2(s)







β0

α0

γ0


 . (5)

2.2.2 Beam dimensions in IR4 and IR5

After the choice of the collision energy, the characteristics of an accelerator are determined by the desired lu-
minosityL, i.e. the rate of proton–proton collisions per cm2 and per second. A simplified expression ofL is:

L =
I2

4πq2NfrevσHσV
F (6)

with I the circulating beam current,frev the revolution frequency,N the number of bunches, andF the reduction
factor due to the angle between the beams at the interaction point. To increase the luminosity of the LHC, the
optics is changed when the beam reaches the nominal energy. Theβ functions are decreased at collision points 1
and 5 in order to reduce the transverse beam dimensionsσH andσV and to increase the luminosity. By the focusing
principle, a smallβ at the IP means largeβ at the closest quadrupoles and thus larger beam dimensions, allowing
a more comfortable measurement. The various optical functions of the regions where the size diagnostic could be
done are given in Figs.3–5.

Table2 presents theβH, V functions and beam dimensionsσH, V for the two possible positions of the syn-
chrotron radiation sources: the entry of the D3 dipole in IR4 and the entry of the D2 dipole in IR5.

2.3 Various methods of beam profile measurement
For the control of the machine, it is important to know precisely the transverse dimensions of the beamsσH, V. Since
the emittance is an invariant of the beam, the knowledge ofσH, V andβH, V at a given point of the circumference
yields the emittanceεH, V with Eq. (3). Then by optics transport with the matrix (5), it is possible to know the
βH, V functions in any other point of the machine and to calculate the local beam envelopeσH, V. Various methods
of measurement of the transverse profiles are being developed in parallel for the LHC: the wire-scanners, the
luminescence, ionization and synchrotron light profile monitors.
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1400. 1550. 1700. 1850. 2000.
s (m)

δE/p 0c = .0 0 0 0 0 0 E+ 0 0

Table name = TWISS

.../eng../V6.2.seq, IR4(Aug.2001), Q6at166 DQx=+0.0
Unix version 8.51/07 03/10/01  12.01.12

.0006

.0008

.0010

.0012

.0014

.0016

.0018

.0020

.0022
SI

G SIGX SIGY

Fig. 3: Beam envelopes (σH = SIGX andσV = SIGY ) for 450 GeV in IR4. D3 is ats = 1760 m

Fig. 4: Optical functions in IR5 at 450 GeV. D2 is ins =

400 m
Fig. 5: Optical functions in IR5 at 7 TeV with the collision

optics. D2 is ins = 400 m

Table 2: Beam dimensions at D3 in IR4 and at D2 in IR5

Energy γ D3 in IR4 D2 in IR5
βH σH βV σV βH σH βV σV

(TeV) (m) (mm) (m) (mm) (m) (mm) (m) (mm)
0.45 480.6 160 1.12 280 1.48 100 0.88 200 1.26
1 1066.3 160 0.75 280 0.99 100 0.59 200 0.83
2 2132.6 160 0.53 280 0.70 100 0.42 200 0.60
7 (injection) 7461.5 160 0.28 280 0.38 100 0.22 200 0.32
7 (collision) 7461.5 160 0.28 280 0.38 600 0.55 1840 0.96
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Wire scanner: when a wire crosses the beam, secondary electrons of low energy are emitted by the wire, thus
creating a current which can then be measured. Secondary particle are also emitted which can be measured
by means of a scintillator. This system has a good resolution, but requires several passages of a bunch to
give a profile and cannot thus measure an instability turn by turn. This measurement is also perturbative and
will create a beam blow-up. In addition, a study carried out at CERN [8] showed that this system could not
be used with the nominal intensity in the LHC since the heat produced will destroy the wire. It will be used
to calibrate the other instruments over the whole energy range of the LHC beam by using a reduced number
of bunches.

Luminescence: a gas (nitrogen N2) is injected into the vacuum chamber [9]. As the beam passes through, the
gas molecules are ionized and excited in N+

2 ions which are de-excited by emitting photons of 391.4 nm
wavelength. The direct observation of the emitted photons makes it possible to measure the beam profile.
It is a simple device, but with a low sensitivity due to the low efficiency of luminescence. It should be of
interest for high density beams.

Ionization profile monitor (IPM): the beam ionizes the residual gas in the vacuum chamber around10−8 Pa.
An electric field separates the ions and the emitted electrons [10]. Electrons, guided by a magnetic field to
limit the angular divergence, or the ions, are collected and the signal is amplified by a multichannel plate
(MCP). The electrons produced by the MCP are accumulated onto a screen of phosphorus and one observes
the emitted light. This system has a higher efficiency than luminescence but may suffer from space charge
effects.

Synchrotron light: the system uses the visible light emitted by the beam when travelling in an external magnetic
bending field. This monitor is the subject of the work developed in this document and its principle is detailed
in the following paragraph.

All these monitors provide projection in the vertical or horizontal plane of the image of the beam. But only
the synchrotron light monitor provides a two dimensional image of the beam and has then the advantage to be able
to observe a possible coupling between the horizontal plane and the vertical plane in the shape of a tilted ellipse
compared to the transverse axes Oy and Oz. The synchrotron light monitor can also carry out bunch-by-bunch and
turn-by-turn measurements.

2.4 Use of synchrotron radiation for diagnostics
The method using synchrotron radiation is a non-interceptive one and allows three types of measurements:

• the transverse dimensions of the beams by image forming,

• the angular divergence of the beam by direct observation without a focusing system [3] or at infinity when
this divergence is large compared to the angular opening of the cone of radiation (which is not the case in
the LHC),

• the longitudinal distribution of the particles by observing the temporal structure of the radiation [11].

In the following we are interested only in the first type of measurement, which makes it possible to obtain the beam
emittanceε by supposing that theβH, V functions are known with enough precision.

2.4.1 General principle of the monitor

When passing through a magnetic bending element, the beam emits radiation of which the visible spectral part is
used and focused on a detector (Intensifier and CCD) by an optical system (Fig.6) described more precisely in
Section7.1.2. The beam has a transverse spatial distribution of r.m.s. widthσ. This radiation isincoherent, i.e. the
total intensity collected is proportional to the number of particles in the beam. For a bunched beam, the radiation
is incoherent for observed wavelengths lower than the bunch length. In the LHC case withσbunch= 7.7 cm and the
observed wavelengths for protons in the range 200–900 nm, the criterion is satisfied. The spatial distribution of
the intensityD(y, z) collected on the detector, is thus the convolution product of the intensity distribution in the
image plane of a single protonI(y, z) (point spread function PSF) by the spatial distribution of the protons in the
beamO(y, z) [12]:

D(y, z) = I(y, z) ∗O(y, z) . (7)
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Fig. 6: Principle of the detector

By considering the optics as perfect, the r.m.s. widthσH, V ofD(y, z) is thus related to the r.m.s. widthσ ofO(y, z)
and to the r.m.s. width ofI(y, z) (PSF), i.e. the image obtained for a point source. It is then necessary to add the
various contributions of the optics defects (diffraction, depth of field, aberrations, etc.). To obtain a good precision
of the profile measurement, it is necessary to calculateI(y, z) by determining the intensity distribution radiated by
a single proton (Sections3, 4 and6), and, the optical transfer function (Section7).

Measurements of the horizontal and vertical profiles are obtained, as for the other monitors, by projections
on the two planes. However, the synchrotron radiation monitor also provides an image in two dimensions of the
beam allowing one ‘to visualize’ the shape of the particle distribution.

2.4.2 Working hypotheses

The work carried out to design a synchrotron radiation source and an optical chain to perform the required profile
measurements is set out in the following sections. For a better understanding of the choices made, it is necessary
to specify the particular conditions of use of the monitor and the constraints thus introduced.

Operating modes of the monitor. Two operating modes are foreseen for the synchrotron light monitor. The
first one, ‘TV mode’, must provide an image in two dimensions used under normal operation over the whole energy
range to observe the evolution of the beam envelope. The intensity collected is hence integrated over 20 ms (that is
to say 225 turns in the LHC), the refreshing time of the video screens. In this case, the use of only a CCD camera
as a detector is sufficient, if the level of signal is sufficient.

The second type of use, ‘turn-by-turn mode’, must make it possible to follow the evolution of a particle
bunch or of a batch (a set of bunches) over individual turns. This implies a fast shutter (revolution period in the
LHC of 89 µs) in front of the CCD. Indeed, the start-up scenario of the machine [13] foresees the injection and
acceleration of a pilot bunch before a full-intensity filling. The profile monitor must thus be able to operate with
this pilot bunch (5 × 109 particles). The collected intensity being directly proportional to the number of particles
and the integration time, the addition of an intensifier in front of the CCD detector is necessary for this application.
A Multi Channel Plate (MCP) intensifier will provide both functions.

Let us add that to measure profiles with 5% accuracy for the nominal bunch, taking into account the thresh-
olds of sensitivity and of the noise on the CCD pixels, one needs a minimal energy emitted by a proton per turn of
1.5× 10−23 J, Section7.1.1.

Geometrical constraints. The light emitted by the beam is extracted from the vacuum chamber by a mirror,
located in the vacuum chamber and sending the photon beam to the telescope. To avoid reducing the machine
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acceptance, the edge of this mirror must remain at a minimal distance of 15σH or V from the beam axis, withσH or V

the r.m.s. width of the beam. Dimensions of the beam decrease when the beam energy increases (variation in
1/
√
γ). It then appears possible to bring the mirror progressively closer to the beam axis during the energy ramp.

This solution is, however, not adopted a priori in the various configurations studied because it requires a positioning
system controlled by the beam energy. In our case, the strongest constraint is at the injection energy and the edge
of the mirror is thus preferably at 15σ450 GeV from the proton beam axis.

To collect the maximum amount of light, it is necessary to use the largest possible extraction mirror wrt the
light cone. But taking into account the dimensions of the standard vacuum chamber, Table1, the light extraction
and the insertion of the mirror by respecting the specified distance compared to the proton beam axis require a
local widening of the vacuum chamber. This must then be brought back to the standard dimension for the next
elements of the machine. This condition limits the maximum distance between the source and the extraction mirror
according to the space available at the location of the source in the machine (from 20 m in IR 5 to 62 m in IR 4,
Figs.3 and4).

Since a very high quality mirror is required (surface flatness greater thanλ/10), a square mirror 40 mm or
50 mm wide is considered according to the possible widening of the vacuum chamber. Thus, in the following, the
mirror dimensions and the distance to the extraction will be specified for each configuration studied.

Constraints over the exploitable wavelengths. After the extraction mirror, the light is extracted from
the vacuum chamber through a quartz window to be transparent to ultraviolet rays. The bandwidth (at 90% of
transmission) of the window corresponds to a wavelengths range between 200 and 2500 nm.

In addition, the optical detector used will be a CCD camera with an intensifier, Section7.1. The bandwidths
vary according to the types, but the typical values used in the following are as follows. Two ranges are used for the
CCD camera: g1 = [200–900 nm] and g3 = [350–1100 m]; and one range for the intensifier (for example of type
‘super S25’ [14] doped to shift the bandwidth toward the red) : g2 = [450–850 nm].

3 SYNCHROTRON RADIATION: THEORETICAL REMINDER

The theory of synchrotron radiation has been developed in many reference books [1, 15, 16]. We shall thus just
point out here the principal results that were directly used for the calculations which follow. First of all, the
expression of the electric field received by the observer according to his position and to the observation frequency
is given starting from the retarded potentials. This formula is used as a basis, in Section4, for the approximations
making it possible to analytically derive the Fourier transform of this electric field. It also allows to determine the
spectral angular energy densities which it is possible to produce with the various types of sources present in the
LHC layout.

3.1 Field emitted by a moving particle
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Fig. 7: Reminder of the notations
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Fig. 8: Trajectories of the particle in the referenceR and

R′ frames

3.1.1 The time-scales

When a charged particle is accelerated, it emits, at timet′, an electromagnetic radiation which propagates. A fixed
observer located at the distance~r(t′) from the particle, which varies with the particle movement, receives this
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radiation at the timet (Fig. 7) given by:

t = t′ +
~r(t′)
c

(8)

wherec is the speed of light in vacuum.t′ is called the ‘particle time’ andt the ‘observer time’.

In theR′ reference frame moving at the speed of the particle and tangentially to the trajectory, the particle
describes a cycloid with a strong acceleration at the cusp (Fig.8, right-hand side). The radiation of the charge
in theR′ reference frame has a space-distribution like that of an oscillating dipole. When returning in the fixed
frameR of the observer by applying the Lorentz transformation, a photon emitted at 90 degrees with respect to
the tangent to the trajectory inR′ appears at an angle 1/γ in R. Hence, the radiation is concentrated in the forward
direction in a cone with an angular opening 1/γ (Fig. 8, left-hand side).

1/ γ)sin(       AB =  2

A B

∆ t

t

E(t)1/γ

ρ

Observer

pulse

Fig. 9: Duration of the electric field pulse

Taking into account the small angular opening of the light cone for relativistic particles (typically some
mrad), the observer ‘sees’, in practice, the radiation only between the point A, where the trajectory forms an angle
−1/γ with the observation direction, and the point B, where the trajectory forms an angle +1/γ with the observation
direction (Fig.9). The duration of the electric field pulse∆t received by the observer corresponds to the difference

between the particle travel timetp through the arc
_

AB and the travel timetphoton through the segmentAB by the
photon emitted in A:

∆t = tp − tphoton=
2ρ
βγc

− 2ρ sin 1/γ
c

, (9)

whereρ is the curvature radius of the arc
_

AB, andβ the normalized speed of the particle. For relativistic particles,
γ À1 and1− β ' 1

2γ2 , therefore:

∆t ' 2ρ
βγc

(
1−

(
β − β

6γ2

))

' 2ρ
γc

(
1

2γ2
+

1
6γ2

)

∆t ' 4ρ
3γ3c

. (10)

3.1.2 Radiated field

The electromagnetic field received at timet is calculated starting from Maxwell’s equations and the Liénard–
Wiechert potentials giving the retarded potentials created at timet′ by a moving charge. These calculations will
not be detailed here because largely developed in several reference books (see for example Refs. [1, 16]). The
electric and magnetic fields emitted by a chargeq with the speed~v = ~βc are written:

~E(t) =
q

4πε0


 (1− β2(t′))(~n(t′)− ~β(t′))

r2(t′)(1− ~n(t′) · ~β(t′))3
+
~n(t′)×

[
(~n(t′)− ~β(t′))× ~̇β(t′)

]

cr(t′)(1− ~n(t′) · ~β(t′))3


 (11)

~B(t) =
~n(t′)× ~E(t′)

c
(12)
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whereε0 is the vacuum permittivity and~n = ~r/r the direction of observation (Fig.7).

In our application, the observation is done at a long distance from the synchrotron radiation source. The
first term of Eq. (11), proportional to 1/r2 (speed field), becomes then negligible compared to the second term,
proportional to 1/r (acceleration field), and the electric field at the observer can be written in the form:

~E(t) =
q

4πε0c

~n(t′)×
[
(~n(t′)− ~β(t′))× ~̇β(t′)

]

r(t′)(1− ~n(t′) · ~β(t′))3
. (13)

3.2 Various expressions of the electric field
The calculation of the electric field in particle timet′ and observer timetwas already derived [16] in the case of the
synchrotron radiation emitted by a particle on a circular orbit: the problem is then independent of the observer’s
position in the plane of the orbit and thus of the angular variableφ (Fig. 7). Nevertheless, for the majority of
the sources studied for the diagnostics in the LHC, the magnetic field crossed by the particle along the observed
portion of trajectory is not necessarily uniform. The sole dependence inψ of the expressions is not sufficient any
more and calculation in three dimensions is necessary.

3.2.1 In particle timet′

With the notations of Fig.7, by takingφ = 0 forω0t
′ = 0 (with ω0 = c/ρ the angular velocity andρ the curvature

radius), the vectors~n, ~β of Eq. (13) are written:

~n = (cosψ cosφ, cosψ sinφ, sinψ) , ~β = β(cosω0t
′, sinω0t

′, 0) . (14)

It is convenient to use the radiation component in the trajectory plane, calledσ (or horizontal) component, and
the component orthogonal to the trajectory plane, calledπ (or vertical) (Fig.7). In the far field approximation
and taking into account the weak angular opening of the radiation, it is possible to make a series expansion of the
co-ordinates by retaining only the terms up to second order inφ, ψ and withβ ' 1− 1/(2γ2). Equation (13) then
gives the two components:

Eσ(t′) ' qω0γ
4

πε0cr

(1 + γ2ψ2)− γ2(ω0t
′ − φ)2

(1 + γ2ψ2 + γ2(ω0t′ − φ)2)3
(15)

Eπ(t′) ' qω0γ
4

πε0cr

−2γψγ(ω0t
′ − φ)

(1 + γ2ψ2 + γ2(ω0t′ − φ)2)3
.

3.2.2 In observer timet

The preceding expression (15) makes it possible to obtain the electric field~E(t′) emitted by the particle. For the
application considered, i.e. the profile measurement, it is the intensity at the observation point which should be
known and thus the field received by the observer~E(t). The calculation developed in the following is a general-
ization of the method, developed in Ref. [16], that accounts for non-zeroφ component of the (φ, ψ) observation
direction. For ultra-relativistic particles (γ À 1), by using the expansion of order 2 of the co-ordinates (14), the
relation (8) betweent andt′ is written according to the position (φ, ψ) of the observer:

t ' 1 + γ2(φ2 + ψ2)
2γ2

t′ − cφ

2ρ
t′2 +

c2

6ρ2
t′3 (16)

or, by differentiation and rearrangement of the terms:

dt

dt′
= 1− ~n(t′)~β(t′) ' 1 + γ2ψ2 + γ2(ω0t

′ − φ)2

2γ2
. (17)

To obtain ~E(t) starting from Eqs. (15) according tot′, it is necessary to calculatet′(t) by reversing rela-
tion (16). The trigonometric method of solving a cubic equation gives in this case:

t′ = −2
ρ

cγ

√
1 + γ2ψ2 sinh

[
1
3

Asinhu

]
+
ρφ

c
(18)
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where

u =
1
2

γφ√
1 + γ2ψ2

(
3 +

γ2φ2

1 + γ2ψ2

)
− 2

ωc
(1 + γ2ψ2)3/2

t . (19)

When using these expressions in Eq. (15), the electric field received by the observer becomes:

Eσ(φ, ψ, t) =
qω0γ

4

πε0cr(1 + γ2ψ2)2
(1− 4 sinh2 [ 13 Asinhu(φ, ψ, t)])
(1 + 4 sinh2 [ 13 Asinhu(φ, ψ, t)])3

(20)

Eπ(φ, ψ, t) =
qω0γ

4

πε0cr(1 + γ2ψ2)5/2
4γψ sinh[ 13 Asinhu(φ, ψ, t)]

(1 + 4 sinh2 [ 13 Asinhu(φ, ψ, t)])3
.

The angular spectral energy density is obtained by calculating the temporal Fourier Transform (FT) of
Eqs. (20). In the general case, this operation is not possible in an analytical way and requires a numerical calcu-
lation. To facilitate the analytical calculation of the FT, it is often preferable to change the variable to arrive at a
calculation in particle timet′ in order to use the approximate expression (15), a rational fraction oft′.

3.3 Angular spectral energy density and intensity at the observer
The instantaneous energy flux (watt/m2) transported by an electromagnetic wave is calculated starting from the
Poynting vector~S:

~S =
1
µ0

~E × ~B =
1
µ0c

~E2 ~n . (21)

The energy received when the particle passes in the magnetic element is calculated then by integrating the Poynting
vector on the surface (Σ) of the detector related to the solid angle (Ω) by dΣ = r2(t)dΩ and over the duration of
the pulse (∆t):

W =
∫

Σ

∫

∆t

|~S|dΣdt =
1
µ0c

∫

Ω

dΩ
∫

∆t

~E2r2(t)dt (22)

wherer(t) is the distance at the timet between the particle and the observer. When this is large with respect to
the source length, it is useful to considerr(t) = r = constant in the calculation of the integral. However, for
calculations of intensity with several successive sources, the validity of this approximation must be checked.

By considering that there is no emission outside the interval∆t, it is possible to extend the limits of the
temporal integration to infinity and to use the Fourier Transform (FT) of the electric field [16] defined by:

~̃E(ω) =
1√
2π

∫ ∞

−∞
~E(t)e−iωtdt and its inverse ~E(t) =

1√
2π

∫ ∞

−∞
~̃E(ω)eiωtdω (23)

whereω = 2πc/λ is called the frequency andλ the wavelength of the considered emission. By using Parseval’s
theorem: ∫ ∞

−∞
| ~̃E(ω)|2dω =

∫ ∞

−∞
| ~E(t)|2dt . (24)

Equation (22), with r = constant, is written:

W =
2r2

µ0c

∫

Ω

∫ ∞

0

| ~̃E(ω)|2dΩdω (25)

by considering only the positive frequencies for the FT. The spectral energy density received at timet by an
observer located at the distancer(t) from a particle radiating at timet′ = t − ~r(t′)/c results from the preceding
equations:

∂2W

∂ω∂Ω
= 2ε0cr2| ~̃E(ω)|2 . (26)

This last equation is the basis for the majority of analytical and numerical calculations of intensity received at the
observation point developed in the following. To calculate the intensity received on a detector, it is enough to
integrate it over the frequency bandwidth∆ω and over the angular acceptance∆Ω of the system considered.
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4 MODELS FOR THE CALCULATION OF THE INTENSITY

The development of a transverse system of beam diagnostics for the LHC goes through two stages:

1. the choice of the synchrotron radiation source and thus the evaluation of the photon flux which one can
collect,

2. the study of the optics allowing to obtain the image of the beam and thus the evaluation of the diffraction
and depth of field effects related to the source specificities.

These two stages, in theory independent, pass nevertheless by the same determination of the characteristics of the
synchrotron radiation received by the observer. The calculations presented in the preceding section showed that the
emitted electric field depends on the trajectory of the particle and thus on the shape of the traversed magnetic field.
Various types of synchrotron radiation sources are envisaged, defined according to the magnetic field that generates
them: infinitely long dipole (constant field); short magnet (angular deflection lower than the light cone opening);
edge effect (fast variation of the magnetic field at the ends of a dipole); undulator (sinusoidal field). This section
presents, first of all, the analytical models that describe these sources. These results will be used in particular in
the following section to validate the numerical methods. Then, methods of calculation in combination with the
simplifying low-frequency model are exposed. These methods allow the evaluation of the intensities produced by
a succession of sources.

4.1 Various models of sources

4.1.1 Dipole

The first source studied historically, which is also that present in all machines, is the dipole. It is the solution
already successfully used for the diagnostics of electron and positron beams at LEP [17]. In this case, the magnetic
field is regarded as uniform on a portion of the trajectory much larger than the characteristic lengthL0 of an arc of
opening angle 1/γ (Fig. 9):

L0 =
m0c

qB
=
ρ

γ
(27)

wherem0 is the mass of the particle,q its charge,B the magnetic field seen by the particle, andρ the radius of
curvature of the trajectory. The expression of the power radiated in the trajectory plane (ψ = 0) is given in many
publications [1, 15, 16]). It is obtained starting from the angular spectral energy density [Eq. (26)], the Fourier
transform being calculated from Eq. (13). One thus has

∂P

∂ω∂Ω
(ψ, ω) =

(
3
2π

)3

P0
γ

ωc

ξ2

(1 + γ2ψ2)

[
K2

2/3(ξ) +
γ2ψ2

1 + γ2ψ2
K2

1/3(ξ)
]

(28)

whereωc = 2πνc = 3cγ3

2ρ ' 2
∆t is the critical frequency in rad.s−1, P0 = 2

3
1

4πε0

cq2γ4

ρ2 is the total power radiated

by a particle in J.s−1, ξ = ω
2ωc

(1 + γ2ψ2)3/2,K1/3 andK2/3 are the modified Bessel functions.

The term between square brackets represents the sum of the contributions of each polarization, that with
K2/3 comes from theσ component and that withK1/3 defines theπ component (Fig.7).

The integration over all the solid angle of Eq. (28) allows to obtain the spectral energy density represented
on Fig.10. The curve is characterized by the positionωc, which cuts the energy spectrum in two parts of the same
integrated value, and defined as two times the inverse of the duration of the electric field impulse∆t received by
the observer [Eq. (10)].

Figure10shows that, for a long dipole, the curves of spectral energy density have the same shape whatever
ωc and are simply ‘relocated’. Moreover, for a given observation frequency bandwidth, for example g3 shown in
gray, the relative position ofωc is decisive for the level of collected signal: in the case of the 7 TeV protons in
the LHC and of the 45 GeV electrons in LEP (ωc above g3), the level of signal is about the same. It is, however,
orders of magnitude higher than that from the 450 GeV protons in the LHC (ωc below g3). In the case of the LHC
main dipole, the critical frequency is determined by the machine parameters and cannot be adjusted. The dipole
thus does not provide enough intensity at 450 GeV. This is why other types of sources are considered with the aim
of increasing the radiation forω > ωc, at injection.
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Fig. 10: Spectral energy density for an LHC dipole for a proton at 450 GeV and 7 TeV and a LEP dipole for an electron at

45 GeV. The gray shaded rectangle represents the frequency range g3.

4.1.2 Short magnet

A short magnet is a dipole in which the particle deflectionα = BL/Bρ satisfiesα¿ 1/γ (Fig.11). The trajectory
lengthL in the source is then much shorter than the characteristic lengthL0 defined by Eq. (27).
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1/γ
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Observer

pulse

spectrum
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α

γ

Fig. 11: Short magnet

The duration of the electric field impulse is thus shorter:

∆t =
L

βc
− L

c
' L(1− β)

βc
' L

2γ2c
(29)

and the increased critical frequency of the spectrumωc is written

ωc,short magnet =
4πcγ2

L
. (30)
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With equivalent beam energy, the short magnet allows to shift the maximum of the spectral density toward de-
tectable frequencies compared to the case of the dipole. For example,ωc = 5.6 × 1013 rad.s−1 at 450 GeV for a
LHC main dipole, while for a 50 cm long short magnet,ωc = 1.7 × 1015 rad.s−1 (to be compared for example
with g3 =1.7× 1015 − 5.4× 1015 rad.s−1).

We saw previously that the radiated power can be expressed from the Fourier transform of the electric
field [Eq. (26)]. In the ‘short magnet’ approximation, the observation direction~n can be considered as constant:
~n · ~β = β cosα ' β (asα ¿ 1/γ). The Fourier transform of the electric field is then, according to Eq. (12),
proportional to the FT of the magnetic field [18]:

∂P

∂Ω∂ν
= C2γ6f2B̃2(t) =

1
4
C2γ2f2(1 + γ2θ2)2B̃2

(
1 + γ2θ2

2γ2
ν

)
(31)

whereC =
(
e2

πm

)(
1
ε0c

)1/2

= 9.45 × 10−11 m3/2.s−1/2 for protons andf is a function of the anglesθ andϕ

(Fig. 12), with f2 = (1 + γ2θ2)−6[(1− γ2θ2)2 + 4γ2θ2 sin2 ϕ]. The functionB̃
(

1+γ2θ2

2γ2 ν
)

is obtained from the

Fourier transform ofB(t′) = B(x/c) by replacing the variableν′ corresponding tot′ by 1+γ2θ2

2γ2 ν.

θ
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ψ
n

z
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Fig. 12: Correspondence between the (φ, ψ) and (θ, ϕ) angles

4.1.3 Edge effect

The edge effect is the emission of radiation by the particle when it crosses the fringe field of a dipole, i.e. the
variation of the dipole end’s magnetic field along a few tens of centimetres. The typical duration of the electric
field impulse is then again very short compared to that emitted in the long dipole. If one is interested in frequencies
higher than the critical frequency of the dipole, it is a particular case of a short magnet, which has the advantage of
not having to insert an additional magnet in the machine layout: it is possible to use the fringe field of the bending
magnet. This technique was already used successfully in the Spp̄S [4] and in the SPS [19].

The angular spectral energy density is still given by Eq. (26). The difficulty in this case is to find an
analytical expression representing the fringe field of the magnets [18]. For the LHC dipoles, the model of fringe
field used is of the type:

B(x) = B0

[
1
2

+
1
π

arctan
x

L

]
=
B0

πL

1
1 + (x/L)2

∗H(x) (32)

whereH(x) is the Heaviside distribution, * indicates the convolution product, andB0, the peak field, depends on
beam energy.

4.1.4 Undulator

An undulator is a periodic magnetic structure generally used to produce quasi-monochromatic synchrotron radia-
tion (Fig.13). In the case of a harmonic plane undulator, of spatial periodλu, the magnetic field produced is of the
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Fig. 13: Scheme of an undulator

form:
B(x) = Bz(x) = B0 cos (kux) (33)

whereku = 2π/λu andB0 is the peak field. If the magnetic field is not too strong, the particle undergoes small
oscillations around thex axis:

y(x) ' qB0

m0cγk2
u

cos(kux) . (34)

The undulator deflection parameter, characterizing the relationship between the maximum deflection angleαmax
and the natural opening of the synchrotron radiation 1/γ, is defined by:

K =
qB0λu
2πm0c

= γαmax . (35)

WhenK is greater than 1, the opening of the light cone is small compared to the deflection, and the observed
radiation comes mainly from the tops of the sine-like trajectory. The received electric field consists of a series of
peaks whose Fourier transform contains a series of harmonics. One speaks in this case of a ‘wiggler’. On the other
hand, whenK is smaller than 1, the cone of radiation is broader than the deflection and the observer ‘sees’ the
whole trajectory. The transform of this quasi-sinusoidal electric field results in a narrow spectrum. One speaks
then of an ‘undulator’.

For protons, with typical maximum values of magnetic field of the order of one tesla and a periodλu of
a few tens of centimetres, the typical values ofK are some10−2 thusK ¿ 1. For low values ofK, one can
apply the small oscillation approximation in the calculation of the particle trajectory in the undulator [16]. The
radiation emitted presents a relation of temporal coherence, giving place to an interferential behaviour [20]. In two
equivalent points A and B of the trajectory (i.e. separated by one periodλu) (Fig. 13), the particle emits in the
directionθ two wave fronts, separated by the distanced corresponding to the delay taken by the particle on the
wave front emitted in A to arrive at B:

d =
λu
β
− λu cosθ . (36)

In the case of small amplitude oscillations,β ' 1− 1
2γ2 − K2

4γ2 and cosθ ' 1− θ2

2 .

d ' λu

(
1 +

1
2γ2

+
K2

4γ2
− (1− θ2

2
)
)
' λu

2γ2

(
1 +

K2

2
+ γ2θ2

)
. (37)

When this distanced is an integer number of wavelengthnλ, then the interferences are constructive. For the case
n = 1, one can write:

λ1 =
λu
2γ2

(
1 +

K2

2
+ γ2θ2

)
'

K¿1

λu
2γ2

(
1 + γ2θ2

)
. (38)
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The wavelength emitted in the directionθ = 0 is called the ‘fundamental wavelength’ and is writtenλ1(θ = 0) =
λu

2γ2 . In the case of small oscillations, by differentiating the trajectory Eq. (34) with respect tox ' ct, one obtains

the coordinates of~n and~β [16], with the notations of Fig.12:

~n ' (sinθ cosϕ, sinθ sinϕ, cosθ) and ~β ' (−βK
γ

sin (kux), 0, 0) . (39)

The electric field emitted by a particle crossing the undulator is written then by deferring in Eq. (13) the expressions
of the vectors~n and~β with θ ¿ 1:

Eσ(t) =
4r0cB0γ

3

r

(1− γ2θ2 cos (2ϕ))
(1 + γ2θ2)3

cos(kuct′) (40)

Eπ(t) =
4r0cB0γ

5

r

θ2 sin (2ϕ)
(1 + γ2θ2)3

cos(kuct′)

wherer0 is the proton classical radius.

Again, by using the Fourier transform, it is possible to write the angular spectral energy density emitted in
an undulator observed in the direction (θ, ϕ) [16] (with θ2 = φ2 + ψ2 andϕ = Arctan ψ

φ ) (Fig. 12):

d2Wσ

dΩdω
=
r0e

2B2
0Nuλuγ

4

πm0

(1− γ2θ2 cos (2ϕ))2

(1 + γ2θ2)5
Nu
ω1


 sin

(
(ω−ω1)πNu

ω1

)

(ω−ω1)πNu

ω1

+
sin

(
(ω+ω1)πNu

ω1

)

(ω+ω1)πNu

ω1




2

(41)

d2Wπ

dΩdω
=
r0e

2B2
0Nuλuγ

4

πm0

(γ2θ2 sin (2ϕ))2

(1 + γ2θ2)5
Nu
ω1


 sin

(
(ω−ω1)πNu

ω1

)

(ω−ω1)πNu

ω1

+
sin

(
(ω+ω1)πNu

ω1

)

(ω+ω1)πNu

ω1




2

whereNu is the number of periods of the undulator andω1 = 2πc/λ1 = 4πγ2c/(λu(1 + γ2θ2)). For
observation frequenciesω close toω1, (ω−ω1)πNu

ω1
¿
ω'ω1

(ω+ω1)πNu

ω1
and the second term in the bracket is

negligible compared to the first one. One can then use the simplified expression:

d2Wσ

dΩdω
=
r0e

2B2
0Nuλuγ

4

πm0

(1− γ2θ2 cos (2ϕ))2

(1 + γ2θ2)5
Nu

ω1


sin

(
(ω−ω1)πNu

ω1

)

(ω−ω1)πNu

ω1




2

(42)

d2Wπ

dΩdω
=
r0e

2B2
0Nuλuγ

4

πm0

(γ2θ2 sin (2ϕ))2

(1 + γ2θ2)5
Nu

ω1


sin

(
(ω−ω1)πNu

ω1

)

(ω−ω1)πNu

ω1




2

.

On the other hand, when the observation frequency is far fromω1, the terms are equivalent and
the complete expression (41) should be used.

4.2 The low-frequency approximation

When the observation frequencyω and the total duration of the electric field impulse∆t are such that
ω∆t is much lower than 1, it is possible to simplify the expression of the Fourier transform by taking a
series expansion of the exponential.

e−iωt = 1− iωt− (ωt)2

2
+ i

(ωt)3

6
+ ...+

(−iωt)n
n!

+ ... . (43)

4.2.1 With order 0

By retaining only the first term of the development (43), it is possible to define a simple approximate
model to represent in a satisfactory way the radiation received by an observer in the ‘low-frequency’
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mode [21]. With e−iωt ' 1 andE taken null outside the time interval∆t, one can write:

~̃E(φ, ψ, ω) =
1√
2π

∫ +∞

−∞
~E(φ, ψ, t)e−iωtdt (44)

'
ω¿ωl

1√
2π

∫

∆t

~E(φ, ψ, t)dt (45)

whereωl is the frequency limit for the model application, satisfyingωl∆t = 1.

It is often easier to perform the integration in particle timet′. Indeed, the expression of~E(φ, ψ, t′)
[Eq. (15)], and that ofdt/dt′ [Eq. (17)] are rational fractions oft′. This yields

~̃E(φ, ψ, ω) =
1√
2π

∫

∆t

~E(φ, ψ, t′)
dt

dt′
dt′ . (46)

The integral over a limited interval is thus defined and an analytical expression of the Fourier transform
can be obtained. As in the case of the undulator, one can define a deflection parameter ofK = αγ

2 . One
obtains then, in the case of a dipole of finite lengthL = αρ [21], AppendixA:

Ẽσ(φ, ψ, ω) =
qγ

(2π)3/2ε0cr

[
K − γφ

1 + γ2ψ2 + (K − γφ)2
+

K + γφ

1 + γ2ψ2 + (K + γφ)2

]
(47)

Ẽπ(φ, ψ, ω) =
qγ2

(2π)3/2ε0cr
ψ

[
1

1 + γ2ψ2 + (K − γφ)2
− 1

1 + γ2ψ2 + (K + γφ)2

]
.

The corresponding angular spectral energy density radiated is obtained by inserting these relations
in Eq. (26):

∂2Wσ

∂ω∂φ∂ψ
=

q2γ2

4π3ε0c

[
K − γφ

1 + γ2ψ2 + (K − γφ)2
+

K + γφ

1 + γ2ψ2 + (K + γφ)2

]2

(48)

∂2Wπ

∂ω∂φ∂ψ
=

q2γ4

4π3ε0c
ψ2

[
1

1 + γ2ψ2 + (K − γφ)2
− 1

1 + γ2ψ2 + (K + γφ)2

]2

.

Example 1: short dipole For a short dipole of lengthL and magnetic fieldB, the duration of the
impulse∆t corresponds to the difference in travel time in the magnet between the proton and the photon,
AppendixB:

∆t =
L

2γ2c

[
1 + γ2(φ2 + ψ2)− γ2φα+

α2γ2

3

]
(49)

whereα = BL/Bρ. The low-frequency limit is thus written:

ω ¿ ωl =
2γ2c

L
[
1 + γ2(φ2 + ψ2)− γ2φα+ α2γ2

3

] . (50)

Prototype LHC dipoles have been designed and built [22]; these magnets haveL = 1 m and
B = 6 T, hence the typical values for the direction(φ, ψ) = (0, 0) areωl = 2.6× 1016 rad.s−1 (or 16.8
eV) at 7 TeV andωl = 2.1 × 1015 rad.s−1 (or 1.4 eV) at 450 GeV. The shape of the energy spectra is
given in Fig.14. In the low-frequency range, the spectral energy density becomes independent of the
frequency. Thus, depending on the observation frequency bandwidth and the energy of the particles, the
angular spectral energy density can have very different shapes for the same source.

The comparison between the derivation with Eq. (15) and the low-frequency model, Eq. (48), is
presented in Fig.15, for the observation range g3, showing that the model applies well at 7 TeV whereas
it is at the limit of validity at 2 TeV.

This study shows that the spectral energy density emitted by a magnet of this type in the selected
observation frequency range (e.g g3) can be represented by Eq. (48).
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Fig. 14: Energy spectrum in the direction(φ, ψ) = (0, 0), for 7 TeV and 2 TeV in the case of a LHC prototype dipole with

length 1 m and fieldB = 6 T.
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Fig. 15: Spectral energy density atψ = 0 for 7 TeV (on the left) and 2 TeV (on the right) forω = 1.71× 1015 rad.s−1. The

solid curve represents the calculation from Eq. (15) and the dotted curve is the low-frequency approximation based on Eq. (48).
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Example 2: long dipole In the case of a long dipole with strong deflection (K = αγ
2 À 1), the angular

spectral energy density of theσ component of the radiation in the directionψ = 0 cancels for the anglesφ
beyond magnet edges directions because of the truncation of the electric field impulse in relation with
the finite magnet length [21]. There are two peaks of energy density centred at±1/γ on both sides of
the edges of the magnet (the maximum inside the core of the magnet and the relative maximum outside)
(Fig. 16). The amplitude of each peak is obtained from Eq. (48) with ψ = 0 and:

γφ = ±(K + 1) for the largest peak (51)

γφ = ±(K − 1) for the smallest peak. (52)

One can thus compare the relationship between the amplitudes of the two peaks, from Eq. (48),

∂2Wσ,low-peak

∂ω∂Ω

/∂2Wσ,high-peak

∂ω∂Ω
'

(
1− 1

K

)2

(
1 + 1

K

)2 (53)

with the one estimated from the plots of the numerical Fourier transform of Eq. (15), Figs. 16 and
17. Typically, the angular spectral energy density obtained in the case of a 9.45 m long dipole of the
D2 type, Table1, and a magnetic field of 2.65 T at 7 TeV (K = 4), observed at the frequencyω =
1.53 × 1013 rad.s−1 (in this case,ωl = 5.6 × 1013 rad.s−1) has the shape of Fig.16. For the 7 TeV
protons, in a D2 dipole, the ratio given by Eq. (53) is 0.36 and the measurement on the cuts obtained
by numerical simulation from Eq. (15) (Fig. 16) gives 0.37. The agreement is thus very good, which
justifies using the low-frequency model in these conditions.
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Fig. 16: Spectral angular energy density atψ = 0 at 7 TeV

in D2 (K = 4) forω = 1.51× 1013 rad.s−1
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Fig. 17: Spectral angular energy density atψ = 0 at 7 TeV

in D2 (K = 4) forω = 1.51× 1015 rad.s−1

In the same way, the ratio of the amplitudes between the radiation emitted by a long dipole, equiv-
alent to the radiation emitted by the centre of D2 (directionφ = 0 on Fig.16), and the maximum energy
is written:

∂2Wσ,long dipole

∂ω∂Ω

/∂2Wσ,high-peak

∂ω∂Ω
=

16
(K)2

(54)

and is 0.56 here. An estimate from the plot of the numerical FT of Eq. (15) in Fig. 16gives 0.52.

If the observation frequency is close to the limit frequencyωl [Eq. (50)], as is the case for the di-
agnostics system, the model is no longer in such good agreement with the numerical simulation. Indeed,
the position of the maximum remains identical, but the relative heights of the peaks and the centre no
longer correspond to the calculation (Fig.17).

4.2.2 With higher orders

When the approximation with order 0 is not sufficient, it is possible to take additional terms, in Eq. (43),
in order to improve the model. The analytical calculation remains possible because the series expan-
sion (43) transforms the function under the integral sign in Eq. (44) into a rational fraction. For the needs
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of the following section, calculations up to order 2 were carried out. In this case, Eq. (44) is written:

~̃E(φ, ψ, ω) '
ω¿ωl

1√
2π

∫

∆t

~E(φ, ψ, t)(1− iωt− (ωt)2/2) dt . (55)

This results in calculating integrals of the form
∫
E(t)tndt with 0 ≤ n ≤ 2. By a change of variable

from t to t′, by using expressions (15) – (17), and by integrations by parts in cascade, one obtains the
following results for theσ component, calculations detailed in AppendixA:

∫ L
c

0

Eσ(φ, ψ, t)dt =
qγ2

2πε0cr

(
α− φ

1 + γ2ψ2 + γ2(α− φ)2
+

φ

1 + γ2(φ2 + ψ2)

)
(56)

∫ L
c

0

Eσ(φ, ψ, t) t dt =
qγ2αρ

4πε0c2r

[(
1 + γ2(φ2 + ψ2)

γ2
− αφ+

α2

3

)
α− φ

1 + γ2((α− φ2) + ψ2)

+
2φ− α

2γ2

]
(57)

∫ L
c

0

Eσ(φ, ψ, t) t2 dt =

qρ2(1 + γ2(φ2 + ψ2))
4πε0c3rγ2

[(
1 + γ2(φ2 + ψ2)

2γ2
− αφ

)
γ2α2(α− φ)

1 + γ2((α− φ)2 + ψ2)

− α

(
1 + γ2(ψ2 − 2φ2)

γ2
− 3

2
αφ

)
− 2φ(1 + γ2(ψ2 − φ2/2))

γ2
ln

1 + γ2((α− φ)2 + ψ2)
1 + γ2φ2 + γ2ψ2

+

√
1 + γ2ψ2(1 + γ2(ψ2 − 5φ2))

γ3

(
Arctan

γ(α− φ)√
1 + γ2ψ2

+ Arctan
γφ√

1 + γ2ψ2

)]
. (58)

These formulas will be used for the representation of the interference between two dipoles in the next
paragraph.

4.3 Interference between two sources

Any magnetic element of the machine is a potential source of synchrotron radiation. Along its trajectory,
the particle thus crosses a succession of sources and the radiation emitted in each portion of the trajectory
presents a certain degree of temporal coherence with the radiation emitted on other portions. Thus,
according to the distances between the various sources, the principal directions of emission, and the
particle energy, this can cause a phenomenon of interference which it is advisable to study in evaluating
the intensity distribution received by the detector.

The formalism describing the phenomenon of interference between synchrotron radiation sources
was developed in various cases for electrons [23] by using the low-frequency model. However, the appli-
cation to the case of protons at high energy highlighted an additional limit to the application conditions
of the low-frequency model to order 0 and required a development to higher orders.

4.3.1 Formalism

The crossing of a particle through two successive short dipoles (Fig.18) generates two coherent sources.
The total emitted electric field is the sum of the electric fields emitted by the beam during the passage in
each of the two magnetic elements:

Etot(φ, ψ, t) = E1(φ, ψ, t− T/2) + E2(φ, ψ, t+ T/2) . (59)

20



α

Φ
Φ

particle
trajectory

direction 
observationL d

 = 0

t = 0 t = T / 2

Fig. 18: Interference between two sources with opposite signs

whereE1(φ, ψ, t), (E2(φ, ψ, t)) represents the electric field emitted by the first, (second) magnet. The
timeT represents the time delay between the two impulses received by the observer.

The general expression of the Fourier transform is then written:

Ẽtot(φ, ψ, ω) = e−iωT/2Ẽ1(φ, ψ, ω) + eiωT/2Ẽ2(φ, ψ, ω) (60)

with Ẽ1,2(φ, ψ, ω) the Fourier transform ofE1,2(φ, ψ, t).
This expression can have a simplified form in various particular cases treated later on, in particular

if E(t) is an odd function ofT and in the low-frequency approximation.

4.3.2 Interference between two successive edges

Let us detail initially the case of interference between two successive edges of two identical dipoles
separated by the distanced [23] (Fig. 19).
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Fig. 19: Dipoles with interference between edges
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Fig. 20: Electric field emitted in the directionϕ = 0

[Eq. (20)]

Since the edges are symmetrical, the electric field radiated in theφ = 0 direction correspond-
ing to that of the trajectory between the two magnets is an even and real function oft (Fig. 20), and
E2(0, ψ, t) = E1(0, ψ,−t). Equation (60) is then written:

Ẽtot(0, ψ, ω) = e−iωT/2Ẽ1(0, ψ, ω) + eiωT/2Ẽ1(0, ψ,−ω) . (61)

The radiated angular spectral density is proportional to the square module of the Fourier transform of
Eσ,tot(0, ψ, t) and is thus written:

∂3Wσ,tot

∂ω∂φ∂ψ
= 2ε0cr2

(
| ~̃E1(ω)|2 + | ~̃E1(−ω)|2 + 2 cos(ωT ) ~̃E1(ω) ~̃E1(−ω)

)
(62)

whereT is the travel time through the straight sectiond separating the two sources.
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4.3.3 Interference between the edges of a long dipole

Let us now consider the complementary case to that presented in Fig.19 from the point of view of the
total magnetic field: the interference between the two edges of a single dipole (Fig.21).

TrajectoryL

D2

φα/2

t=0

Direction of observation

Fig. 21: Geometry considered for the interference between the

edges of D2 1.´10-14 3.´10-14 5.´10-14 7.´10-14
t HsL

5´10-8

1´10-7

1.5´10-7

2´10-7

2.5´10-7

3´10-7

3.5´10-7
EHtL HV�mL

direction Φ = 0

Fig. 22: Electric field emitted in the D2 dipole by a

450 GeV proton [Eq. (20)]

In the case of a weak magnet deflection (α < 1/γ), the dipole behaves like a short magnet and the
electric field is proportional to the magnetic field (Section4.1.2). The total electric field emitted by the
dipole in theφ = 0 direction (Fig.22) can thus be approximated by the difference of two step functions
corresponding to the two edges with an almost constant part corresponding to the core of the magnet. The
edges and the centre of the magnet emit in two different spectral domains: high frequency for the edges
and low-frequency for the centre. In the high-frequency spectral domain corresponding to the edges, the
radiation of the dipole is reduced to the interference between two sources (two edges) separated by the
distanceL, i.e. the magnet length. The angular spectral energy density is represented by Eq. (62), with
~̃E1(ω) representing the FT of the electric field produced by an edge.

By definition of a Heaviside function, in this case,E1(t) is odd4 thus ~̃E1(ω) = − ~̃E1(−ω) and
Eq. (62) is simplified into:

∂3Wσ,tot

∂ω∂φ∂ψ
= 4 sin2

(
ω
T

2

)
∂3Wσ,1

∂ω∂φ∂ψ
(63)

where ∂3Wσ,1

∂ω∂φ∂ψ is the spectral angular energy density emitted by one edge.

In the particular case of the D2 dipole at 450 GeV, the angular deflectionα is 1 mrad, whereas
the angular opening of the cones of radiation is approximately1/γ = 2 mrad. There is overlap in the
emission direction and thus interference between the two edges (Figs.23and24). The timeT , calculated
in AppendixB, is then the crossing time of the dipole, i.e. the lengthL ' ρα of the arc (Fig.21):

T =
L

2γ2c
(1 +K2/3 + γ2(φ2 + ψ2)) (64)

whereK = αγ/2. The term insin2 (ωT/2) in Eq. (63) describes a series of oscillations comparable
with Newton’s rings. The minima are given byT = n2π

ω , i.e.:

nλ =
L

2γ2
(1 +K2/3 + γ2(φ2 + ψ2)) . (65)

To check the relevance of the model, a cut in theφ = 0 plane of the spectral energy density for
a given frequency is plotted, Fig.24. The solving of Eq. (65) in theψ variable for a chosen wavelength
gives the position of the various minima (ψ according ton), to be compared with the cut in theφ = 0
plane of the spectral energy density (Fig.24). The agreement obtained in the case of D2 at 450 GeV
(K = 0.25), forω = 9.1 × 1014 rad.s−1 (that is to say~ω/q = 0.6 eV) is very good (Table3). The last

4If we except a constant component of offset which, in FT, gives a Dirac peak located at the origin and so outside the
observation domain.
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Table 3: Comparison of the angular positions of the minima of a high order given by the numerical simulation, calculation

with the term inK and without the term inK of the Eq. (64)

n value 11 12 13 14 15
ψcalculated(mrad) 0.608 0.904 1.116 1.297 1.456
ψnumerical(mrad) 0.620 0.910 1.120 1.310 1.450

ψcalculatedwith K = 0 0.682 0.950 1.158 1.333 1.488

line of the table highlights the considerable effect ofK 6= 0 (representing the curvature of the trajectory
between the two ‘sources’ materialized at the dipole edges) on the angular opening of the first rings, by
contrast with two sources laid out on both sides of a section without field (such thatK = 0) (Fig.19).

4.3.4 Application in the case of the low-frequency model

Section4.2.1shows that the low-frequency model can be applied to the case of a short 1 m long dipole
with B = 6 T and 7 TeV protons observed forω in the g1 range. The electric field emitted by a dipole is
thus written with Eq. (48).

α

Φ

particle
trajectory

observation
direction 

L d

t = 0 t = T

= 0Φ

Fig. 25: Interference between two sources
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Fig. 26: Impulses of electric field received by the observer looking at the entrance edge of the first magnet (on the left) or the

inside of the magnet (on the right)

In the case of two magnets with opposite magnetic fields, separated by the distanced (Fig. 25),
the total emitted electric field, represented in Fig.26, is the sum of the two fields emitted by each dipole.
Moreover the anti-symmetry of the magnetic configuration makes it possible to writeE2(φ, ψ, t) =
−E1(φ, ψ,−t + T ). The timeT corresponds to the travel time through the whole of the two dipoles of
lengthL and the straight sectiond, Appendix B:

T =
αρ

γ2c

[
1 + γ2(φ2 + ψ2)− γ2φα+

α2γ2

3

]
+

d

2γ2c

[
1 + γ2((φ− α)2 + ψ2)

]
(66)
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whered is the distance between the two magnets (Fig.25). The apparent position of the maximum of
the pulse varies when the observer moves in the deflection plane of the magnets (Fig.26); this is why the
coherence time depends on the coordinates (φ, ψ).

Equation (60) is written in this case:

Ẽtot(φ, ψ, ω) = eiωT/2Ẽ1(φ, ψ, ω)− e−iωT/2Ẽ1(φ, ψ,−ω) (67)

whereE1(φ, ψ, ω) is the field emitted by the first dipole, described by Eq. (47). In the low-frequency
approximation, the electric field is independent ofω, thereforeẼ1(φ, ψ, ω) = Ẽ1(φ, ψ,−ω) and Eq. (67)
becomesẼtot(φ, ψ, ω) = (eiωT/2 − e−iωT/2)Ẽ1(φ, ψ, ω). The angular spectral energy density is writ-
ten again with Eq. (63). Nevertheless, Fig.27 shows that the agreement between this model and the
numerical simulation is not very good.
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Fig. 27: Comparison between the various orders of development: exact calculation in black solid line, order 0 in dotted lines,

order 1 in dashed and dotted lines, and order 2 in dashed.

Indeed, when writting the expressions of the Fourier transforms with the integrals, Eq. (60) is
rewritten:

Ẽtot(φ, ψ, ω) =
−2i√

2π

[
cosωT/2

∫ ∞

−∞
E1(φ, ψ, t) sinωt dt− sinωT/2

∫ ∞

−∞
E1(φ, ψ, t) cosωt dt

]
(68)

whereE1(φ, ψ, t) is the field emitted by the first dipole, described by Eq. (48). The low-frequency
approximation with order 0 is equivalent to neglecting the first term of the square bracket compared to
the second:

Ẽtot(φ, ψ, ω) '
ωt¿1

2i√
2π

[
sinωT/2

∫ ∞

−∞
E1(φ, ψ, t)dt

]
(69)

However, in the particular case of the two 1 m long magnets withd = 0.5 m, these two terms are
comparable to the first order (Figs.28and29).
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To take this effect into account, one thus needs a development to higher orders of Eq. (68):

Ẽtot(φ, ψ, ω) =
−2i√

2π
cosωT/2

∫ ∞

−∞
E1(φ, ψ, t)(ωt)dt

+
2i√
2π

sinωT/2
∫ ∞

−∞
E1(φ, ψ, t)(1− (ωt)2/2)dt . (70)

The difference between the two terms can be calculated at various orders of development by using the
derivations of integral carried out in Section4.2.2 [Eqs. (56)–(58)]. The comparison with an exact
numerical calculation (Fig.27) shows that it is necessary to go at least up to order 2 to have satisfactory
results within the radiation cone in the case of interference between two dipoles.

4.4 Conclusions

We tried to show in this section that there is a set of analytical tools that allow to evaluate in a more or
less precise way the angular spectral energy densities produced by several types of sources or by various
source configurations. However, a more systematic study of the possible sources for the diagnostics
requires the use of numerical methods.

5 IMPLEMENTATION OF NUMERICAL CALCULATIONS

The analytical tools presented in the preceding section make it possible to calculate the angular spectral
energy density emitted by a particle, but only in particular cases or with approximations limiting the real
applications. For more complex magnetic configurations where the models cannot be used, the emitted
electric fields must then be evaluated numerically. The Zgoubi program, used for this purpose, under
development since the beginning of the 1970s [24] and already used for the LEP miniwiggler [25, 26,
27], is based on the calculation of charged-particle trajectories in magnetic fields to obtain the emitted
synchrotron radiation. To check the correct operation of the numerical method used in the particular case
of the sources studied for the LHC monitor, a test against the analytical models was carried out.

First of all, this section presents how the code works and the various conditions of use. The second
part describes a procedure added to the code to allow the calculation of the synchrotron radiation emitted
in an undulator. Finally, the various comparisons between analytical models and equivalent numerical
simulations carried out are summarized to allow concluding on the reliability of the method.

5.1 Computer codes employed

The Zgoubi code is based on a step-by-step calculation of the particles’ trajectories in an arbitrary mag-
netic field. The trajectory computation provides the speed and acceleration components needed for the
derivation of the radiated electric field. Then, starting from the Fourier transform of this electric field
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and from Eq. (26), it is possible to determine the synchrotron radiation characteristics. The calcula-
tion method is described in this part in relation to the particular application to the synchrotron radiation
monitor.

5.1.1 Calculation of the trajectory

The numerical method is based on the step-by-step integration of the Lorentz equation:

m
d~v

dt
= q~v ×~b (71)

where~b is the magnetic field crossed by the particle and~v the speed of the particle withm = γm0 the
mass, andq the charge.

Starting from a position~R(M0) and a normalized speed~u(M0), defined by~u = ~v/v, the position
~R(M1) and the speed~u(M1) after a∆s displacement are obtained by a Taylor series truncated to the 6th
order:

~R(M1) ≈ ~R(M0) + ~u(M0)∆s+ ~u ′(M0)
∆s2

2!
+ ...+ ~u(5)(M0)

∆s6

6!

~u(M1) ≈ ~u(M0) + ~u ′(M0)∆s+ ~u ′′(M0)
∆s2

2!
+ ...+ ~u(5)(M0)

∆s5

5!
.

(72)

The values of the derivatives~u(n) = dn~u/dsn are calculated by starting from the differentiation of the

Lorentz equation [Eq. (71)] with the definition~B = ~b
Bρ :

~u(2) = ~u ′ × ~B + ~u× ~B ′

~u(3) = ~u(2) × ~B + 2~u ′ × ~B ′ + ~u× ~B(2)

~u(4) = ~u(3) × ~B + 3~u(2) × ~B ′ + 3~u ′ × ~B(2) + ~u× ~B(3)

~u(5) = ~u(4) × ~B + 4~u(3) × ~B ′ + 6~u(2) × ~B(2) + 4~u ′ × ~B(3) + ~u× ~B(4) .

(73)

The nth derivative of ~B is obtained with different procedures according to the type of description of
the magnetic field: field maps or analytical model. The detailed description of these various methods is
given in Ref. [28]. For example, for a multipole with a 3D analytical model of the magnetic field, the
three components of the field and their derivatives are calculated all along the trajectory starting from the
analytical expression of the scalar potential. In the case of a field map, the derivatives are obtained by
polynomial extrapolations up to more or less high orders [29].

From the initial conditions~B(M0), ~u(M0) and Eqs. (73), it is possible to calculate successively
the derivative of these conditions and by replacing them in Eq. (72) to deduce from them~R(M1) and
~u(M1).

Starting from Eq. (71), Zgoubi thus provides~R, ~v and ~̇v at any point of the trajectory in any
magnetic field, determined by a field map or analytical models (short magnet, dipole, multipole, etc).
The Zgoubi post-processor Zpop [28] then traces the trajectory in the studied magnetic field (Fig.30)
with the reference frame defined in Fig.7.

5.1.2 Calculation of the electric field

Knowing the position, the speed, and the acceleration of the particle along the trajectory, Eq. (11) allows
to calculate the radiated electric field in the ‘far field approximation’:

~E(t) =
q

4πε0c

~n(t′)×
[
(~n(t′)− ~β(t′))× ~̇β(t′)

]

r(t′)(1− ~n(t′) · ~β(t′))3
. (74)
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Fig. 30: Example of trajectory in a dipole of the D3 type for a 450 GeV proton

From the numerical point of view, the difficulty lies in evaluating the denominator term. Indeed, in
the majority of the applications, the observation direction~n is almost tangential to the trajectory, that is to
say parallel to~β. Moreover, for particles with an energy higher than a few hundred times their rest mass,
β ' 1−1/2γ2 is very close to 1. With the computer’s numerical precision, one thus often gets~n− ~β ' 0
and1− ~n · ~β ' 0, corresponding to a division by 0 in Eq. (74). The solution is the implementation of a
calculation method of this scalar product explained in Ref. [25] using a fast converging series expansion
of ~β.

~β = (
√
β2 − β2

y − β2
z , βy, βz) (75)

= (
√

1− 1/γ2 − β2
y − β2

z , βy, βz)

= (1− (a/2 + a2/8 + a3/16 + ...)︸ ︷︷ ︸
ξx

, βy, βz)

wherea = 1/γ2 + β2
y + β2

z . On the other hand~n is written:

~n = (cosψ cosφ, cosψ sinφ, sinψ) (76)

= (1− εx, ny, nz) (77)

whereεx = 2 (sin2 φ/2 + sin2 ψ/2)− 4 sin2 φ/2 sin2 ψ/2.

By combining the two expressions (76) and (77), and by definingξx = a/2 + a2/8 + a3/16 + ...,
the two problematic expressions are written:

~n− ~β = (−εx + ξx, ny − βy, nz − βz) (78)

1− ~n · ~β = εx + ξx − εxξx − nyβy − nzβz .

Theφ andψ angles being of order of1/γ, theny, nz, βy andβz terms are of order of1/γ, εx is of
order1/γ2. Equations (78) can thus be computed with terms of the same orders allowing a numerical
evaluation without the problem of precision. Moreover, the precision of the calculation is directly related
to the order of development of the seriesξx = a/2 + a2/8 + a3/16 + ... which is quickly convergent.
There is thus a good precision with very few terms, therefore a fast calculation.

Again, the Zgoubi post-processor plots the electric fields calculated with this method for any
observation direction according to observer time or particle time. Figures31 (a) and31 (b) show an
example for a dipole of the D3 type, with 7 TeV protons observed in the direction tangent to the dipole
centre and in the direction of entry of the beam.
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Fig. 31: Electric fields in the observer time frame simulated by Zgoubi, for a dipole of the D3 type and 7 TeV protons,

observed in the direction tangent to the dipole centre (a), and in the directionγφ = K of the magnet edge (b)

5.1.3 Calculation of the Fourier transform

From the electric field emitted by the particle and from Eq. (26), Zgoubi then calculates the Fourier
transform of this field to finally obtain the angular spectral energy density received by the observer in a
given position [Figs.32 (a) and32 (b)].
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Fig. 32: Angular spectral energy density simulated by Zgoubi, for a dipole of the D3 type and 7 TeV protons, observed in

the direction tangent to the dipole centre (a), and in the directionγφ = K of the magnet edge (b)

The calculation of the Fourier transforms [25] is done without using the Fast Fourier Transform
(FFT) algorithms, but by the direct integration of the electric field received during the time interval∆t,
i.e. the crossing time of the elements defining the trajectory,1

2π

∫
∆tE(t) exp(−iωt)dt. The main reason

is that the integration step in observer time is not constant. Indeed, the user chooses the constant spatial
integration step∆s used for the trajectory derivation. The integration step in particle time∆t′ = ∆s/βc
is also constant, but the relation to obtain the integration step in observer timedt starting fromdt′

[Eq. (17], is a function of the variable term1 − ~n · ~β and of the integration step. In the area around
the electric field peak, corresponding to the case1− ~n · ~β ' 1/γ2 (Fig. 31), dt must be very small, i.e.
several orders of magnitude smaller than the total duration of the impulse, for the precision of calculation.
Again, because of the computer’s precision, it cannot be determined by a difference between two times
tn− tn−1, but starting from1−~n · ~β with the method previously described. This step is thus not constant
and the number of steps is not necessarily a power of 2, which precludes using the standard FFT.

5.1.4 Space or frequency integration

From the angular spectral energy density∂
2W

∂Ω∂ω , as for the analytical calculation, while integrating ei-
ther the frequency, or the solid angle, or both, the code calculates the energy received for a selected
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wavelength range (chosen by the user in the form of a photon energy band in keV) and a given angular
acceptance. Indeed, the Zgoubi post-processor allows the user to choose the location and dimensions
of an integration window simulating a finite angular acceptance for the observation and on which one
defines a grid. Zgoubi then carries out the calculation of the angular spectral energy density in each
point of the grid and plots for each polarization component either the 3D view of the angular densities
(Fig. 33), or the projections integrated inν frequency, or angleφ or ψ [Figs. 34 (a) and34 (b)]. The
integration of one of these curves on a given interval provides the power received in an angular opening
and a selected frequency range.
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Fig. 33: Angular energy densities integrated over the g3 range simulated by Zgoubi, for a dipole of the D3 type and a 7 TeV
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Fig. 34: Projections in the vertical planeψ = 0 (a) and in the horizontal planeφ = 0 (b) of the angular energy density

integrated over the photon energy range 1.3–6.2 eV (corresponding to the g3 wavelength range) simulated by Zgoubi, for a

dipole of the D3 type and a 7 TeV proton.

Zgoubi simulations can cover various numerical integrations where the user chooses the steps.
The first integration relates to the calculation of the electric field impulse with a time sampling (or in
longitudinal co-ordinate) and the second yields the Fourier transform of this field, with a frequency
step. The choice of these steps results from a compromise between the computing time and the desired
precision. It is thus necessary to carry out preliminary tests in order to optimize these two parameters.

5.2 Extension to the undulator radiation

The study of the various possible synchrotron radiation sources for the emittance measurement resulted
in the development of a procedure that calculates the trajectory in an undulator magnetic field described
in an analytical way by giving the element length, the number of periods, and its magnetic field peak [29].
The basic numerical method is that described in Section5.1.1. The calculation procedure of the magnetic
field, called by the code word UNDULATOR, uses truncated Taylor series, calculated using Maxwell’s
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equations [30]:

Bx(x, y, z) = z
∂B

∂x
− z3

6

(
∂3B

∂x3
+

∂3B

∂x∂y2

)

By(x, y, z) = z
∂B

∂y
− z3

6

(
∂3B

∂x2∂y
+
∂3B

∂y3

)

Bz(x, y, z) = B − z2

2

(
∂2B

∂x2
+
∂2B

∂y2

)
+
z4

24

(
∂4B

∂x4
+ 2

∂4B

∂x2∂y2
+
∂4B

∂y4

)
(79)

with x, y andz defined on Fig.7. The procedure uses a 2D model with the mid-plane symmetry:

Bx(x, y, 0) = 0
By(x, y, 0) = 0
Bx(x, y, z) = −Bx(x, y,−z)
By(x, y, z) = −By(x, y,−z)
Bz(x, y, z) = Bz(x, y,−z) .

(80)

Equations (79) are then written:

Bx(x, y, z) = z
∂B

∂x
− z3

6
∂3B

∂x3

By(x, y, z) ≡ 0

Bz(x, y, z) ≡ B − z2

2
∂2B

∂x2
+
z4

24
∂4B

∂x4
.

(81)

The magnetic fieldB and its derivative up to the fourth order are calculated starting from the
analytical expression characterizing the sinusoidal field in an undulator:

Bz(x, y, 0) = B0 sin (kux) (82)

whereku = 2π/λu andλu = Lu/Nu is the undulator magnetic period. In the current state, the procedure
does not take into account the undulator fringe field5.

5.3 Comparison between models and simulations

A first series of numerical simulations [31] was carried out in order to compare the results given by the
Zgoubi code with those given by the analytical models [32] for three source types. In each case studied,
small divergences appeared between the various results. Even if the order of magnitude is satisfactory for
validating the computer code, in order to use it in more complex cases, it is advisable to understand the
origin of these divergences. A systematic study was thus undertaken in order to insure the consistancy of
the various computing techniques.

5.3.1 The LHC dipole case

The instantaneous energy (in J.s−1) emitted by a particle is written [16]:

P0 =
2
3

1
4πεo

e2cγ4

ρ2
. (83)

5A more precise 3D analytical model, derived from the 3D magnet simulations (see AppendixC), has now been imple-
mented.
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The synchrotron radiation is not emitted on the whole machine circumference. The power radiated by
a particle on the complete circumference is obtained by multiplying the emitted energy by the relation
between the emission time and the travelling time of a full machine turn:

P0 × 2πρ
c
/
2πR
c

= P0
ρ

R
(84)

whereR is the average machine radius.

In the LHC case, the local curvature radius in a dipole and the average radius are different. Spectral
power radiated by one particle per passage in the dipole is thus written:

dP

dω
=
ρ

R

P0

ωc

9
√

3
8π

(
ω

ωc

) ∫ ∞

ω/ωc

K5/3

(
ω

ωc

)
d

(
ω

ωc

)
(85)

whereK5/3(η) is the modified Bessel function, and the total radiated power in a frequency band [ω1, ω2]
is written:

P[ω1,ω2] =
ρ

R

P0

ωc

9
√

3
8π

∫ ω2

ω1

[(
ω

ωc

) ∫ ∞

ω/ωc

K5/3

(
ω

ωc

)
d

(
ω

ωc

)]
dω . (86)

Table4 presents the comparison between the analytical results calculated starting from Eq. (86) with
theMathematicaprogram and Zgoubi simulations. The agreement is very good for energies where the
analytical model is applicable. Indeed, as will be shown in Section6, below 2 TeV, the radiation emitted
by the D2 dipole centre is negligible compared to that of the two edges and Eq. (86) cannot be used any
more.

Table 4: Comparison between the numerical simulations of Zgoubi and the analytical model for a dipole of the
D2 type

Power
Energy Eq. (86) Zgoubi Zgoubi
(TeV) (W) (W) /Eq. (86)
1.00 6.78× 10−8 3.30× 10−7 4.90
3.00 2.27× 10−3 2.28× 10−3 1.00
5.00 3.93× 10−3 4.02× 10−3 1.02
7.00 4.47× 10−3 4.60× 10−3 1.02

5.3.2 The short magnet case

To calculate the power radiated by a particle, one defines a vector~U(t) [1] such as:

d2P

dΩdt
=

∣∣∣~U(t)
∣∣∣
2
. (87)

The total energy radiated per unit solid angle is written then, according to Parseval’s theorem:

dP

dΩ
=

∫ +∞

−∞

∣∣∣~U(t)
∣∣∣
2
dt =

∫ +∞

−∞

∣∣∣ ~̃U(ω)
∣∣∣
2

dω (88)

where~̃U(ω) is the Fourier transform of~U(t) and

∂P

∂Ω∂ω
=

∣∣∣ ~̃U(ω)
∣∣∣
2

. (89)
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The ~U(t) vector is thus proportional tor ~E(t) and is written:

~U(t) = Cγ3B~f(θ, φ) (90)

whereC = e2

πm

(
1
εoc

)1/2
, ~f is an angular factor, andB = B(t) the magnetic field function at observer

time t.

One limits the integration to the positive angular frequencies and the energy radiated per unit angle
becomes:

dP

dΩ
=

∫ +∞

0

∂2P

∂ω∂Ω
dω (91)

where ∂2P
∂ω∂Ω is the spectral angular energy density.

∂2P

∂ω∂Ω
=

∣∣∣ ~̃U(ω)
∣∣∣
2

+
∣∣∣ ~̃U(−ω)

∣∣∣
2

(92)

and since in our case~U(t) is real, one has:

∂2P

∂ω∂Ω
= 2

∣∣∣ ~̃U(ω)
∣∣∣
2

. (93)

The radiated spectral power is then written:

∂P

∂ω∂Ω
= 2C2γ6f2B̃(t)2 . (94)

Finally, if one adds it in the formulas of Ref. [18], the power detected in the frequency band [ν1, ν2]
becomes6:

Psm =
π3C2

1

2c2
B2

0L
2Npfrev

∫ ν2

ν1

{∫ ∞

1

(
y−2 − 2y−3 + 2y−4

)
e−xydy

}
dν . (95)

Table 5 presents the comparison between the numerical results obtained with Zgoubi and the
analytical calculations based on Eq. (95) in the case of a 0.15 m long dipole, with a Lorentzian magnetic
field [32]:

B(z) =
B0

1 + (z/L)2
(96)

whereB0 = 1 T. The agreement is very good in the validity domain of the model. By contrast, at high
energy, the approximation supposing that the magnet deflectionα = BL/Bρ is much lower than the
radiation cone opening of1/γ is no longer true: at 7 TeV,αγ = 0.5.

5.3.3 Undulator

The angular spectral energy density radiated by an undulator is given by Eq. (42). While integrating over
the whole solid angle and all the frequencies, the total emitted energy is written [16]:

W =
r0e

2c2B2
0Luγ

2

3m0c2
(97)

whereLu = Nuλu is the overall undulator length.

6A missing factor of 2 has been re-established compared to earlier publication [32].
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Table 5: Comparison between the analytical model of Eq. (95) and Zgoubi simulations for the short dipole (L = 0.15 m,

B0 = 1 T) for 1014 protons and the g3 frequency range

Energy Eq. (95) Zgoubi Zgoubi
(TeV) (W) (W) /Eq. (95)
0.45 8.52× 10−9 8.59× 10−9 1.01
0.55 5.26× 10−8 5.30× 10−8 1.01
0.60 1.00× 10−7 1.02× 10−7 1.02
0.70 2.64× 10−7 2.67× 10−7 1.01
0.90 8.74× 10−7 8.93× 10−7 1.02
1.00 1.29× 10−6 1.32× 10−6 1.02
3.00 8.82× 10−6 8.92× 10−6 1.01
5.00 1.15× 10−5 1.15× 10−5 1.00
6.00 1.22× 10−5 1.31× 10−5 1.07
7.00 1.27× 10−6 1.44× 10−5 1.13

The power emitted by a particle in the undulator is given byPu = Wc/Lu and the angular spectral
power density can be written as:

d2Pσ
dΩdω

= Puγ
2 3
π
Fu,σ(θ, ϕ)fNu(ω − ω1) (98)

d2Pπ
dΩdω

= Puγ
2 3
π
Fu,π(θ, ϕ)fNu(ω − ω1)

using the following definitions:

Fu,σ(θ, ϕ) =
(1− γ2θ2 cos (2ϕ))2

(1 + γ2θ2)5
(99)

Fu,π(θ, ϕ) =
(γ2θ2 sin (2ϕ))2

(1 + γ2θ2)5
(100)

fNu(ω − ω1) =
Nu

ω1


sin

(
(ω−ω1)πNu)

ω1

)

(ω−ω1πNu)
ω1




2

. (101)

For a large number of periods (Nu À 1), the integration of Eq. (98) over the whole solid angle
gives the spectral power density [16]:

dPuσ
dω

=
3Pu
ω10

ω

ω10

[
1
2
− ω

ω10
+

3
2

(
ω

ω10

)2
]

(102)

dPuπ
dω

=
3Pu
ω10

ω

ω10

[
1
2
− ω

ω10
+

1
2

(
ω

ω10

)2
]

whereω10 = ω1(θ = 0) = 4πγ2c/λu is the critical frequency in the undulator median plane.

The comparison of the spectral power density simulated with Zgoubi and calculated with Eq. (102)
shows a perfect agreement (Fig.35). The abrupt edge for the frequencyω = ω10 given by analytical
calculation forNu = ∞ is softened in the numerical simulation because of the finite number of periods
(Nu = 20).
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Fig. 35: Spectral energy density integrated over the whole solid angle simulated by Zgoubi (solid line) and calculated with

the analytical model [Eq. (102)], (stars).

5.4 Conclusions

The numeric code Zgoubi was tested in particular cases allowing comparison with existing analytical
models. The very good agreement from the qualitative as well as from the quantitative point of view
validates the numerical methods.

For the choice of a synchrotron radiation source for the profile monitor, the preliminary study [32]
carried out using the analytical models for a short magnet, a dipole, and the edge effect underlined
the need to study other sources to cover the whole energy range of the proton energy. As the analytical
models are not applicable to the majority of the configurations considered, the evaluation of the produced
intensities presented in the following section was carried out by numerical simulations using the Zgoubi
code.

6 SYNCHROTRON RADIATION SOURCES IN THE LHC

To obtain precise beam profile measurements, the first stage is to choose the best possible source in
terms of flux collected by the telescope. This choice is guided not only by the absolute performance of
the various sources, but also by the possibilities for the extraction of the produced light. In this section
the studies carried out to check the usable sources and to estimate their performance under the prevailing
conditions of the machine layout are described. The intensity emitted by a D2 type dipole, the main
source considered initially, proved to be insufficient for the diagnostic at energies lower than 2 TeV. Four
other sources were then studied to cover energies between 450 GeV and 2 TeV:

1. a set of four superconducting dipoles improperly called ‘miniwiggler’;

2. an alternative to this miniwiggler with a second extraction mirror dedicated to the diagnostic in
bunch-by-bunch mode at 450 GeV;

3. an undulator at room temperature;

4. a superconducting undulator.

These various sources are first presented with their particular operating conditions. They are then com-
pared in terms of collected intensity, and finally we give the choice of the source which is currently under
development.
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6.1 Intensities emitted by the different possible sources

6.1.1 The D2 dipole

A preliminary study [31, 32] showed that it was not possible to use the synchrotron radiation emitted by
the superconducting main magnets (in particular because of space problems for the light extraction). On
the other hand, the machine layout would make it possible to exploit the synchrotron radiation emitted
by a D2 separation dipole near IP1 or IP5.

D2 is a 9.45 m long dipole with a maximum magnetic field of 2.65 T at 7 TeV. It follows the energy
ramp in order to maintain a constant deflection angleα = 1.07 mrad, which gives a curvature radiusρ
= 8829.5 m. Table6 gives the evolution of the dipole SR critical frequency, defined asωc = 3cγ3

2ρ , with
energy.

Table 6: Characteristics of the radiation in D2 (centre and edge). Note that the critical frequencyωc crosses the observation

frequency range (g1 or g3) during the energy ramp for the centre of D2 whereas that of the edge always remains above the

range.
Dipole centre Dipole edge

Energy ~ωc/q ωc ~ωc,short magnet/q ωc,short magnet

(TeV) (eV) (rad.s−1) (eV) (rad.s−1)
0.45 0.0037 5.64×1012 5.2 7.90×1015

0.75 0.0170 2.61×1013 14.4 2.20×1016

2.00 0.33 4.94×1014 102.0 1.56×1017

7.00 13.9 2.12×1016 1256.0 1.90×1018

The D2 characteristics are such that no simple analytical model can be used to calculate the light
production over the whole energy range. Indeed, the deflection angle isα = 1.07 mrad whatever the
beam energy, and at 450 GeV the average light cone opening is about1/γ = 2.08 mrad. Consequently,
the cones emitted by each of the two edges overlap7 giving the interference pattern of Fig.36. On the
other hand, at 2 TeV, the average light cone opening is then1/γ = 0.47 mrad. The light cones can then
be distinguished (Fig.37).
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Fig. 36: Scheme of radiation of D2 for a proton of 450 GeV on the left and on the right, emitted angular energy density at

450 GeV (integrated on the g3 frequency range) by D2 (σ component), Zgoubi simulation.

7The diameter of the vacuum chamber of 56 mm allows the synchrotron radiation emitted by the entrance edge to exit on
the other side without being intercepted.
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Fig. 37: Scheme of radiation of D2 for a proton of 2 TeV on the left and on the right, emitted angular energy density at 2 TeV

(integrated on the g3 frequency range) by D2 (σ component), Zgoubi simulation.

At 450 GeV, the radiation emitted by the D2 dipole comes primarily from its two edges with an
interference as described in Section4.3.3, while at 7 TeV, taking into account the shrinking of the emitted
light cone, the observation of the magnet centre becomes possible and the model of classical synchrotron
radiation can be used. On the other hand, for intermediate energies, no simple model is at our disposal
and it is necessary to use such numerical tools as the ray-tracing code Zgoubi.

The Zgoubi code calculates the total intensity emitted per turn in the D2 dipole for the selected
frequency range (g3) and for the various energies of the ramp. The angular opening of the cone given
in Table7 corresponds in the vertical plane to the opening of the edge radiation, while in the horizontal
plane, it also includes the angular deflection of the magnet (opening of the cone of each edge plusα).

Table 7: Total energy emitted in the D2 dipole, by one proton per LHC turn (90 ms) and power emitted by the nominal beam

(1014 protons) in the g3 frequency range. The angular opening is here the angular width taken at 5% of the maximum intensity.

In the horizontal plane, it includes the magnet deflectionα.

Proton Emitted Emitted Angular opening
energy energy (J) power (W) (mrad)
(TeV) 1 part. 1 turn 1014 protons Horiz. Vert.
0.45 9.7×10−28 1.0× 10−9 4.2 4.6
1.00 2.7×10−25 2.9× 10−7 2.4 2.6
2.00 4.4×10−23 4.8× 10−5 1.8 1.1
7.00 4.2×10−21 4.6× 10−3 1.5 0.8

Taking into account the weak angular deflection of D2, the imaging system intercepts the radiation
coming from almost the whole magnet. To shorten the trajectory portion ‘seen’, in order to limit the depth
of field effects, it is necessary to restrict the optics angular acceptance (Section7.4.4). As in the LEP
telescope [17], a slit placed in the focal plane of the telescope [33, 34] allows typical values of 0.25 mrad
in the horizontal plane to be obtained, but it limits at the same time the entering light flux. To take
account of this, the angular integration in the numerical simulation is thus limited to∆φ = 0.25 mrad in
the trajectory plane. With a curvature radius ofρ = 8829.5 m, this angular acceptance limits the trajectory
portion l that the observer ‘sees’ tol = ρ∆φ = 2.2 m, in reference to Fig.9. So, according to the slit
position in the horizontal plane, it is possible to select only a part of the dipole, either inside, or at an
edge (Fig.38).
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Fig. 38: Portion of trajectory intercepted by the mirror with an angular acceptance reduced to 0.25 mrad to simulate the action

of a slit in the focal plane, aiming at the edge or the interior of the dipole.

The energies collected on the mirror for a proton are given in Table8.

Table 8: Intensities collected by the detector if the angular acceptance is limited by a slit placed in the focal plane of the

optical system, for g3

Proton Collected energy (for 1 proton)
energy D2 centre D2 edge
(TeV) (J) (J)
0.45 2.3× 10−28 1.9× 10−28

1.00 1.1× 10−26 4.5× 10−26

2.00 4.6× 10−24 8.4× 10−24

7.00 9.0× 10−22 3.6× 10−22

Table9 presents the results which will be demonstrated later (Table28) and gives the minimal
energies necessary to do the profile measurement according to the characteristics of the selected optical
device.

Table 9: Minimal energies per proton necessary to allow the profile measurement with a 5% precision with a pilot bunch

(5× 109) or with a nominal bunch (1011protons)

Proton Minimum energy per proton (J)
energy for 20 ms (225 turns) turn-by-turn mode
(TeV) 5× 109 p 1011 p 5× 109 p 1011 p
0.45 2.9×10−22 1.5×10−23 1.3×10−24 6.4×10−26

7.00 7.5×10−23 3.8×10−24 3.3×10−25 1.7×10−26

Using this table, the results given in Table8 show that the D2 dipole provides enough light to
allow the beam transverse dimension measurement above 2 TeV, but for energies lower than 2 TeV, it is
necessary to find another source. The various sources presented in the following were studied for use in
this low-energy range.
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6.1.2 Superconducting miniwiggler

In order to design the LHC main dipoles, shorter prototypes were tested. On the basis of the possibility
of recovering the coils of these prototypes to reduce the cost of magnet construction, the implantation
in IR4 of a superconducting miniwiggler composed of four strong magnetic field magnets was studied
(Fig. 39). To avoid complicating the optical system by considering an alignment system following the
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Fig. 39: Configuration of the superconducting miniwiggler with constant aiming direction

beam energy, it was decided to aim the optics at a fixed point of the particle trajectory, chosen as the beam
direction at the exit of the first magnet. For that, it is necessary to operate with a constant magnet de-
flection by increasing the magnetic field proportionally to the proton momentum. The considered source
must supplement the D2 dipole for the energy range going from 450 GeV up to 2 TeV. To maintain the
constant and maximum deflection over this interval, it is thus necessary to reach the maximum magnetic
field at 2 TeV. The test 1 m long dipole prototypes can reach a magnetic field of 6 T, i.e. a deflection
α = 0.86 mrad at 2 TeV.

The insertion of a single magnet in the straight section causes a closed orbit bump, which must
be closed again locally to avoid its propagation in the machine. The angular deflection obtained in this
configuration does not permit to extract the light produced by a single magnet and to close the bump
downstream from the extraction mirror in the distance reserved for the device. It is thus necessary to
deviate the particle beam after the light source in order to be able to place the extraction mirror at the
imposed safety distance of 15σ. The adopted solution would be to place four magnets in a magnetic field
configuration−B,B,B,−B (Fig. 39).

The spectral densities obtained with the four magnets are given in Fig.40.

At 450 GeV [Fig. 40 (a)] At injection energy, taking into account the large angular opening of the
radiation cone (about1/γ = 2 mrad), the magnet deflection is not sufficient to separate angularly the
radiation emitted by the first two magnets (in theφ = α/2 direction), and that by the last two (in the
φ = −α/2 direction). There is thus partial angular overlap of the light angular spectral densities, and the
maximum intensity is emitted in the particle beam direction (φ = 0 on Fig.40). The mirror whose edge
is at15σ thus intercepts only a fraction of the total emitted intensity, approximately 25%.

At 2 TeV [Fig. 40 (b)] The radiation cone opening is reduced to1/γ ' 0.5 mrad. The two groups
of magnets emit respectively inφ = ±α/2 = ±0.43 mrad. There is thus sufficient angular separation
between the two radiation cones so that there is overlap only in the low-intensity zone and the produced
interferences are not noticeable: the maximum intensity is thus not emitted in the particle beam direction
and it is possible to intercept a significant portion of the radiation produced by the first two dipoles.
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Fig. 40: Projection in the horizontal plane (ψ = 0) of the spectral energy densities emitted by four magnets at 450 GeV (a),

2 TeV (b) and 7 TeV (c), integrated over the wavelength range 350–1100 nm. The directionφ = 0 corresponds to the proton

beam exit direction. The two curves on each figure correspond to the horizontal component (σ) and the vertical component (π).

At 7 TeV [Fig. 40 (c)] At high energy, the magnet deflection is 0.26 mrad and the principal emission
direction isφ = α/2 = 0.13 mrad. The angular opening of the radiation being about1/γ ' 0.13 mrad,
there is an overlap of the two emissions and thus interference. It was seen that at 7 TeV the low-frequency
approximation can be used for a magnet. In this case, the source crossing time, which is characteristic of
the interferences and defined in Section4.3, varies liked/γ2 (for a given magnet length), whered is the
distance between the magnets [23]. In this configuration, the interferences are destructive, there is less
total energy produced for 7 TeV protons than for 2 TeV protons (Table10). This effect is similar to the
‘multiple source’ effect observed at the LEP 4-dipole miniwiggler that obliged to modify the miniwiggler
geometry [25, 26, 27]. Moreover, the maximum intensity is emitted in the beam direction and cannot thus
be collected by the extraction mirror. The mirror edge cuts the angular spectral energy density creating
additional diffraction at the energy where it is already maximum (see Section7).

The system is usable only over the energy range 450 GeV–2 TeV for which it was conceived.

Table 10: Superconducting miniwiggler characteristics.∆y is defined on Fig.39.

Received energy (1 proton 1 passage)
Energy B field 1 magnet Amplitude Total Mirror

deflection ∆y 40×40 mm2 at 40m
(TeV) (T) (mrad) (mm) (J) (J)
0.45 1.30 0.86 1.3 2.3× 10−25 5.6× 10−26

2.00 5.78 0.86 1.3 3.2× 10−21 4.4× 10−22

7.00 6.00 0.26 0.4 1.1× 10−21 3.4× 10−22
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Table 10 gives the total energy produced by the miniwiggler and the portion collected by the
extraction mirror taking into account the operating conditions. The results compared with Table9 show
that the superconducting miniwiggler will not yield a good precision for the bunch-by-bunch, turn-by-
turn measurements with the nominal bunch, and even less so with the pilot bunch at injection energy.

An alternative to this solution, preserving the principle of the four magnets, was thus considered
to improve the performances at 450 GeV.

Optimization of the performances for bunch-by-bunch measurements at 450 GeV.To increase the
intensity produced at injection energy, a solution would consist in operating with the maximum magnetic
field at 450 GeV, that is to say withB = 6 T. In this case, it is the magnet edges which mainly radiate
(Fig. 41). The angular separation between the two radiation cones is then equal to the magnet deflection,
i.e. α = BL/Bρ = 4 mrad.
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Fig. 41: Projection in theψ = 0 plane of the energy density radiated by a 450 GeV particle in one magnet withB = 6 T

integrated on the g3 frequency range. Theφ = 0 direction corresponds to that of the particle beam at the entrance of the

magnet.

Several configurations, summarized in Table11, were simulated, using one, two, and four mag-
nets. The last two columns, respectively, give the total intensity produced by the device and the intensity
intercepted by the extraction mirror 10 m downstream from the source. Indeed, in this case, the strong
magnet deflectionα insures reaching in a short distance the safety separation of 15σ with respect to the
machine central line. Moreover, the distance between the radiation cone axis and the beam trajectory in-
creases very quickly and in order not to have to widen too significantly the vacuum chamber dimensions,
it is necessary to place the extraction mirror close enough to the source.

By comparing the data with those of Table10, one notices that at 450 GeV one magnet with 6 T
makes it possible to obtain more intensity than the miniwiggler with 1.3 T. Nevertheless, the problems of
closed-orbit bump compensation remain. The simplest solution is thus again to add three magnets with
the miniwiggler configuration to locally close the orbit bump. The total intensity emitted by the four
magnets is twice that obtained with two magnets, but taking into account the large angular separation
between the cones emitted by each edge (equal to the magnets’ deflection), one can extract only the part
corresponding to the exit of the first magnet and entrance of the second (or in an equivalent way the exit
of the third and entrance of the last) (Fig.42).
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Table 11: Results of the various simulated configurations

B field Total Energy
Layout energy on mirror

(T) (J) (J)
1 magnet 6 1.5× 10−24 7.6× 10−25

2 magnets -6 and 6 3.0× 10−24 1.5× 10−24

4 magnets -6,6,6,-6 6.2× 10−24 1.6× 10−24
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Fig. 42: Projection in theψ = 0 plane of the energy density radiated by four magnets (on the left) and two magnets (on the

right) at 450 GeV, withB = 6 T and integrated on the g3 frequency range. The directionφ = 0 corresponds to the direction of

the beam at the miniwiggler entrance and exit.
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The suggested solution to carry out turn-by-turn measurements with a nominal bunch at injection
energy is thus to use the miniwiggler configuration (Fig.39), with a 6 T magnetic field at 450 GeV. The
intensity collected by the mirror is then sufficient to measure a profile. However, taking into account the
large angular openings, it is necessary to place the extraction mirror at approximately 10 m downstream
from the source. When energy increases, the magnetic field in the magnets being maximum at injection,
the radiation cone direction varies and approaches the beam direction. The distance between the source
and the extraction mirror becomes then too small to extract the light while remaining at 15σ from the
beam.

To be able to follow the energy ramp up to 2 TeV, while allowing turn-by-turn measurement with
a nominal bunch at injection, the suggested solution is then to use the same source with two extraction
mirrors (Fig.43). A first mirror, placed 10 m from the source is used only with the 6 T miniwiggler for
the injection energy. To cover the range 450 GeV–2 TeV, a second mirror placed at 40 m extracts the
light produced by the miniwiggler with a variable magnetic field as presented previously.
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Fig. 43: Double extraction configuration: a first mirror extracts the light at 450 GeV and a second between 450 GeV and

2 TeV

6.1.3 Room-temperature undulator

The objective is still to supplement the synchrotron light monitor at D2 from 450 GeV to 2 TeV.

Choice of the geometry of the undulator Equation (38) λ1 = λu
2γ2

(
1 + γ2θ2

)
shows that the wave-

length emitted for fixedθ decreases when energy increases. To be able to use the undulator in the largest
possible energy range, one thus choosesλ1 in theθ = 0 direction near to the maximum of the optical
detector’s wavelength acceptance bandwidth, that is to sayλ1(θ = 0) = 760 nm. The undulator spatial
period was then fixed atλu = 35 cm. When the beam energy increases, the emitted wavelength inθ = 0
is outside the detector’s spectral bandwidth (200–900 nm), Table12. Nevertheless, Eq. (38) shows also
that the emitted wavelength increases with the observation angle. With the extraction mirror at 30 m, the
angular acceptance is 1.33 mrad, thus making it possible to widen the range of wavelengths collected
[Eq. (38) and Fig.44].

The emitted intensity is proportional to the square of the magnetic field and to the number of
periods [Eq. (42)]. With the current technologies of warm or permanent magnets [35], the maximum
reachable field is approximatelyB0 = 1.2 T. On the one hand, the choice of the number of period is
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Table 12: Wavelength and synchrotron radiation energy emitted in theθ = 0 direction by the 35 cm long period undulator

Energy 450 GeV 750 GeV 1 TeV 2 TeV 7 TeV
γ 480.6 837.2 1116.3 2232.58 7460

λ1(θ = 0) (nm) 760 250 140 35 3.1
~ω/q (eV) 1.63 4.97 8.87 35.5 400.6
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Fig. 44: Wavelengths emitted by the 35 cm long period undulator for various observation directionsθ and various proton

energies

fixed by the overall source length and by the spectral dispersion around theω1 frequency, proportional
to 1/N [Eq. (42)]. In the case of beam profile measurements, the emitted wavelengths in the angular
acceptance of the mirror cross the detector spectral acceptance during the proton beam energy ramp,
Table12. So a quasi-monochromatic source is not an advantage. Moreover, the overall source length
conditions the depth of field effects, see Section7. A limited period number is thus desirable. To cover
the 450 GeV–2 TeV energy range while maximizing the emitted intensity, the undulator is thus composed
of five periods. With these characteristics,K = 0.02; the approximation of Eq. (38) is thus justified. It
should be noted, Fig.45, that the vertical projection (φ = 0 plane) of emitted radiation at 450 GeV is
larger than the horizontal one (ψ = 0 plane).

Spectral angular energy density at 2 TeV Figure46 shows the spectral density emitted in the un-
dulator by a 2 TeV proton for the g3 range. As the intensity distribution does not present cylindrical
symmetry around theθ = 0 axis, instead of a 1 mrad radius annular distribution, the intersection of
the spatial termFu,σ(θ, ϕ) = (1 − γ2θ2 cos (2ϕ))2/(1 + γ2θ2)5 and the spectral termfNu(ω − ω1) =
Nu
ω1

(
sin

(
(ω−ω1)πNu)

ω1

)
/ (ω−ω1)πNu)

ω1

)2
of Eq. (42) gives a series of peaks, higher in the vertical plane

(ϕ = π
2 givescos (2ϕ) = −1) than in the horizontal plane (ϕ = 0 givescos (2ϕ) = 1).

The minimal wavelength detected in g3 (i.e 350 nm) corresponds at 2 TeV to aθ = 1.33 mrad
angle. However, the intensity emitted in the direction (θ, ϕ = π

2 ) varies roughly like 1/(1 + γ2θ2)3

[Eq. (42)]. The maximum intensity emitted in theθ = 1.33 mrad direction is thus 750 times lower than
that emitted inθ = 0. While moving away from the undulator axis, one intercepts the rings corresponding
to wavelengths to which the detectors are sensitive (Fig.46), but one loses enormously in intensity. The
levels are then comparable with those emitted at 450 GeV, Table13.
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Fig. 45: Projections in theψ = 0 horizontal plane (a), theφ = 0 vertical plane (b), and 3 D plot (σ component) of the energy

density integrated on the 350–1100 nm wavelengths range for a five periods undulator withλu = 35 cm,B0 = 1.1 T and for a

450 GeV proton.

Table 13: Energy collected in the case of an undulator of five periods of 35 cm with a 1.2 T magnetic field

Energy Configuration Energy
B λu λ1(θ = 0) 1 proton / 1 passage

(TeV) (T) (cm) (nm) (J)
0.45 1.1 35 760 1.8×10−24

2.00 1.1 35 35 2.1×10−24
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Proposed configuration According to Eq. (38), the emitted wavelength increases with the observation
angleθ, but at the same time the intensity decreases very quickly withFu(θ, ϕ) = (1+γ2θ2 cos (2ϕ))2/
(1 + γ2θ2)5 [Eq. (42)]. So, beyond 1/γ the radiated intensity becomes negligible compared with that
emitted in theθ = 0 direction, approximately 2000 times less.

To obtain a sufficient signal level with 450 GeV protons, it is preferable to intercept the light
emitted in the undulator axis direction. In IR4 of the LHC, the synchrotron radiation source is placed
between two quadrupoles in a straight section; the undulator axis direction is thus also that of the particle
beam at its exit. To be able to extract the light even with a small cone opening angle, it is thus necessary
to insert deflection magnets to create, as in the miniwiggler case, a local closed-orbit bump (Fig.47).
Four 5 m long magnets with a peak magnetic field of 0.38 T at 450 GeV up to 1.7 T at 2 TeV, must
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Fig. 47: Configuration of the undulator light source. The unit is composed of four room-temperature dipoles creating a

self-compensated closed-orbit bump. The source itself, i.e the undulator, is placed between the first two magnets. Theθ = 0

SR emission direction is shifted by 1.3 mrad compared to the proton beam axis at the extraction point.

be used to create the closed-orbit bump. When placing the undulator between the first two magnets, the
principal emission direction will be separated from the beam axis by 1.3 mrad (Fig.47). The device has
a 24 m overall length and the extraction is done 25 m downstream of the centre of the first deflection
magnet.

However, withB = 1.7 T at 2 TeV, the magnet edges emit also in the spectral range considered
with an intensity comparable to that of the undulator. The source is thus comprised of the two edges and
of the undulator (Fig.48). With theφ = 0 direction corresponding to the undulator axis direction, the
comparison between the angular energy densities with and without the undulator shows that its presence
modifies only slightly the signal level emitted by the two edges.

To try to make the undulator signal emerge at 2 TeV, and thus to limit the source length, we planned
to add a second undulator optimized for 2 TeV after the first undulator optimized for 450 GeV. But to
bring back the emitted wavelength in theθ = 0 direction at 2 TeV in the g3 range, one needs a 1.7 m long
spatial period. In order to limit the source length, it is then necessary to reduce the number of periods to
Nu = 2. One can improve slightly the intensity level emitted in theλu = 1.7 m undulator compared to the
shorterλu = 35 cm undulator, but taking into account the small number of periods, the edges emit even
more light. It thus does not appear interesting to introduce another specific source for 2 TeV because the
diagnostics can be made with the edges of the first two deflection magnets (exit of the first dipole and
entrance of the second one).

Undulator performance between 450 GeV and 2 TeV A possible configuration is then that presented
in Fig. 47, with four 5 m long magnets to create a closed orbit bump and deviate the undulator radiation
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Fig. 48: Projections in the horizontal plane of the energy density integrated over the 350–1100 nm frequency range emitted

by a 2 TeV proton, for two 5 m long deflection magnets with a 1.7 T magnetic field (on the right), and for the two magnets plus

an undulator with five 35 cm long periods andB = 1.1 T (on the left).

axis from the proton beam direction. The undulator is inserted between the first two magnets to increase
the intensity collected at injection energy. The magnetic field in the deflection magnets follows the proton
beam energy ramp to maintain a constant undulator radiation emission direction. Table14 shows that
this source allows beam diagnostics over the whole 450 GeV–2 TeV energy range.

Table 14: Energy collected by the extraction mirror in the case of an undulator with five 35 cm long periods, ofB = 1 T and

a separation of 1.3 mrad between the proton beam axis and the undulator axis (cf. Table9)

Proton energy λ1(θ = 0) Energy (J): 1 proton/1passage
(TeV) (nm) Total Mirror (40×40 mm at 25 m)
0.45 760 1.7× 10−24 1.1× 10−24

0.75 250 8.3× 10−24 6.0× 10−24

1.00 140 1.4× 10−23 9.3× 10−24

2.00 38 8.8× 10−22 4.7× 10−22

7.00 3 2.5× 10−21 4.3× 10−23

6.1.4 Superconducting undulator

To increase the performance of the undulator while keeping a reasonable source length, a possible solu-
tion consists in increasing the peak magnetic field. The use of superconducting magnets is then necessary.
The peak magnetic field increase by a factor 5 makes it possible to decrease the number of periods by a
factor 2 while still increasing the intensity [Eq. (42)], in order to still reduce the longitudinal source ex-
tent and to limit the depth of field effects for the optics. The superconducting undulator studied consists
of two 28 cm long periods with a peak magnetic field of 6 T. The various wavelengths emitted in a given
observation direction as a function of the proton energy are presented in Table15. At injection energy,
the wavelength in theθ = 0 direction is in the middle of spectral acceptance range g3 of the detector,
and the intensity spatial distribution (Fig.49, left) is a cone emitted in the beam direction.

The undulator is ‘out of tune’ at 2 TeV: the useful wavelengths (in the g1 range) are emit-
ted with θ angles of the order of one mrad and thus attenuated compared to the maximum emitted
in θ = 0, because of the angular termFu(θ, ϕ) = (1 − γ2θ2 cos (2ϕ))2/(1 + γ2θ2)5 of Eq. (42).
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Table 15: Wavelengths emitted in theθ direction for various proton energies by an undulator of spatial periodλu = 28 cm,

K = 0.074.

λ θ (mrad)
(nm) 0 0.5 1 1.5 2

450 GeV 600 643 748 923 1168
2 TeV 31 66 171 346 591
7 TeV 2.5 38 143 318 563

At the same time, the attenuation of the intensity emitted in theθ = 0 direction for anyλ wave-
length compared to the fundamentalλ1(θ = 0) = λu

2γ2 emitted in this same direction varies like

fNu(ω−ω1) = Nu
ω1

(
sin

(
(ω−ω1)πNu)

ω1

)
/ (ω−ω1)πNu)

ω1

)2
. However, for 2 TeV,Nu = 2, ω = 9.42× 1015,

the attenuation ratios between (θ = 0, λ = 31 nm) and (θ = 1.5 mrad,λ = 318 nm) are:

Fu(0, 0)
Fu(1.5× 10−3, 0)

= 2095.16 (103)

fNu(ω − ω1,θ=0)
fNu(ω − ω1,θ=1.5 mrad)

= 98.47 . (104)

The useful wavelengths are all the more attenuated at largeθ and the central peak, although out of tune,
remains higher than the annular ring because of the small number of periods. But, for a large number
of periods (e.gNu = 20, fNu(ω − ω1,θ=0)/fNu(ω − ω1,θ=1.5 mrad) > 79 000), the central peak is more
attenuated than the ring.
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Fig. 49: Angular energy density emitted by the superconducting undulator (450 GeV, left and 2 TeV, right) in the g3 frequency

range

Various possibilities were considered for the light extraction. Initially, the existence of a long free
straight section (approximately 90 m) in IR4, made it possible to consider an extraction in the vertical
plane with only an undulator as the source. Indeed, while changing the spatial period, it is possible to
choose the emission direction of a given wavelength for a given energy. However, one cannot choose too
large an angle because of the attenuation related to the form factor, Eq. (42). The limit is fixed around
2 mrad to extract the light without deviating the particle beam within a source-to-mirror distance of 35 m
(Fig. 50). In this case, the extraction is done in the plane where the beam dimensions are the smallest in
order to approach the closest possible to the beam but always within the clearance limit of 15σ.

During the study, the IR4 configuration was modified and it is now possible to place the undulator
upstream of the D3 dipole (Fig.51and Table16). This dipole, of the same type as the D2 dipole of IR1/5
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Fig. 50: Light extraction with undulator alone

but with a peak magnetic field of 3.9 T at collision energy, is part of the “dogleg” which provides the
separation of the two beams for the installation of the accelerating cavities.

Table 16: D3 dipole characteristics. One notices that the critical frequency crosses the observation range in the course of the

energy ramp.

Energy γ ωc ωl
(TeV) (eV) (s−1) (eV)
0.45 480.6 0.005 8.3×1012 0.008
0.75 800.3 0.025 3.8×1013 0.018
1.00 1066.8 0.060 9.1×1013 0.025
2.00 2132.6 0.479 7.3×1014 0.040
7.00 7461.5 20.50 3.1×1016 0.049

The D3 dipole downstream the undulator makes it possible to extract the light emitted on the
undulator axis direction and thus to collect the maximum intensity emitted alongθ = 0 (Fig. 51). It
introduces at the same time a second light source which becomes preponderant for high-energy protons
since the D3 entrance edge radiates in the same direction as the undulator. It is thus necessary to consider
it for the emitted intensity evaluation as well as for calculations of optical performance (depth of field).
Table17 shows the intensities collected with the configuration of Fig.51, for the D3 edge alone, the
undulator alone, and the whole undulator plus D3 edge source.
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Fig. 51: Configuration in IP4: an undulator with two 28 cm long periods in front of the D3 dipole
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Table 17: Energy collected for the g1 range by a40×40 mm2 mirror 20 m from the source shifted by 0.55 mrad compared to

the undulator axis (see Table26). The distance between the undulator and the D3 entrance is 50 cm. The column ‘ D3 centre’

corresponds to the energy received with a slit limiting the horizontal acceptance to 0.25mrad, for comparison. These values

have been obtained for the maximum field 4.5 T in D3 at 7 TeV (the nominal field 3.9 T yields value different by less than 1%

different values for energies above 1 TeV).

Energy D3 centre D3 edge only Undul. only Undul. + D3 edge
(TeV) (J) (J) (J) (J)
0.45 1.2×10−28 9.1×10−28 9.9×10−24 9.9×10−24

0.90 2.8×10−27 2.1×10−25 3.1×10−23 3.1×10−23

1.00 2.9×10−27 4.1×10−25 2.0×10−23 2.1×10−23

1.50 7.4×10−25 8.7×10−24 8.5×10−24 1.9×10−23

2.00 4.1×10−23 1.8×10−22 5.8×10−24 1.8×10−22

7.00 3.7×10−21 1.3×10−20 6.2×10−25 1.3×10−20

Below 1 TeV the main source is the undulator, while at high energy (above 2 TeV), it is the D3
edge. For intermediate energies, the contribution of the two sources is approximately of the same order,
Table17.

6.2 Comparison of the different sources

The comparisons presented hereafter take into account the specific geometrical configurations of each
solution. The sources compared are:

1. Miniwiggler (Fig. 39): four superconducting 1 m long magnets withB0 = 6 T; magnetic field
increased proportionally with the energy ramp between 450 GeV and 2 TeV; extraction at 25 m in
the direction of the first magnet exit.

2. Miniwiggler with double extraction (Fig.43): the same miniwiggler (four superconducting mag-
nets with extraction at 25 m), with an additional extraction mirror at 10 m to increase the collected
intensity at 450 GeV for a pilot bunch with the magnetic field at 6 T.

3. Room-temperature undulator (Fig. 47): 35 cm period undulator with a 1 T magnetic field plus
four 5 m long dipoles allowing a constant deflection of 1.3 mrad from 450 GeV to 2 TeV; extraction
in the direction of the first magnet exit.

4. Superconducting undulator (Fig. 51): undulator with two 28 cm long periods with a field of 6 T
upstream of D3; extraction at 25 m from the undulator in the direction of the axis thanks to the D3
dipole deflection.

Tables18and19compare the sources studied in terms of calculated intensities collected at the extraction
mirror on the g3 wavelengths range at 450 GeV and at 2 TeV. The minimum required energy for obtaining
a profile is shown in Table9.

To make the comparison more realistic, magnetic field map simulations in the various magnetic
elements considered were carried out and used for the numerical calculation of the collected intensity.

‘Real’ miniwiggler For the miniwiggler made of 1 m long prototype superconducting magnets, the
simulated magnetic field presents strong irregularities at the end (Fig.52), and does not reach the nominal
6 T field. Moreover the effective magnetic length is 90 cm.
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Table 18: Comparison of the intensities collected in the various configurations studied at 450 GeV. Simulation for the g3

wavelength range. The denomination ‘Class. undulator’ indicates an ideal room-temperature undulator.

Layout Configuration Energy (J)
B,B0 Total On mirror

(T) length (1 part., 1 turn)
Miniwiggler 1.3 5.5 m 5.60×10−26

Double extraction 6 5.5m 1.60×10−24

Class. undulator 1 5×35 cm 1.10×10−24

Superc. undulator 6 2×28 cm 1.04×10−23

Table 19: Comparison of the energies collected in the various configurations studied at 2 TeV. Simulation for the g3 wave-

length range. The double extraction case is the same as the simple extraction miniwiggler at this energy (Fig.43).

Layout Configuration Energy (J)
B Total On mirror
(T) length J (1 part., 1 turn)

Miniwiggler 6 5.5 m 4.4×10−22 40 m
Class. undulator 1 5×35 cm 4.7×10−22 25 m

Superc. undulator 6 2×28 cm 5.0×10−23 25 m

Fig. 52: Simulation of the fringe fields in a 1 m long

superconducting dipole [36]
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Fig. 53: Simulation of theBz component of the mag-

netic field with two 35 cm long periods [37]
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The variations obtained for the intensity according to these various parameters can reach a factor
5, Table20.

Table 20: Collected energies including the differences with respect to the nominal parameters for the miniwiggler and

450 GeV. The first line is a reminder of the required parameters.L andd are defined on Fig.39.

Proton energy Layout α d Energy (J): 1 proton 1 turn
(TeV) L (m) B (T) (mrad) (cm) mirror (40×40 mm2)
0.45 1.0 -6;6;6;-6 4.0 50 1.6×10−24 10 m
0.45 0.9 -6;6;6;-6 3.6 70 8.6×10−25 15 m
0.45 0.9 -5;5;5;-5 3.0 70 5.4×10−25 15 m
0.45 0.9 -4;4;4;-4 2.4 70 3.2×10−25 15 m

‘Real’ undulators For the room-temperature undulator, the simulated magnetic field map (Fig.53)
was used with the TOSCA Zgoubi procedure [29, 30], Section5.2. With this type of small dipole assem-
bly, it is not possible to reduce the undulator period and the obtainable maximum field is 0.6 T. Under
these conditions, the performance of the room-temperature undulator is clearly below the requirements,
Table21.

Table 21: Energies taking into account the various errors compared to the nominal parameters for the room-temperature

undulator at 450 GeV. The term ‘OPERA3D simulation’ indicates a simulation using the undulator field map coming from the

OPERA3D code.

Type B λu L Collected energy (J) per proton
(T) (cm) (cm) Centre 15 σ

Class. undulator 1.2 22.2 111 9.31×10−25 5.84×10−25

OPERA3D simulation 0.6 40.0 140 9.10×10−26 3.81×10−26

Class. undulator 0.6 35.0 70 1.06×10−25 4.61×10−26

Class. undulator 0.6 35.0 175 3.39×10−25 1.39×10−26

Only the magnetic field simulations carried out for the superconducting undulator correspond to
the optimum parameters (Fig.54and Table22).

Table 22: Comparison between the ideal sinusoidal fields simulated with the UNDULATOR procedure (‘Super. undul.’) and

ROXIE field maps used with the TOSCA procedure (‘ROXIE simulation’)

Type B λu Collected energy (J) per proton
(T) (cm) 400–600 nm 200–900 nm

Super. undul. 6.0 22.2 2.88×10−24 5.41×10−24

ROXIE simulation 6.0 35.0 2.75×10−25 4.80×10−24

Super. undul. 4.5 22.2 1.64×10−24 3.07×10−24

Comparison between the ‘real’ sources When considering the feasible parameters for each type of
source, the comparison between the various solutions is clearly in favour of the superconducting undula-
tor, Table23.
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Table 23: Comparison of the simulations based on magnetic field maps at 450 GeV.∆Y represents the maximum closed-orbit

bump amplitude.

Type B,B0 λu L, Lu ∆Y Energy per proton per turn
(T) (cm) (cm) (µm) (J)

Real miniwiggler 5.0 90.0 555 4800 5.40×10−25

Class. undulator 0.6 35.0 140 29 9.10×10−26

Permanent magnet 1.2 22.2 111 33 9.31×10−25

Superc. undulator 6.0 35.0 70 100 4.80×10−24

6.3 Sources considered for beam diagnostics

6.3.1 For the whole energy range: undulator and D3 edge

Among all the studied sources, theλu = 28 cm, two periods, B = 5 T superconducting undulator is the
one that provides the largest intensity and has the shortest length. Figure55 shows the configuration
proposed for the source in IR4.
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Fig. 55: Configuration of the implementation of theλu = 28 cm, two periods, B = 5 T superconducting undulator in IR4

The undulator is currently under construction. A model was implemented [38] (Fig. 56 with the
parameters given in Table24and AppendixC).

The performance and characteristics of this source are presented in Table25and on Fig.57, show-
ing the boundaries of the intensity collected at the extraction mirror for three representative energies.
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Table 24: Undulator main parameters

Period 280 mm
Period number 2
Iron yoke length 710 mm
Gap 60 mm
Beam tube size 50 mm inside / 53 mm outside
Maximum magnetic field in the gap 5 T
Maximum field error within± 10 mm from axis 0.25%
Supply current 250 A
Total energy stored at 250 A 150 kJ
Magnet inductance 4.8 H
Coil cross-section 36.5×42.5 mm2

Cable size 1.25×0.73 mm2

Overall coil size 140×220×36.5 mm3

Operating temperature 4.2 K
Margin to quench on load line 20%

Fig. 56: Full view of the model of the electromagnetic undulator

Table 25: Energies produced by the source in IR4 for various wavelength ranges corresponding to the acceptances of various

detectors (with 4.5 T in D3 at 7 TeV)

Proton Energy collected on the 40× 40 mm2 mirror (J)
energy 200–900 nm 400–600 nm 600–900 nm 400–900 nm
(TeV) 1 part./1 turn 1 part./1 turn 1 part./1 turn 1 part./1 turn
0.45 1.5×10−23 4.1×10−24 1.1×10−23 1.5×10−23

0.75 6.1×10−23 6.1×10−24 1.1×10−24 7.2×10−24

1.00 3.3×10−23 2.9×10−24 8.5×10−25 3.7×10−24

2.00 5.5×10−23 1.7×10−23 2.4×10−23 4.1×10−23

7.00 2.2×10−21 4.9×10−22 3.0×10−22 7.9×10−22

55



0.0 0.0004 0.0008 0.0012

0.1
E-34

0.2
E-34

0.3
E-34

0.4
E-34

0.5
E-34

Postprocessor/

 3-Jul-02                                                                       

* Ondulator+D3, 450 GeV, g3, H cut at the mirror *                          

dW/dPhi  (J/rad)   vs. Phi  (rad)                               

(a)                           

450 GeV                            

0.0 0.0004 0.0008 0.0012

0.1
E-34

0.2
E-34

0.3
E-34

0.4
E-34

0.5
E-34

0.6
E-34

Postprocessor/

 3-Jul-02                                                                       

* Ondulator+D3, 1TeV, g3, H cut at the mirror *                          

dW/dPhi   (J/rad)   vs. Phi     (rad)                               

(b)                           

1 TeV                            

0.0 0.0004 0.0008 0.0012

0.5
E-31

0.1
E-30

0.15
E-30

0.2
E-30

0.25
E-30

Postprocessor/

 3-Jul-02                                                                       

* Ondulator+D3, 7 TeV, g3, H cut at the mirror *                          

dW/dPhi   (J/rad)   vs. Phi     (rad)                               

(c)                           

7 TeV                            

Fig. 57: Cuts in the horizontal plane (ψ = 0) of the energy density emitted by the undulator–D3 source at 450 GeV (a),
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of the proton beam at the entry in the undulator. The curves correspond to the horizontal component (σ).
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The superconducting undulator provides sufficient intensity to measure the profiles with 5% pre-
cision from the injection energy up to approximately 1 TeV. From 1 to 2 TeV, the contributions of the
undulator and of the D3 edge are comparable in terms of signal level. There are interferences between
the two sources and the depth of field effect degrades the measuring accuracy. To minimize this effect,
the distance between the two sources must be minimal and the undulator must be placed directly in the
D3 dipole cryostat, Section7.4.3. The minimum distance between the two sources is then 50 cm.

Above 2 TeV, it is mainly the D3 dipole edge which emits light in the collected wavelength range.
In the first part of this section, the study of the D2 dipole led to the conclusion that its use as a source was
appropriate from 2 TeV onwards. The D3 dipole emits even more light, its magnetic field being stronger.

Thus, the combination of the undulator and D3 makes it possible to have a source which covers
the whole energy range. This geometry is understood free of any other SR sources (e.g orbit correctors,
lattice quadrupoles) so as to avoid parasitic multiple source and interference effects.

6.3.2 From 2 TeV to 7 TeV: D2 dipole

To improve the resolution for profile measurement at the collision energy, it is possible to use the D2
dipole in IP5 (or IP1), where the machine optical functions are modified when switching to the the ‘low
β’ collision mode (Figs.4 and 5, and Table2). At the measurement point, theβ functions are thus
increased by a factor 6 (from 100 m up to 600 m in the horizontal plane) and the beam to be measured
is 2.4 times larger. The diffraction and depth of field effects being the same for the same diagnostics
system, the relative effect compared to the beam sizes decreases and it would be possible to reach a
better resolution.

6.4 Conclusion

The study of various synchrotron radiation source types for diagnostics in the LHC, summarized in this
section, made the final choice evolve. The monitor using the D2 dipole initially planned as the main
monitor will be installed only if it turns out to be necessary to have higher precision measurements in the
optics collision mode. For the profile measurement over the whole energy range, the monitor using the
superconducting undulator combined with D3 was finally considered as the sole means of measurement
using synchrotron radiation for the LHC commissioning.

7 OPTICAL ANALYSIS OF THE DIAGNOSTICS SYSTEM

The synchrotron radiation source was selected according to the optimization of the collected signal level,
in order to be able to measure profiles over the whole proton energy range. However, we still need to
evaluate the degradation of the monitor performance introduced by the diffraction effect, the depth of
field effect, and the imaging system. The first part of this section describes the unit called ‘telescope’,
made up of the optical chain and CCD detector. The two following parts elaborate on the methodology
used to evaluate the diffraction and depth of field effects. Finally, the last part presents the performance
analysis according to the various adjustable system parameters, treated numerically with the computer
code SRW [39].

7.1 Choice of the optical device

7.1.1 Detector

The CCD detector used consists of a matrix of23 µm× 23µm pixels, distributed over 288 lines and 384
columns. The spectral response of the detector extends, according to component type, from 200 nm to
900 nm [40] (range called g1) for the back-illuminated one or from 350 nm to 1100 nm [41] (range called
g3) for the front-illuminated one. The CCD sensor considered is composed of two parts: the image zone
used for data acquisition and a memory zone in which these data are stored temporarily. The transfer
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from one zone to the other, which lasts approximately 0.16 ms, is done at the end of the integration time,
thus making it possible to read the data while another acquisition begins. The electronics control of the
CCD allows choosing integration and reading times [34]. In TV mode, the CCD is part of a conventional
TV camera with an exposure time of 20 ms. In digital mode, the integration time can be selected between
100µs and 65 ms and the pixels are read one by one at a 1 MHz frequency.

For ‘bunch-by-bunch’ or ‘turn-by-turn’ measurements, an optoelectronic shutter made of Multi
Channel Plate (MCP) is coupled to the CCD [17] because the time interval between two successive
bunches is only 25 ns. Its spectral range is limited by the photocathode, typically between 450 nm and
850 nm (range called g2) for a photocathode of type Super S25 [14].

Minimum and maximum detection thresholds A CCD type sensor has a quantum efficiencyηλ for a
given wavelengthλ, corresponding to the number of photoelectrons produced by a photon of wavelength
λ impinging on the CCD. The CCD response is generally characterized by the manufacturer by the
responsivityR(λ) in V.cm2.µJ−1, giving the output voltage for a received energy at wavelengthλ per
unit area. The quantum efficiency is thus included in this responseR. The collected signal for a photon
of wavelengthλ arriving on a pixel of surface(∆x)2 is thus

V [volt] = R[V.cm2.µJ−1]
hc

λ[m]
1

(∆x)2[cm2]
106 . (105)

For this signal to be detected, it must be at least higher than the darkness noise. This noise has a Gaussian
distribution of r.m.s. valueσnoiseand we postulate that the signal can be distinguished from the noise in
95% of the cases if it is higher than 2σnoise. In this case, the minimum necessary signal, corresponding
to our noise floor, is:

NR
hc

λ

1
(∆x)2

106 ≥ 2 σnoise (106)

whereN is the number of photons arriving on the pixel. The detection threshold is then given by the
number of photonsNnoisecorresponding to the noise signal at 2σnoise:

Nnoise=
σnoiseλ(∆x)2

Rπc~106
= 1.01× 1019σnoiseλ(∆x)2

R
. (107)

By considering square pixels of size 23µm, and taking the Thomson CCD [41] response curve, the
minimum number of photons detectable per pixel is given in Table26 for various wavelengths between
450 and 900 nm, for a noise level of 2σnoise = 0.3 mV for a 20 ms integration time. The values for
λ = 200 nm are based on a Hamamatsu CCD chip, with a noise level of 9000 electrons per pixel and per
second.

Table 26: Minimum and maximum detection thresholds for a pixel surface of(∆x)2 = (23 × 10−4 cm)2 and a 20 ms

integration time, corresponding to the number of noise photons at 2σnoise (minimum) and to the CCD saturation (maximum)

λ ηλ R Number of photons Corresponding energy
for 20 ms Noise (20oC) Saturation Noise Saturation

(nm) (%) (V.cm2.µJ−1) per pixel per pixel (J/pixel) (J/pixel)
200 62 – 290 1.0×106 2.9×10−16 9.6×10−13

450 20 5 720 8.6×106 3.2×10−16 3.8×10−12

600 40 14 340 4.0×106 1.1×10−15 1.4×10−12

850 30 14 480 5.7×106 1.1×10−16 1.3×10−12

900 20 10 720 8.6×106 1.6×10−16 1.9×10−12
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To measure the profiles up to±2 σ in width, it is necessary that the received number of pho-
tons at 2σ be higher than the equivalent number of photons corresponding to the noise floor given in
Table26. By assuming a Gaussian photon distributionf , the central pixel must receive approximately
f (0)/f (2 σ) ' 8 times more photons than the pixel at±2 σ. The signal-to-noise ratio thus obtained is
equal to 1 on the pixel located at2 σ and represents the minimum to carry out a measurement. In practice,
to ensure a safety margin, one imposes a signal-to-noise ratioS/B of 5 on the pixel located at2 σ.

Necessary number of pixels To measure the luminosity with 10% precision, horizontal and vertical
proton beam dimensions should be known to 5% precision [Eq. (6)].

Several types of errors must be considered in order to estimate the accuracy of the profile mea-
surement. The first one is the error due to the finite number of points (called here sampling error∆σ2

1)
and represents the error between the exact value to measureσtheor. and the valueσmeasuredof an ideal
measurement. It is then necessary to add the various errors made to the measurement itself, which we
shall detail further.

i+1
xx

i−1
x

i
∆x

y
i

f(x)

x

Fig. 58: Notations

The read value at then-th pixel of dimension∆x centred inxi = i∆x is yi =
∫ xi+

∆x
2

xi−∆x
2

f(u)du

(Fig. 58). Let us consider 2N points (xi,yi). The r.m.s. valueσmeasuredof these measurements and the
σtheor. theoretical r.m.s. value of the distributionf(u) to be measured (supposed of zero average) are by
definition:

σ2
measured=

N∑
i=−N

x2
i yi

N∑
i=−N

yi

σ2
theor. =

∫
u2f(u)du∫
f(u)du

. (108)

ForN sufficiently large, the two denominators are equal. The∆σ2
1 error made because of the discretiza-

tion is written:

∆σ2
1 = σ2

measured− σ2
theor.

= (σmeasured+ σtheor.)(σmeasured− σtheor.)
' 2 σtheor.∆σtheor. . (109)
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By introducing Eqs. (108) into Eq. (109), ∆σ2
1 can be expressed as:

∆σ2
1 =

N∑
i=−N

x2
i yi −

∫
u2f(u)du

∫
f(u)du

. (110)

By discretizing the integral overu in N intervals of width∆x and introducing the value ofyi, one
obtains:

∆σ2
1 =

N∑
i=−N

x2
i

∫ xi+
∆x
2

xi−∆x
2

f(u)du−
N∑

i=−N

∫ xi+
∆x
2

xi−∆x
2

u2f(u)du
∫
f(u)du

(111)

=

N∑
i=−N

(∫ xi+
∆x
2

xi−∆x
2

(x2
i − u2)f(u)du

)

∫
f(u)du

.

On each interval [xi − ∆x
2 , xi + ∆x

2 ], it is possible to under-valueu by (xi − ∆x
2 ) and to overvalue

(x2
i − u2) by (u∆x+ (∆x

2 )2). Thus:

∆σ2
1 ≤

N∑
i=−N

∆x
∫ xi+

∆x
2

xi−∆x
2

uf(u)du
∫
f(u)du

+

N∑
i=−N

(∆x/2)2
∫ xi+

∆x
2

xi−∆x
2

f(u)du
∫
f(u)du

(112)

≤ ∆x
∫
uf(u)du∫
f(u)du

+
(∆x/2)2

∫
f(u)du∫

f(u)du

≤ ∆x
∫
uf(u)du∫
f(u)du

+ (∆x/2)2 .

In our casef is even, thus the first term is null. The sampling error is then overvalued by:

∆σ2
1 ≤

(
∆x
2

)2

(113)

where∆x is the pixel size.

However, according to Eq. (109), ∆σ2
1 ' 2σtheor.∆σtheor., therefore:

∆σtheor.

σtheor.
≤ (∆x)2

8σ2
theor.

. (114)

To obtain an accuracy of 5% on theσ value, it is thus necessary to have at least(∆x)2/8σ2 ≥ 0.05,
corresponding to 1.6 pixels perσ, that is to have at least 2 pixels perσ.

Minimum number of photons Owing to the darkness noise on a pixel, it is necessary to add to the
sampling error, the error contribution from the measured valuesyi. This noise corresponds to a random
value δyi which is added to the ideal valueyi. The random variableδyi has a Gaussian distribution
centred on 0 with the r.m.s. valueσnoise defined previously. To evaluate theδσ error introduced by this
noise on the measuredσ value, we use a numerical simulation.

A random number generator adds to eachyi of the ideal Gaussian a random noiseδyi with a
Gaussian distribution (Fig.59). One then calculates theσi variance of the (xi, yi + δyi) couples. The
operation is repeated for a large number of noise values, typically 10 000, to obtain theσi distribution
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Fig. 59: Three examples of disturbed Gaussian superimposed on the ideal Gaussian

of the variances measured with the noise around the theoretical averageσ value. It is then possible to
calculate theδσ variance of theσi variances which represents in fact the relative error onσ introduced
by the darkness noise. While making the calculation of theσi variances dependent on the ideal Gaussian
maximum, the points perσ number, the number of points (expressed in a number ofσ) used for calcu-
lation, etc., it is then possible to study the influence of these various parameters on theσ measurement.
To be able to carry out profile measurements with 5% precision in 95% of the cases, it is necessary that
2 δσ remains lower than the required precision, i.e. 5%.

The Gaussian fit procedure on theyi + δyi measurements, identical to that used for all the profile
monitors, consists in finding the maximum, then the values on both sides of this point corresponding
to 60% of this maximum. For a Gaussian curve, these two points correspond to±σ. By defining the
retained fit level, (60%, 13% ... of the maximum), it is possible to change the number of points used.
In the following, the names ‘1σ, 2 σ... fit’ specify the percentage of the maximum considered by the
different procedures.

Initially, we shall consider profile measurements over 20 ms with the CCD described previously.
To evaluate the minimum number of photons necessary to measure the profile, we place ourselves in the
most unfavourable case of the noise level corresponding to2 σnoise given in Table26, i.e. 720 photons.
The random variableδyi has in this case a Gaussian distribution of r.m.s. valueσnoise= 360 photons for a
20 ms integration time. Table27 gives for 360 noise equivalent photons, the correspondingδσ and 2δσ
errors on theσ measurement according to the pixels perσ number, to the maximum number of photons
of the distribution, and to the number ofσ (corresponding in fact to the number of points) used for the
Gaussian fit. Figures60 and61 show the evolution of the relative error with the number of photons on
the central pixel for injection and collision energy.

These simulations show that one can detect aσ variation of 5% in 95% of the cases (i.e. at±2 δσ)
with 3 pixels perσ for 6500 photons arriving on the central pixel in the most unfavourable case of
darkness noise. With a fit procedure using only the top of the curve (so-called ‘±1 σ fit’), it is then
possible to obtain the same result with a maximum of only 1000 photons on the central pixel and 12
pixels perσ.

The preceding results correspond to cuts in the distribution. In the case of projections, the curve
obtained corresponds to the sum of the pixels in one direction. Consequently, the noise contribution is
averaged on the summed pixel number and is thus reduced. In addition, the CCD specifications indicate
that the darkness noise can be decreased by cooling the sensor. The number of noise photons is thus
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Table 27: Relative error (at 2σ i.e. for 95% of measurements) made on theσ measurement for various parameter values, for

a given temperature corresponding toσnoise = 360 photons for a 20 ms integration time

Photons Pixels/σ Number ofσ δσ 2 δσ
at central pixel used for the fit (%) (%)

500 12 1 4.30 8.70
500 14 1 4.00 7.90
500 21 1 3.10 6.20
500 12 2 7.20 14.40
750 12 1 3.20 6.40

1000 3 1 6.40 12.70
1000 5 1 4.30 8.70
1000 12 1 2.50 5.00
1000 12 2 4.90 9.80
3000 3 2 4.90 9.90
3000 4 2 4.10 8.20
3000 4 1 1.70 3.30
3000 12 1 0.85 1.70
4000 3 2 3.20 6.40
4000 3 1 1.50 3.00
4000 12 1 0.64 1.30
6500 2 2 3.40 6.80
6500 3 2 2.50 5.00
6500 4 2 2.00 4.00
6500 3 1 0.90 1.80

10 000 3 2 1.60 3.20
105 2 4 0.80 1.70
105 3 2 0.20 0.30
106 2 4 0.10 0.20
106 3 2 0.02 0.03
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divided by 2 every 8 degrees. The preceding evaluations are thus very conservative.

In conclusion, with an additional factor 10 for taking into account the losses due to the transmis-
sion, to be able to measure profile variations of 5%, we shall consider two points of operation corre-
sponding to two extreme beam sizes:

1. at 450 GeV: 12 pixels perσ and 5000 photons on the central pixel in 20 ms with a cooling of
8 degrees

2. at 7 TeV: 3 pixels perσ and 20 000 photons on the central pixel in 20 ms.

Minimum energy per proton To allow the direct comparison with the results of the preceding section,
it is interesting to convert this minimum number of photons on the central pixel to the energy in joules
per proton which it is necessary to collect on the whole CCD.

For the first operation point planned for 450 GeV, one needs 5000 photons on the central pixel
with 12 pixels perσ. The central pixel (with the sizeσ/12) receives in this case, according to the density
of probability chart [42], 0.11% of the maximum amplitude and one thus needs4.5 × 106 photons on
the whole CCD. In the same way, for the second operation point, the 20 000 photons on the central pixel
with 3 pixels perσ correspond to 3.8×106 photons on the whole (the central pixel receiving 1.7% of the
maximum). The photons having a 2 eV average energy (corresponding toλ = 621 nm), the total number
of photons which it is necessary to collect in 20 ms of integration time is converted to a minimum energy
of 1.5 × 10−12 J allowing profile measurement at 450 GeV and3.8 × 10−13 J at 7 TeV. The collected
intensity being proportional to the integration time and the number of protons in the beam, dividing this
total energy by the number of protons in the bunch to be measured (pilot or nominal), one gets the energy
per proton necessary with an integration time of 20 ms, Table28. Finally, to allow a direct comparison
with the energy values given in Section6, dividing again by the number of turns done during 20 ms, one
gets the averaged minimum energy per proton and per turn allowing one to measure the profile within
5% in 20 ms.

Table 28: Minimum energy per proton necessary to allow the 5% precision profile measurement with a pilot bunch (5 ×
109 protons) or with a nominal bunch (1011 protons) according to the considered integration time

Proton Fit Minimum energy per proton (J)
energy procedure for 20 ms (225 turns) per turn
(TeV) 5× 109 p 1011 p 5× 109 p 1011 p
0.45 12 pixels perσ 2.9×10−22 1.5×10−23 1.3×10−24 6.4×10−26

7 3 pixels perσ 7.5×10−23 3.8×10−24 3.3×10−25 1.7×10−26

For the study in turn-by-turn mode, it is necessary to use an MCP in front of the CCD in order
to select one turn and to amplify the signal. In this case, it is necessary to consider the whole chain
of transmission to evaluate the darkness noise per turn. The values provided by the manufacturers are
generally averaged over a given integration time whereas to obtain the values of noise in turn-by-turn
mode, it would be necessary, to be rigourous, to know the distribution density of the noise. Because
of the lack of existing measurements of these data, it is necessary to make additional assumptions or to
measure them experimentally. A specific study is then necessary to be able to draw conclusions for the
turn-by-turn measurements.
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7.1.2 Optical set-up

To allow the profile measurement over the whole LHC energy range, a very wide wavelength range is
used, going from 200 nm (low limit fixed by the separation window and a front-illuminated CCD) to
1000 nm (high limit fixed by the CCD spectral acceptance range). This working range results in the use
of a catoptrical system to avoid the chromatic aberrations introduced by a system of lenses. Moreover, to
avoid the deformation of the image due to the reflective surface imperfections, the mirrors selected must
have a surface quality better thanλ/10.

To guarantee the precision desired on theσH,V measurement, one needs 3 pixels perσH,V for the
smallest beam dimensions. The beam being the smallest at 7 TeV in the horizontal plane, optics must
thus make it possible to obtain 3 pixels perσ in the image plane forσH,7 TeV = 0.28 mm in the object
plane, that is to say aG = 0.19 magnification with a pixel size smaller than 20µm. With ap = 27 m
object distance and a focusing mirror available from the LEP telescope (M2) [43] with a 4.167 m focal
length, the M2 to image distance isp′ = 5 m (Fig.62). The dimensions of this optical layout correspond
to those of the LEP telescope. It thus appears possible to re-use it to limit the cost of the LHC diagnostics
system.

The folding mirror M3 (Fig.62) is motorized to centre the image on the detector. From the
experience gained on LEP, an alignment system based on a calibration source is also planned. A laser,
located close to the telescope emits a light beam toward D3 (Fig.62). This light is deflected in the
vacuum chamber by a set of two mirrors with a 45 degree angle placed at the D3 exit and then sent to
the extraction mirror. The second mirror is mobile (Fig.62) so that it can be introduced into the vacuum
chamber in the alignment phase and then withdrawn. The telescope can thus be aligned by using this
calibration source. Table29 recapitulates the dimensions of the optics.

The telescope is equivalent, from the point of view of geometrical optics, to a lens of 4.167 m
focal length (the M2 mirror, Fig.62), with a square aperture, corresponding to the extraction mirror Me,
located 2 m upstream from the focusing element, see AppendixD.

7.2 Image formation

With an ideal optical system, the image of a point is a point. But finite dimensions of the various compo-
nents introduce degradations of the image, thus replacing the geometrical point image by a distribution of
amplitude called Point Spread Function (PSF). By transposing these results to synchrotron radiation [12],
the angular distribution of the synchrotron radiation plays the role of an amplitude opening. Thus, even in
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Table 29: Dimensions of the optics. The subsystem made up of the laser, the folding mirror, and the mobile mirror is used

only for alignment of the telescope mirrors

Entrance undulator–Me distance 23 m
Me–M2 distance 2 m
M2–CCD distance 5 m
Magnification 0.19
Focal length 4.167 m (available)
Entrance pupil Extraction mirror50× 50 mm2

the absence of any finite physical opening, it is necessary to determine the PSF of a point source in order
to evaluate the resolution of the optical system. In this part, we shall consider the monochromatic radia-
tion emitted by a proton in order to simplify calculations and to accelerate the numerical simulations. If
the wavelength range of the detector is extended, it is sufficient to integrate over the range considered.

The telescope is equivalent to a simple optical device (diaphragmed lens). But the image collected
is that of the light source itself and not that of a lit-up object. The image formation is thus not done
within a traditional framework. First of all, the SR source characteristics mix the concept of incoherent
illumination (between the various beam particles) and coherent illumination (passage through the longi-
tudinally extended source by one particle). Moreover, the object presents a variable longitudinal range,
modifying the focusing point during the energy ramp. After having explained the source characteristics,
the next paragraph introduces the role of the various telescope components in the image formation.

7.2.1 Synchrotron light specificity

Polarized light We saw previously that synchrotron light is polarized. With polarizers, it is possible
to separate the horizontal (σ) and vertical (π) components of the emitted electric field and thus of the
corresponding amplitude distributions:

~F (y, z) = ~Fσ(y, z) + ~Fπ(y, z) . (115)

The scalar diffraction theory can thus be applied to each component [12, 44] and the total intensity
distribution collected in the image plane is the sum of the intensities of each component:

I(y, z) = |~F (y, z)|2 = |~Fσ(y, z)|2 + |~Fπ(y, z)|2 .

Each component can thus be studied independently. In the following, in order to simplify the notations,
we shall omit to specify the considered component (σ or π) when the equations can apply to both of
them.

‘Incoherent’ light The synchrotron radiation source is comprised of two essential elements: the par-
ticles in the beam and a set of magnetic elements. If the whole beam is considered, each particle emits
radiation, in the wavelength range of interest, independently of the other particles. In this sense, the syn-
chrotron radiation is known as ‘incoherent’. The resulting intensity distributionD(y, z) in the detector
plane is the convolution of the spatial distribution of the protonsO(y, z) brought back in the image plane,
with the single proton intensity distributionI(y, z):

D(y, z) = O(y, z) ∗ I(y, z) .
The twoO(y, z) andI(y, z) distributions are independent. In this case, the r.m.s. values of the various
distributions are related by:

σ2
D(y,z) = σ2

O(y,z) + σ2
I(y,z) . (116)

66



Thus, by measuring the spatial distribution of the intensity in the image plane and by knowing the in-
tensity distribution emitted by a proton brought back in the image plane (i.e. by taking into account the
optical system magnification), it is possible to deduce the spatial distribution of the particles in the beam.

‘Coherent’ light If the light source is a set of several magnetic elements,F (y, z) is the ‘coherent’ sum
of the contributions of each distinct part of the source, following the method described in Section4. The
longitudinal range of the source introduces into the angular distribution of the amplitude a phase structure
determining the image formation. It is no longer possible to think in terms of transmitted intensity and it
is necessary to use wave front propagation.

The method used to calculate the amplitude distribution in the detector plane is based on the
Fourier optics formalism [45] implemented in the numerical code SRW (Synchrotron Radiation Work-
shop) [39].

7.2.2 Propagation through a diaphragm

According to Huygens’ principle [46], all the space points reached by a wave front behave like secondary
sources of spherical waves. The envelope of these waves constitutes the wave front. The construction of
this envelope at any time makes it possible to represent the light propagation and to build the image of
an object. A physical aperture (i.e. a diaphragm) placed along the trajectory of the wave limits its spatial
range, and thus cancels the contributions of some sets of secondary waves. The wave front envelope is
then deformed compared to in-vacuum propagation, creating a light dispersion.

So, to evaluate the diffraction effect in the LHC SR monitor, it is necessary to take into account two
contributions: the presence of a diaphragm corresponding to the finite dimensions of the extraction mirror
cutting the distribution at 450 GeV, and the limited angular distribution of the synchrotron radiation
creating diffraction whose effect is essentially felt at 7 TeV, when the proton beam size is smallest.
Indeed, in the case of synchrotron radiation, the angular opening of the light cone is about 1/γ = 0.1 mrad
at 7 TeV. This corresponds to a natural limitation of the wave range which creates diffraction even in the
absence of physical openings [12].
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Fig. 63: Propagation between two planesP1 andP2.

Propagation between two planes The Huygens–Fresnel principle [46] states that the wave amplitude
F (A) received in a pointA of co-ordinates(y, z) in the P2 image plane is the superposition of the
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spherical waves emitted by secondary sourcesF (A′) located in theP1 plane (Fig.63). For a given
wavelengthλ (monochromatic light), one has:

F (A) =
1
jλ

∫∫ +∞

−∞
F (A′)

exp(j 2π
λ r)

r
cosθds (117)

whereA′ is a point of co-ordinates(y′, z′) in theP1 plane,l is the distance between the two planes,
cosθ = l

r is the angle between the vector~N normal to theP1 plane and the vector~r joining A to A′.
The distancer is given by:

r =
√
l2 + (y − y′)2 + (z − z′)2 . (118)

The presence of a diaphragm is limiting the spatial range of the wave front in the aperture plane.
Mathematically, this is equivalent to limite the spatial integration on theΣ opening or to introduce into
the integral a pupillary functionP(y′, z′) such asP(y′, z′) = 1 for (y′, z′) ∈ Σ andP(y′, z′) = 0
elsewhere. Equation (117) is then written:

F (y, z) =
1
jλ

∫∫

Σ
F (A′)

exp(j 2π
λ r)

r
cosθds (119)

=
1
jλ

∫∫ +∞

−∞
P(y′, z′)F (A′)

exp(j 2π
λ r)

r
cosθds .

For the denominatorr of Eq. (119), the approximationr ' l is sufficient for the majority of the
current applications. On the other hand, the term in the exponential, expressing a phase delay between
the secondary waves, is sensitive tor variations of the order ofλ. Two areas are generally distinguished
according to the retained terms in the series expansion ofr. When the observation point is sufficiently
close toP1 so that all the phase terms appearing in Eq. (120) have the same order of magnitude, one
speaks then about ‘near field diffraction’, orFresnel diffraction. Conversely, when the observation dis-
tance is sufficiently large compared toΣ opening sizes so as to neglect the variations of the quadratic
term (y′2 + z′2) over the opening, one speaks about ‘far field diffraction’, orFraunhofer diffraction.

Fresnel diffraction In the Fourier optics approximation when considering propagation directions close
to the optical axis,r can be developed as:

r ' l

(
1 +

1
2

(
y − y′

l

)2

+
1
2

(
z − z′

l

)2
)

(120)

wherel is the distance between the two planes (Fig.63). Equation (119), with cosθ ' 1, can thus be
rewritten in the form:

F (y, z) =
exp(j 2π

λ l)
jlλ

∫∫

Σ
F (y′, z′) exp

[
j
π

λl

(
(y − y′)2 + (z − z′)2

)]
dy′dz′ . (121)

By separating the phase terms to keep under the integral sign only those dependent on the integration
variables, Eq. (121) looks like the Fourier transform of the product of the field amplitude on theΣ
opening by a quadratic phase term:

F (y, z) =
e(j

2π
λ
l)e(j

π
λl

(y2+z2)

jlλ

∫∫

Σ

[
F (y′, z′)e(j

π
λl

(y′2+z′2))
]
e(−j

2π
λl

(yy′+zz′))dy′dz′ . (122)
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Fraunhofer diffraction In the case of far field diffraction, ifl satisfies the additional condition [45]:

lÀ π(y′2 + z′2)
λ

the quadratic phase term iny′2 + z′2 is roughly equal to 1 over the whole aperture and its variations can
be neglected. Equation (121) is written then:

F (y, z) =
e(j

2π
λ
l)e(j

π
λl

(y2+z2))

jλl

∫∫ +∞

−∞
F (y′, z′)e(−j

2π
λl

(yy′+zz′))dy′dz′ . (123)

To evaluate the profile measurement accuracy, only the relative distribution of intensity in the
image plane is necessary, i.e. the square module ofF (y, z). In this case, as|eiξ|2 = 1 ∀ξ, the phase
terms in front of the integral sign can be omitted. The far field diffraction considers that the waves which
are superimposed in the image plane result from parallel rays. It establishes a relation between the spatial
frequencies defined byu = y

λl andv = z
λl and the director cosine of the observation direction defined

by ζy = y
l andζz = z

l . The term in the exponential can then be interpreted as the phase (or optical
path) difference between the parallel rays coming from two different points of the diffracting surface.
By introducing the spatial frequencies into Eq. (123), the diffracted amplitude calculation appears in the
form of a spatial Fourier transform:

F (u, v) = C

∫∫ +∞

−∞
F (y′, z′)e(−j2π(y′u+z′v))dy′dz′ (124)

whereC = exp (j 2π
λ
l) exp (−jπλl(u2+v2))

jλl .

For the particular case of our optical system, the dimensions of the diaphragm (the extraction mir-
ror) are50× 50 mm2. Thus, for a wavelengthλ = 500 nm, and a radiusy′max = z′max = 25 mm, the sim-
plifying but also very constraining Fraunhofer approximation applies forlÀ 2π(2.5 × 10−2)2/(500×
10−9) = 7800 m! To calculate the diffraction effects with sufficient precision, this approximation can
thus not be retained and it is necessary to keep the quadratic phase termy′2 + z′2, i.e. Eq. (122) and this
is what was done in the following.

7.2.3 Action of a lens on a wave front

A lens is commonly built from material of refraction index higher than that of air. In the ‘thin lens’
approximation, the entry co-ordinate is the same as the exit one. In this case, while crossing the lens an
incidental wave undergoes a phase distribution modification in the incidental plane proportional to the
lens thickness crossed at each point of this plane. The phase delay introduced by the lens is written:

φ(y, z) =
2π
λ
n∆(y, z) +

2π
λ

[∆0 −∆(y, z)] (125)

where∆(y, z) represents the lens thickness and is a function of the curvature radiiR1 andR2 of each
face and of incidence co-ordinates(y, z) on the lens [45], ∆0 being the lens thickness on the optical
axis. In an equivalent way, the lens action on a wave front is represented by the multiplication of the
complex amplitude by a phase transformation termtl(y, z) = exp (jφ(y, z)). By considering only
the wave portion close to the lens axis (paraxial approximation), the∆(y, z) function is written in the
approximate form:

∆(y, z) ' ∆0 − y2 + z2

2

(
1
R1

− 1
R2

)
. (126)

Defining the focal lengthf of a lens by

1
f

= (n− 1)
(

1
R1

− 1
R2

)
(127)
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and neglecting the constant phase term, the expansion of Eq. (125) results in the expression of the lens
action as the multiplication of the incidental amplitude on the lens by a quadratic dephasing termtl:

tl(y, z) = exp

(
−j π

λf
(y2 + z2)

)
. (128)

7.3 Method with operators

When the number of lenses and diaphragms increases in the optical system considered, the total calcula-
tion of the light propagation through the whole system becomes complicated in the integral form. It thus
seems to us interesting to introduce the method suggested in Ref. [45] which defines a set of operators
characterizing the various transformations associated with the optical elements.

7.3.1 Definition of operators

The operators are defined by their parameter between square brackets [ ] and the function on which they
act are written between braces{ }.

Multiplication by a quadratic phase term , c being the reverse of a length:

Q[c]{U(y, z)} = ej
π
λ
c(y2+z2)U(y, z) (129)

Propagation over a distancel with (y2,z2) the co-ordinates after propagation:

R[l]{U(y1, z1)} =
1
jλl

∫∫ +∞

−∞
U(y, z)ej

π
λl

((y2−y1)2+(z2−z1)2)dy1dz1 . (130)

Here the Fresnel propagation equation is recognized.

Fourier transform

F{U(y, z)} =
1√
2π

∫∫ +∞

−∞
U(y, z)e−j(uy+vz)dydz . (131)

Scaling by a constantb
ν[b]{U(y, z)} = b−1/2U(by, bz) . (132)

Passage through an apertureΣ by definingP (y, z) = 1 for (y, z) in Σ and 0 elsewhere,

D[Σ]{U(y, z)} = P (y, z)U(y, z) . (133)

The wave front propagation through an optical system is represented by the product in the opposite
order of propagation of the corresponding operators. Various relations between the operators as detailed
in Ref. [45] will simplify the complex expressions of propagation by reducing the operator chain. For
example:

Q[
1
d
]ν[

1
λd

]FQ[
1
d
] = R[d] . (134)

7.3.2 Application to an SR monitor

To illustrate the use of the operators in a simple case, let us consider the configuration of Fig.64 repre-
senting the synchrotron radiation monitor. The total propagation operator from the point source S to the
image point I is written:

S = R[x2]Q
[
− 1
f

]
R[l]D[Σ]R[x1 − l] . (135)
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Fig. 64: Geometry equivalent to the telescope: an object located in the plane S is observed through a diaphragm and a lens in

a plane I

By moving along the chain from the right-hand side to the left, one finds the propagation over a distance
(x1-l), the crossing of a diaphragm (equivalent of the extraction mirror), the propagation over the distance
l, the crossing of the lens of focal lengthf , and finally the last propagation over a distancex2.

The numerical program Zgoubi and the analytical methods developed in Section4 are used for
calculating the intensity distribution in the extraction mirror plane. This is why we distinguish two areas:
propagation from the sourceS to theP1 plane right behind the diaphragm represented by theS1 operator,
then propagation from theP1 plane till the detector plane (called ‘image plane’ although no particular
relation is supposed a priori betweenx1 andx2), represented by theS2 operator. By callingU(y′, z′) the
amplitude distribution in the source plane;U(y1, z1) that in theP1 plane; andU(y, z) that in the image
plane, one has the relations:

U(y1, z1) = S1{U(y′, z′)} = D[Σ]R[x1 − l]{U(y′, z′)} (136)

U(y, z) = S2{U(y1, z1)} = R[x2]Q
[
− 1
f

]
R[l]{U(y1, z1)} . (137)

Propagation through the telescope In integral notation, Eq. (137) is put in the form:

U(y, z) =
e
j π

λx2
(y2+z2)

λ2x2l

+∞∫∫

−∞





+∞∫∫

−∞
U(y1, z1)ej

π
λl

(y21+z21)e
j π

λ

ş
1
l
+ 1

x2
− 1

f

ť
(ξ2+η2)

× e
−j 2π

λ

hş
y

x2
+

y1
l

ť
ξ+

ş
z

x2
+

z1
l

ť
η

i
dy1dz1

}
dξdη

(138)

whereU(y1, z1) is the amplitude distribution in the plane right behind the aperture, and(ξ, η) are the
co-ordinates in the lens plane.

If one supposes moreover that the lens has an opaque finite support, the integral indξdη is limited
to theΣlens aperture of this support. Thus, starting from the amplitude distribution in the plane imme-
diately behind the entrance pupil of the system, it is possible to obtain the intensity pattern in any plane
located at the distancex2. The main difficulty is then to evaluateU(y1, z1) in the particular case of the
synchrotron light source.
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Various common simplifications Equation (138) can be simplified by considering certain particular
cases. First of all, if one is interested in the intensity in the image plane, then the phase distribution term
in (y2 + z2) in the image plane can be omitted.

In addition, if the object is a point source located in the (y0, z0) position in the (y1, z1) plane, then
U(y1, z1) = δ(y0, z0) and

+∞∫∫

−∞
U(y1, z1)ej

π
λl

(y21+z21)dy1dz1 = ej
π
λl

(y20+z20) . (139)

Again, if one is interested only in the intensity distribution in the image plane, the quadratic phase term
in (y2

0 + z2
0) can be omitted. Equation (138) is reduced then to:

U(y, z) ' 1
λ2x2l

∫∫

Σlens

e
j π

λ

ş
1
l
+ 1

x2
− 1

f

ť
(ξ2+η2)

e
−j 2π

λ

hş
y

x2
+

y0
l

ť
ξ+

ş
z

x2
+

z0
l

ť
η

i
dξdη . (140)

An additional simplification appears ifx1 andx2 satisfies the lens law1
x1

+ 1
x2

= 1
f , i.e. when the

optics is focused on the source point. The quadratic phase term in(ξ2 + η2) disappears then from the
integral and one finds an expression of the Fourier transform type. Thus, if the optical system carries
out the image of a point object withx1 andx2 satisfying the lens law of geometrical optics, the intensity
distribution in the image plane is the Fraunhofer diffraction pattern of theP(ξ, η) lens support, withP(ξ,
η) = 1 for (ξ, η) insideΣlens, the traditional result of the diffraction calculation [46].

However, the particular characteristics of the synchrotron light source, detailed in the following,
do not allow using these simplifications.

7.3.3 Characteristics of the synchrotron light source

Extended object In the case of the chosen synchrotron light source for the diagnostics, Section6, the
object has a finite and ‘variable’ longitudinal range with the proton beam energy, in the detector spectral
range. At 450 GeV, only the undulator emits sufficient light to be detected (Table17). The source is
thus 75 cm long. At 7 TeV, the source is comprised of the dipole edge effect. It is thus 15 cm long
and located closer to the extraction mirror. For a fixed longitudinal position of the extraction mirror, the
source–focusing mirror distance thus varies also with energy. These are the two relatively simple cases.
On the other hand for intermediate beam energies, the source is in fact a source doublet, approximately
2 m long. For the image formation, the phase distribution in the wave front is thus the determining
factor. The use of the intensity distribution on the extraction mirror is not sufficient and it is necessary to
determine the amplitude distribution in the extraction mirror plane.

Use of the analytical models In the particular cases of injection energy and collision energy, the undu-
lator and the edge effect can be compared to point sources and the lens law8 is applicable. It thus seems
possible to use the simplified relation (140). In the case of the undulator, one has an analytical model to
describe the amplitude distribution [Eq. (40)]. In the same way, if the angular spectral energy densities
emitted by the two sources can be modelled with analytical formulas, by using the interference formulas
given in Section4, it is possible to calculate the amplitude distribution in the extraction mirror plane.
However, the edge radiation model developed in the same section is valid only in high-frequency mode,
i.e. at low proton energy, where it is in fact the undulator which prevails in the emission. Analytical
calculation must initially be preceded by the determination of a simple model of the fringe field allowing
the integral calculation (140).

As for the numerical program Zgoubi used until now, it does not provide the phase term necessary
to derive integral (140). To be able to study the case which seems a priori the most critical (at the

8This supposes a modification ofx2 of a few tens of centimetres to focus optics on the real source in each case.
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collision energy), and in order to be efficient, we chose to use additional numerical tools available in
other laboratories.

Numerical calculation The intensity distribution calculation in the image plane and the study of the
role of the focusing point at intermediate proton energies must be carried out starting from the general
expression (138):

Uσ,π(y, z) =
e
j π

λx2
(y2+z2)

λ2x2l

∫∫

Σlens

{∫∫

Σdiaphragm

Ẽσ,π(y1, z1)ej
π
λl

(y21+z21)

× e
j π

λ

ş
1
l
+ 1

x2
− 1

f

ť
(ξ2+η2)

e
−j 2π

λ

hş
y

x2
+

y1
l

ť
ξ+

ş
z

x2
+

z1
l

ť
η

i
dy1dz1

}
dξdη

(141)

whereẼσ,π(y1, z1) is the Fourier transform of the electric field received on the diaphragm (or extraction
mirror). For quadruple integral evaluation, we have used a simple numerical calculation. Taking into
account the lens and diaphragm apertures, the variation of the exponential terms ‘oscillates’ widely over
the integration interval. Thus, to have sufficient precision, one needs a high number of integration points
to ensure the integral convergence. A rapid estimate shows that for 8 mm openings, one needs7 × 108

integration steps to calculate the intensity in one point. Initially, the adopted solution is to limit the
integration field to 2×2 mm2. But in this case, the field distribution is comparable to a spherical wave
and one finds the Point Spread Function of a point source. More elaborate numerical methods are thus
necessary to calculate precisely the intensity in the image plane for the source comprised of the undulator
and the dipole edge.

Thus, the analytical study at particular energies as well as the implementation of a simple numer-
ical method adapted to our monitor case would require the development of additional tools. To be able
to carry out a complete study of the diffraction and depth of field effects over the whole energy range,
this implementation was forsaken and replaced by the use of an existing code, developed at ESRF for
electrons, SRW (Synchrotron Radiation Workshop) [39]. The code is based on the propagation method
described previously [47].

7.4 Optical analysis of the SR monitor

The results presented in this part were obtained with the SRW code. The beam used is a ‘filament’ beam9,
i.e. of null emittance, making it possible to represent the radiation emitted by one particle. Moreover,
the horizontal component, generally the least diffracting one and corresponding to the fluxes given in
the previous section, is the only one considered. Lastly, the radiation studied is always monochromatic.
To obtain the real images in the detector plane, it is thus necessary to integrate the distributions over
the different wavelengths of the considered acceptance range and to convolute the result by the spatial
distribution of the particles [Eq. (7)] which cannot be done with the numerical code used.

7.4.1 Use of SRW with protons

Although initially intended for use with electrons, SRW gives the results sought with protons with the
help of the introduction of corresponding scale factors10 for the energy and the magnetic fields used
in the LHC. To guarantee a good starting point, a systematic comparison of intensities collected at the
extraction mirror, obtained with SRW on the one hand, and Zgoubi on the other hand, was made. The
two most representative cases are presented below.

9The beam has the LHC beam nominal current, but all the particles pass on the same trajectory; the emittance effects are
neglected and the image is obtained with a simple convolution [Eq. (7)].

10A proton with energyE in the magnetic fieldB is simulated by an electron with the energyE×me/mp in aB×me/mp

magnetic field, whereme/mp is the ratio of the proton and electron rest masses, i.e. about 1/1836.
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At 7 TeV Figures65 show the intensity emitted by the undulator–D3 source at the collision energy,
simulated with Zgoubi at the left, and SRW at the right. At 7 TeV, the main source is the D3 dipole. The
radiation of the centre of D3 becomes comparable with that of the edges, corresponding to the two peaks
in theφ ' ±α

2 ' ±0.8 mrad direction.
u28V2 + D3 450 GeV 2.4eV 
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Fig. 65: Intensity emitted (horizontal component) for a proton energy of 7 TeV andλ = 500 nm, with a distanced = 1 m

between the two sources, simulated with Zgoubi (on the left) and SRW (on the right).
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Fig. 66: Cuts in the horizontal plane of the intensity emitted (horizontal component) for a proton energy of 7 TeV and

λ = 500 nm, with a distanced = 1 m between the two sources, simulated with Zgoubi (on the left) and SRW (on the right) for

a source-to-mirror distance of 400 m.

On the cuts in the horizontal plane (Figs.66) one notices that the peaks of the edge radiation do not
correspond exactly to the physical position of the magnet edge, but are atφ = ±(α2− 1

γ ), with a secondary

peak atφ = ±(α2 + 1
γ ) [Eqs. (51) and (52)]. These results correspond to those already presented in

Section4.2, in the limit of validity of the low-frequency model (Fig.17). Note that the identical end
peak intensities in the Zgoubi case (left) comes from the assumption of a constant observation distance
r, Eq. (26).

At 1 TeV Figures67show the intensity collected in the extraction mirror plane at 1 TeV andλ = 500 nm
simulated with the two numerical codes Zgoubi and SRW when the source is made up of the undulator
and the D3 dipole separated by 1 m. The first code, Zgoubi, uses the far field approximation neglecting
the 1/r2 term in the expression of the electric field emitted by the particle [Eq. (13)] while the sec-
ond, SRW, calculates the intensity distribution including the near field component [47] [Eq. (11)]. Both
methods reveal the same source characteristics, so the approximation in the Zgoubi code that keeps the
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Fig. 67: Intensity emitted (horizontal component) by 1 TeV protons,λ = 500 nm, with a distanced = 1 m between the two

sources, simulated with Zgoubi (on the left) and with SRW (on the right).

distancer between the source and the observer constant all along the range of the source to calculate the
module of the received electric field is acceptable.

First of all, the central lobe is comprised of the interference between the emission in the undulator
axis direction and the emission at the dipole entrance edge. The intensity is thus modulated with a period
depending on the distance between the two sources (Section4.3). Secondly, the ring, corresponding to
the emission direction of theλ = 500 nm wavelength at 1 TeV, i.e.θ = 1.6 mrad according to Eq. (38), is
modulated by the non-symmetrical angular distribution term of Eq. (42) [Fu(θ, ϕ) defined page44]. It
appears as four different intensity peaks, more intense in the vertical plane than in the horizontal plane.
Lastly, theθ = 1.6 mrad direction corresponds to the D3 dipole deflection (Section6.1.4). The dipole exit
edge emits in the same direction as the undulator ring corresponding to aλ = 500 nm wavelength. They
thus interfere with an oscillation period varying linearly with the distance separating the two sources. One
thus observes interference black fringes with a frequency higher than that observed on the central lobe
corresponding to the interference between the entrance edge and the undulator (Fig.68). The method
developed in Section4.3 shows that the intensity modulation due to the interference between the two
sources varies as sin(2πc

λ T ) whereT is the crossing time of the straight section of lengthd and of the
D3 dipole of lengthL, that is to say according to Eqs. (64) and (B.3):

T =
L

2γ2c

[
1 + γ2(φ2 + ψ2) +

K2

3

]
+

d

2γ2c

[
1 + γ2(φ2 + ψ2)

]
(142)

whereK = αγ/2 is the dipole deflection parameter, and the co-ordinates (φ, ψ) are defined in Fig.7.
Theφ(n) angular positions of black fringes are defined by solving inφ the condition:

2πcT
λ

= n2π (143)

wheren is an integer. The numerical application forλ = 500 nm andn of the order of 30 for theφ region
of Fig. 68, gives an angular distanceφ(n) − φ(n − 1) between the interference rings of 0.035 mrad,
corresponding for 25 m to an inter-fringe distance of 0.9 mm, in agreement with Fig.68.

The agreement between the two programs using two different approximations is very good in our
case and it will thus be noticed that the near field method is not necessary for our application.

7.4.2 Qualitative approach

With the wave front propagation method, it is possible to calculate numerically the intensity distribution
in any plane and to obtain the Point Spread Function (PSF) in the detector plane. Before studying
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Fig. 68: Angular spectral energy density (zoom of Fig.67) and cut in the horizontal plane forλ = 500 nm, withd = 1 m

(Fig. 69), and 1 TeV proton energy, horizontal component.
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Fig. 69: Configurations and notations used for the numerical simulations of image formation. According to the chosen

focusing point,A orB for example, the image position,A′ orB′, is different in the detector plane.
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more precisely the influence of the various parameters in order to choose an optimal configuration, the
presentation of the plots obtained for three representative energies introduces some significant results.

The configuration used for simulations, the optical equivalent of the telescope, is shown in Fig.69.
The SRW propagation calculation can be carried out only for small angles, of the order of a mrad. To re-
main in this approximation with the mirror sizes considered, it was decided to centre the optical elements
on thex = 0 axis. The filament beam trajectory thus enters the undulator with an angleα = 0.7 mrad.
The optical axis and the undulator radiation axis are thus shifted by thisα angle. The consequence of this
shift on the synchrotron radiation is simply a shift of the emitted fundamental wavelengths. Indeed, the
beam ‘sees’ in place of the real spatial periodλu, its projection on theα direction, i.e.λu cosα which
represents a negligible variation. Moreover, thex2 distance (Fig.64, page71) can be modified allowing
for the choice of the trajectory point focused onto the detector plane, for a given lens. The change of the
object point on which the optics is focused, illustrated by pointsA andB on Fig.69added to the angular
shift α is at the origin of a change of position of the corresponding images (A′ andB′ on Fig.69). This
is visible on the following figures resulting from SRW simulations.

Fig. 70: Intensity in the detector plane for a 450 GeV en-

ergy, λ = 500 nm, optics being ‘focused’ on the undulator

exit (x2 = 4.96 m), collected with a50 × 50 mm2 mirror at

L = 25 m, whose edge is at15 σH,450 GeV from the proton

beam axis (the edge effect contribution to the illumination is

negligible).

Fig. 71: Intensity in the detector plane for a 450 GeV energy,

λ = 500 nm, optics being ‘focused’ on the D3 dipole entrance

(x2 = 5 m), collected with a50×50 mm2 mirror atL = 25 m,

whose edge is at15 σH,450 GeV from the proton beam axis.

At the injection energy At 450 GeV, the intensity produced by the D3 dipole is negligible compared
with that produced by the undulator (Table17, page51). The source is thus comprised only of the
undulator. For theλ = 500 nm wavelength close to the fundamental, the angular distribution of the
radiation is a lobe centred on the undulator symmetry axis. The image of this source obtained by focusing
the optics on the undulator exit (x2 = 4.96 m, for a 4,167 m focal length) is also a peak to which the
diffraction effect is added (Fig.70). If the optics is focused in order to observe a point corresponding to
the D3 dipole entrance (Fig.71) one finds the same image spot, but widened.

At the collision energy At 7 TeV, the source is comprised of the D3 dipole, edge and interior. We
saw in Section4.2.1that in the low-frequency approximation (i.e. for observation frequencies lower than
the inverse of the pulse duration), the edge radiation, instead of being a cone centred on the physical
edge position, breaks up into two cones of different intensities centred on±1/γ on both sides of the
edge. The lens recombination of this radiation gives normally a point. However, the mirror position does
not make it possible to collect the totality of the dipole edge radiation distribution in this case [Fig.72
corresponding to Fig.57-(c) to be compared with Fig.66]. The image recombination is thus performed
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Fig. 72: Cut in the horizontal plane of the intensity collected on the extraction mirror whose edge is atσH,450 GeV = 18 mm

from the proton beam axis, forλ = 500 nm and a proton energy of 7 TeV.

from truncated angular distributions, resulting in pronounced diffraction effects (Figs.73 and74). One
finds the same types of figures as for 450 GeV, but this time the focusing point is on the entry of D3
(Figs.73and74).

Fig. 73: Intensity in the detector plane for a 7 TeV beam

energy,λ = 500 nm, optics being focused on the undulator

exit (x2 = 4.96 m), collected with a50 × 50 mm2 mirror at

L = 25 m. The mirror edge is at15 σH,450 GeV from the

proton beam.

Fig. 74: Intensity in the detector plane for a 7 TeV beam

energy,λ = 500 nm, optics being focused on the D3 dipole

entrance (x2 = 5 m), collected with a50 × 50 mm2 mirror

at L = 25 m. The mirror edge is at15 σH,450 GeV from the

proton beam.

At 1 TeV The angular structure of the radiation source at this intermediate energy is quite complex.
It is made up of a peak centred on the optical axis containing the undulator and the D3 edge effect
contributions, and of four peaks located on a ring of angular radiusθ = 1.6 mrad, corresponding to the
λ = 500 nm wavelength emission direction (Fig.67). Figure75compared with Figure67shows the part
of the total intensity distribution collected by a50 × 50 mm2 mirror at the distanceL = 25 m whose
edge is at15 σH,450 GeV from the proton beam axis. The cone centred on theα direction (that is to say
−17.5 mm at 25 m) is the coherent superposition of the radiation emitted by the undulator and the D3
edge located at the distanced. Because of the eccentric mirror position with respect to the undulator
radiation emission axis, only a fraction of the ring corresponding to the 500 nm wavelength is collected:
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Fig. 75: Intensity collected (σ component) on the50 ×
50 mm2 extraction mirror atL = 25 m whose edge is at

15 σH,450 GeV from the proton beam axis, for a 1 TeV energy

andλ = 500 nm. Only an eccentric square of50 × 50 mm2

is taken from Fig.67 corresponding to a square with 60 mm

sides.

Fig. 76: Intensity in the detector plane for a 1 TeV energy,

λ = 500 nm, with the optics focused on the undulator exit,

collected with a50×50 mm2 mirror at theL = 25 m distance

whose the edge is at15 σH,450 GeV from the proton beam axis.

the two lobes appearing in the vertical plane on Fig.67 are outside the mirror angular acceptance and
thus disappear on Fig.75. In the same way, only a very small portion from the lobe centred at 35 mm
in the horizontal plane (Fig.67) is collected by the mirror (Fig.75). During the phase recombination by
the lens, the symmetrical part of this lobe with respect to the emission axis is eliminated. One then sees
appearing on the left of the central peak (image inversion) a second very attenuated peak corresponding
to the part of the ring collected.

The images obtained in various image planes corresponding to different focusing points are repre-
sented in Figs.76, 77 and78. According to the focusing point, contributions to the central peak coming

Fig. 77: Intensity in the detector plane for an energy of

1 TeV, λ = 500 nm, with the optics focused on the D3 edge,

collected with a50×50 mm2 mirror atL = 25 m whose edge

is at15 σH,450 GeV from the proton beam axis.

Fig. 78: Intensity in the detector plane for an energy of

1 TeV,λ = 500 nm, with the optics focused in the middle of

D3, collected with a50× 50 mm2 mirror atL = 25 m whose

edge is at15 σH,450 GeV from the proton beam axis.

from the two components of the source are more or less diluted. The shape of this lobe (i.e. the number
and the width of local maxima) thus varies with the focusing distance.
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7.4.3 Study of the influence of the various parameters

Although our detector optics is simple, it is possible to adjust various parameters in order to optimize the
performance, in particular by limiting the diffraction and depth of field effects. This section presents the
studies carried out to choose the configuration giving the best space resolution, i.e. the smallest PSF.

Influence ofλ Intensity distribution calculations in the detector plane depend on the observation wave-
length. In the case of the monitor, the spectral ranges of the CCD and intensifiers used are relatively broad
(between 200 and 900 nm). It is thus possible, either to integrate across a wide range to ‘smooth out’ the
effects observed in monochromatic light, or on the contrary to choose a narrow range around an optimal
wavelength to minimize the diffraction effects. Table30 presents the r.m.s. sizes of the PSF horizontal
cut, brought back in the object plane, as a function of the proton beam energy for several wavelengths
(Figs.79, 80and81).

Table 30: r.m.s. width of the PSF horizontal cut brought back to the object plane for various wavelengths. The 50× 50

mm2 extraction mirror isL = 25 m upstream from the undulator entrance, the focusing mirror isl = 2 m from the extraction

mirror and the detector isx2 from the focusing mirror. The proton beam size in the object plane is shown in the last column for

comparison.

Focusing point: undulator exit
Proton r.m.s. width of the PSF H cut r.m.s. beam size
energy (mm) object plane
(TeV) λ = 200 nm λ = 500 nm λ = 900 nm (mm)
0.45 0.064 0.15 0.20 1.12
1.00 0.078 0.19 0.35 0.75
7.00 0.210 0.52 0.91 0.28

Table30 makes it possible to check a traditional result of diffraction calculations: the diffraction
effect decreases with the wavelength. However, the fundamental wavelength emitted by the undulator
at 450 GeV is 620 nm. The intensity emitted away from this wavelength is much lower (Fig.79 in
relative scale). The optimal wavelength from the point of view of the spatial resolution is the smallest
possible. However, from the point of view of the collected signal level, it is preferable to work with
wavelengths close to fundamental as long as the radiation of the undulator is detectable. Then, when the
D3 edge becomes dominating, one improves the resolution by decreasing the wavelength to the minimum
allowed by the detector’s spectral acceptance.

Influence of the choice of the focusing point (depth of field) We showed that between 1 and 2 TeV, the
radiation is produced by equivalent contributions of the undulator and of the D3 dipole edge (Table17).
The optical system thus makes in this case the image of a longitudinally extended sourceAB = a.

While callingAi andBi the respective images of the extreme points of the sourcesA andB,
located respectively at the distancespA and pB from the lens (Fig.82) and by supposing the optics
focused on pointA, the geometrical image of pointB in the plane ofAi is not a point but a disk of radius
rA:

rA = AiBi tanui . (144)

By using the relations of geometrical optics betweenA andaibi, one obtains the relation [46]:

rA =
auif

2

pApB
(145)
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Fig. 79: Comparison for various wavelengths of the PSF horizontal cuts in the detector plane at 450 GeV for the undulator

and the D3 magnet (negligible)

Fig. 80: Comparison for various wavelengths of the PSF horizontal cuts in the detector plane at 1 TeV for the undulator and

the D3 magnet (equal contribution to the illumination)
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Fig. 81: Comparison for various wavelengths of the PSF horizontal cuts in the detector plane at 7 TeV for the undulator

(negligible) and the D3 magnet
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Fig. 82: Depth of field.Ai is the image ofA andBi that ofB
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wheref is the focal length of the lens. Thus, the spot image radius increases with the emission angle11

and with the lengtha. The radiusrA is null in the case of a point source located inA corresponding to
a = 0.

The optimal focusing distanceD is obtained by equalizing the radiirA andrB calculated for the
two extreme focusing positions corresponding to the object distancespA andpB (Fig. 82). By applying
the conjugate Newton formulas [46], one shows thatD is given by:

D =
2 pApB
pA + pB

. (146)

In the case of the synchrotron radiation source comprised of the undulator and D3,a is about 2 m
andpB is the distancex1 = 27 m. To study the depth of field effect, we varied the detector position
x2 between the pointsBi andAi. That is equivalent to varying optically the observed point source
(called here ‘focusing point’) between the two physical limitsA andB of the object. Table31 presents
the variation of the size of the horizontal cut of the PSF obtained by this source sweeping between the
undulator entry and the D3 entry, that is to say approximately 2 m.

Table 31: r.m.s. value of the PSF horizontal cut in the detector plane and brought back to the object plane for various focusing

points. The50× 50 mm2 extraction mirror is 25 m upstream from the undulator entrance, the focusing mirror is 2 m from the

extraction mirror.

λ = 500 nm r.m.s. size
d = 1 m In the image plane In the object plane

Proton x2 G PSF Proton PSF Proton
energy H cut beam H cut beam
(TeV) (m) (mm) (mm) (mm) (mm)
0.45 4.92 0.18 0.039 0.200 0.22 1.12
0.45 4.96 0.19 0.028 0.210 0.15 1.12
0.45 5.00 0.20 0.068 0.220 0.34 1.12
0.45 5.03 0.21 0.096 0.240 0.46 1.12
1.00 4.92 0.18 0.040 0.135 0.22 0.75
1.00 4.96 0.19 0.038 0.142 0.20 0.75
1.00 5.00 0.20 0.043 0.150 0.22 0.75
1.00 5.03 0.21 0.067 0.157 0.32 0.75
7.00 4.92 0.18 0.099 0.050 0.55 0.28
7.00 4.96 0.19 0.105 0.053 0.55 0.28
7.00 5.00 0.20 0.103 0.056 0.52 0.28
7.00 5.03 0.21 0.100 0.059 0.48 0.28
7.00 5.08 0.22 0.111 0.013 0.50 0.28

Figures83 and84 present the comparison of horizontal PSF sizes for various focusing points for
450 GeV and 7 TeV proton beam energy. In both cases, the source is a quasi point-like one. Thus, the
spot size is minimal when the optics is focused on the real source position: on the undulator at 450 GeV
and on the D3 edge at 7 TeV. In addition, the radiation cone openingui is smaller with high energy
(ui = 0.13 mrad) than with low energy (ui = 2 mrad) and, in agreement with relation (145), the spot
image widening due to defocusing induced by the depth of field over the source lengtha is thus more
sensitive at 450 GeV than at 7 TeV. For the injection energy andui = 2 mrad, the PSF is 3.5 times broader

11Related to the angleui by the Abbe sine condition in airA0B0 sin u0 = AiBi sinui.
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while focusing on the D3 edge (x2 = 5.03 m) than while focusing on the undulator exit (x2 = 4.96 m),
but widening remains acceptable in all the cases when compared with the beam size. On the other hand
at 7 TeV, when the beam size is the smallest, widening is only 12% and remains negligible with respect
to the diffraction effect (at this wavelength, 90% of PSF widening compared to the real beam size).

Fig. 83: Comparison for various focusing points of the PSF horizontal cuts in the detector plane at 450 GeV proton energy

and forλ = 500 nm

Fig. 84: Comparison for various focusing points of the PSF horizontal cuts in the detector plane at 7 TeV proton energy and

for λ = 500 nm

Figure85 presents the same comparison carried out at 1 TeV. At this energy, the effective source length
is a = 2 m. WithpB = 27 m, one finds an optimal focusing distance ofD = 25.8 m, corresponding to
the undulator exit, as can be seen in Table31.

To minimize the depth of field effects throughout the beam energy range, it is necessary to envisage
modifying the focusing point, i.e. a longitudinal movement of the detector of about 5 cm corresponding
to the sweep of the source between the undulator exit and the dipole entrance. However, since the effect

84



Fig. 85: Comparison for various focusing points of the PSF horizontal cuts in the detector plane at 1 TeV proton energy and

for λ = 500 nm

is significant at low energy, where the beam size to be measured is not critical, one can focus the optics
on the D3 edge. The image broadening introduced at 450 GeV compared to the beam size is less than
14%.

Influence of the size of the extraction mirror At 450 GeV, the light cone has an angular opening
larger than the acceptance of the extraction mirror. One thus collects only a part of the angular distribution
and the cut in the angular spectral distribution creates diffraction, that is the effect of a diaphragm. It
is thus the position of the mirror edge that determines the widening of the spot image. However, at this
energy, the proton beam size is sufficiently large that the PSF widening due to the diffraction effect is not
limiting in resolution.

At 7 TeV, on the other hand, the opening of the light cone is smaller than the mirror acceptance
and should thus be the limiting factor. However, the positioning of the mirror edge at 15σH,450 GeV from
the proton beam axis precludes collecting the totality of the dipole edge radiation (Fig.72). Again, the
cut in the energy angular spectral distribution creates diffraction larger than that of the limited opening of
the light cone. To reduce the diffraction effect, a solution is to bring the edge of the mirror closer to the
beam axis in order to collect the full edge radiation. Table32shows that the diffraction effect is strongly
reduced at the collision energy when the edge is at 8σH,7 TeV instead of 15σH,450 GeV from the proton
beam axis. When one brings the edge closer to the mirror, the PSF widens again because the depth of
field effect then increases by accepting the radiation coming from the centre of D3.

Thus, more than the mirror size, the position of the edge of the mirror seems to be a factor influ-
encing the system resolution to a significant degree. However, the optimization of the flux collected at
injection entails taking the largest possible mirror, taking into account the geometrical constraints im-
posed by the dimension of the vacuum chamber. For reasons of economy, if the collected flux is sufficient
at injection energy, it would be better to use a40× 40 mm2 mirror.

Influence of the distanced between the undulator and the dipole As long as one of the two sources
dominates the other, the effect of the distanced is reduced to a defocusing which can be corrected with
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Table 32: Comparison between diffraction spot sizes and the beam size in the image plane for various mirror sizes for

λ = 500 nm. The focusing point is defined by its distance from the focusing mirror

r.m.s. dimensions
Proton x2 Mirror Mirror edge Image plane Object plane
energy dimensions position PSF Beam PSF Beam
(TeV) (m) (mm× mm) (mm) (mm) (mm) (mm)
0.45 25.8 50× 50 15σH,450 GeV 0.036 0.210 0.19 1.12
0.45 25.8 40× 40 15σH,450 GeV 0.028 0.210 0.15 1.12
7.00 25 50× 50 15σH,450 GeV 0.103 0.056 0.51 0.28
7.00 25 40× 40 15σH,450 GeV 0.103 0.056 0.51 0.28
7.00 25 40× 40 15σH,7 TeV 0.083 0.056 0.42 0.28
7.00 25 40× 40 7 σH,450 GeV 0.062 0.056 0.31 0.28

a longitudinally mobile detector. But, in the beam energy range where the two sources are equivalent
from the point of view of emitted flux, the distanced determines the period of the interference rings,
according to what was seen in Section4. These interference rings between the undulator and the dipole
edge have been observed in an SPS experiment [4]. Thus, the larger the distanced, the more numerous
are the rings visible in the central lobe in the plane of the extraction mirror (Figs.86–89).

Fig. 86: Intensity emitted by a filament beam in the plane of

the mirror at 1 TeV ford = 40 cm

Fig. 87: Intensity emitted by a filament beam in the plane

of the mirror at 1 TeV ford = 60 cm

However, the cuts in the angular spectral energy density are appreciably the same and thus the
contributions of the diffraction to the PSF broadening stay at the same order of magnitude over the range
of variations of thed distance from 40 m to 1 m (Figs.90 and91). Above this limit, the defocusing
of one of the two sources becomes too important and we can see different spots in the image plane, as
shown on the cut withd = 3 m (Fig.92).

When the distanced is increased, the maximum collected intensity decreases and the r.m.s. spot
size increases (Fig.92). Above a distanced about 1 m, the two sources become incoherent and the central
peak is divided into two peaks corresponding to the two sources. It would then be better to minimize
the distance between the undulator and the D3 dipole taking into account the layout constraints for the
undulator and the D3 dipole cryostats.
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Fig. 88: Intensity emitted by a filament beam in the plane of

the mirror at 1 TeV ford = 80 cm

Fig. 89: Intensity emitted by a filament beam in the plane of

the mirror at 1 TeV ford = 1 m

Fig. 90: Intensity emitted by a filament beam in the detector

plane at 1 TeV ford = 40 cm Fig. 91: Intensity emitted by a filament beam in the detector

plane at 1 TeV ford = 1 m
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Fig. 92: Comparison for variousd of the PSF horizontal cuts in the detector plane at 7 TeV proton energy and forλ = 500 nm

Influence of the distancel between the extraction mirror and the focusing mirror The extraction
mirror displacement wrt the focusing mirror, for the same mirror dimensions and as long as the extraction
mirror remains the limiting aperture, amounts to modify the angular acceptance of the system. The more
reduced the acceptance, the larger the diffraction effect (Table33).

Table 33: Comparison of the sizes of the PSF horizontal cut and of the beam in the image plane for various distancesl between

the extraction mirror and the focusing mirror, Fig.69, for λ = 500 nm andx2 = 5 m

r.m.s. dimensions
Protons l L Mirror Image plane Object plane
energy dimensions Image Beam Image Beam
(TeV) (m) (m) (mm× mm) (mm) (mm) (mm) (mm)

7 0 27 40× 40 0.110 0.056 0.55 0.28
1 26 40× 40 0.109 0.056 0.54 0.28
2 25 40× 40 0.103 0.056 0.51 0.28

7 0 27 50× 50 0.111 0.056 0.56 0.28
1 26 50× 50 0.106 0.056 0.53 0.28
2 25 50× 50 0.103 0.056 0.52 0.28

7 2 25 46.3× 46.3 0.103 0.056 0.52 0.28

However, because of the decentring of the mirror compared to the symmetry axis of the radiation,
for the same angular acceptance from a purely geometrical point of view, the diffracting effect is different
according tol because the angular distribution of the radiation is not uniform. In the telescope case, a
distancel of the order of 2 m allows to increase the angular acceptance for given mirror sizes while
keeping almost the same illumination on the mirror (Figs.93and94).
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Fig. 93: Cuts in the horizontal plane of the PSF at 7 TeV for variousl and a40× 40 mm2 mirror

Fig. 94: Cuts in the horizontal plane of the PSF at 7 TeV for variousl and a50× 50 mm2 mirror
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7.4.4 Use of a slit in the focal plane

We saw previously that the position of the extraction mirror is very important at the collision energy.
Indeed, if the edge is too far from the beam axis, the mirror intercepts only part of the edge radiation. On
the other hand, if one brings the mirror edge closer to the beam while remaining at 15σH, 7 TeV, then it
is possible to collect all the edge radiation. Diffraction is then supplanted by the depth of field effect. A
solution to this problem is to use a vertical slit in the focal plane of the focusing mirror, as was done in
the LEP monitor [17].

This slit is equivalent to a limitation of the angular acceptance of the optical system independent of
the beam position [33, 34]. By choosing its horizontal and vertical dimensions, as well as its horizontal
position, it is thus possible to select an angular portion of the emitted radiation.

At 7 TeV We will suppose here that the mirror edge is at 15σH, 7 TeV from the proton beam axis. In
this case, the angular intensity distribution collected on the extraction mirror, presented in Fig.95, is
comprised of the edge radiation and of part of the D3 centre radiation. One notices that in the vertical
plane, the only limitation comes from the angular opening of the radiation. The slit in the focal plane,
centred on the position of the edge radiation maximum, makes it possible to angularly select the radiation
coming from the dipole and thus to limit the depth of field effect. Figure96gives the horizontal and ver-
tical PSF r.m.s. size evolution with the horizontal opening of the slit. The angular acceptance limitation

Fig. 95: Intensity collected at 7 TeV on an extraction mirror

of 40 × 40 mm2 at 25 m whose edge is at 15σH, 7 TeV from

the proton beam axis, forλ = 200 nm. The beam axis is at

−25 mm taking into account angular separation between the

optical axis [in (0,0) on the figure] and the beam direction on

the outlet side of the D3 magnet.
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Fig. 96: Horizontal and vertical PSF r.m.s. sizes evolution

at 7 TeV according to the horizontal opening of the slit

in the horizontal plane amounts to reducing the observed length of the source. The PSF r.m.s. dimension
decreases with the horizontal opening of the slit as long as the slit is sufficiently open to collect the whole
radiation coming from the edge. Then, when it becomes too narrow and cuts into the angular distribution
of the edge radiation, diffraction again becomes more significant and the PSF widens.

In the vertical plane, the effect is different. The limitation of the horizontal angular acceptance
reduces the depth of field without introducing a limitation in the vertical plane. However, the effect is
very small in this case because the diffraction due to the small angular opening remains dominant and
the r.m.s. size of the PSF in the vertical plane remains almost constant.

Figure97 shows the PSF and its cut in the horizontal plane for a proton energy of 7 TeV and
λ = 200 nm. The angular filtering by the slit not only improves the resolution, but it also improves the
quality of the image (cf. Fig.74).
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Fig. 97: PSF and cut in the horizontal plane at 7 TeV, forλ = 200 nm with a vertical slit in the focal plane of dimensions

(H,V) 3.7 mm by 10 mm centred on the direction of the entrance edge of the dipole and of the undulator

At 1 TeV We saw previously that at 1 TeV the emitted angular spectral energy density is cut in an
asymmetric way by the extraction mirror (Fig.75) giving an image with two spots (Fig.76). For the
same extraction mirror, the slit in the focal plane provides again angular filtering of the contribution of
the intercepted part of the ring corresponding to theλ = 500 nm wavelength at the origin of the secondary
lobe (Fig.98). The image quality is thus improved to a significant degree with a slit (or more exactly a

Fig. 98: Intensity collected on a 40×40 mm2 mirror at an energy of 1 TeV

rectangular diaphragm) in the focal plane, making it possible to limit the angular acceptance (cf. Figs.99
and100).

7.5 Conclusions

In order to optimize the resolution at collision energy, it is necessary to use the smallest possible wave-
length for the optical system and the chosen synchrotron radiation source. This wavelength could be
200 nm when taking into account the existing components. On the other hand, for lower energies, it is
possible to work with more traditional wavelengths, near to 500 nm. The procedure suggested is thus to
use a relatively broad wavelength range around 500 nm at low energies, to maximize the collected flux,
then to use a narrow spectral range near to 200 nm at high energy, when there is enough light intensity.

To minimize the depth of field effect by keeping a fixed image point, it is then necessary to focus
the optics on the D3 dipole edge. An additional improvement can be made for low energies by choosing
to focus the optics on the undulator exit up to 1 TeV, afterwards only on the edge of the dipole. Thus, to
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Fig. 99: PSF and cut in the horizontal plane at 1 TeV, forλ = 500 nm with a50× 50 mm2 mirror

Fig. 100: PSF and cut in the horizontal plane at 1 TeV, forλ = 500 nm with the50 × 50 mm2 mirror and a rectangular

diaphragm (H,V) 6 mm× 7 mm in the focal plane
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limit the longitudinal movement of the detector while improving the quality of the image, it is necessary
to reduce the distance between the undulator and the dipole. A compromise between the manufacturing
cost and the optical performance leads tod = 80 cm.

Finally, the size of the extraction mirror is not a limit for the resolution, but also for the collected
flux. On the other hand, the position of the edge of this mirror compared to the undulator and D3 entrance
axis is a determining factor for the prcision of the instrument, in particular at high energy. It is necessary
to come as close as possible to the beam axis. A mobile extraction mirror thus makes it possible to
remain at 15σH for a given energy while coming closer to the beam with the rise in the proton beam
energy.

Table34 summarizes the performance of the optical system with the procedure described previ-
ously. The proton beam sizes (σO,H or V ) come from Table2, the PSF r.m.s. sizes (σPSF,H or V ) are
obtained by starting from a numerical Gaussian fit, carried out with the SRW code, and are brought back
to the object plane to be independent of the optical magnificationG. Image sizes (σI,H or V ) are obtained
starting from Eq. (116) by quadratically adding the r.m.s. size of the proton distribution and of the PSF.
Finally, the last two columns give the widening, expressed in per cent of the spot image compared to the
real dimensions of the beam, due to the diffraction and the depth of field effects:

δσH or V

σH or V
=
σI,H or V − σO,H or V

σO,H or V
. (147)

Table 34: Performance of a monitor using the superconducting undulator and the D3 dipole as a synchrotron radiation source

Size
Proton Proton beam PSF Image
energy σO,H σO,V σPSF,H σPSF,V σI,H σI,V

δσH
σH

δσV
σV

(TeV) (µm) (µm) (µm) (µm) (µm) (µm) (%) (%)
0.45 1120 1480 159 141 1131 1487 1.0 0.5
1.00 750 990 198 120 776 997 3.4 0.7
7.00 280 380 156 194 320 427 14.5 12.3

In all cases, the widening of the image spot due to the diffraction and depth of field effects remains
lower than 15% of the size of the beam to be measured (Table34). It is thus sufficiently small to obtain the
real size of the beam by quadratic subtraction. In addition, this widening is given mainly by the angular
distribution of the radiation, and is therefore stable for a given energy. Moreover, it is independent of the
beam intensity. The corrections to be introduced can thus be calculated and calibrated with the help of
the wire scanners at low intensity [8].

It should be noted that the resolution can be increased by modifying the local optical functions
of the LHC machine (βH,V function withσH,V =

√
(βH,V εH,V )): for the same widening, the beam to

be measured is then larger. The possibility of using the same telescope on the D2 dipole, in a point of
the LHC where the optics of the machine is modified in collision mode, can become interesting at high
energy.

8 CONCLUSION

The goal of this work subject of a thesis [48] was the design of a monitor using the synchrotron radiation
to measure the proton beam profiles over the whole LHC energy range (450 GeV–7 TeV). Preliminary
studies had led to a pre-selection of possible sources and had resulted in considering the use of a LHC
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dipole (a dispersion suppressor dipole or a separation dipole of the D2 type) in IR5 from 2 TeV up to
7 TeV and the insertion at another location of a dedicated set-up, like a short dipole, from the injection up
to 2 TeV. The analytical and numerical studies realized within the framework of this work have confirmed
the weaknesses of this solution for low energies (below 2 TeV). A modification of the LHC layout in IP4
followed by a comparative study of the performance of several magnetic configurations resulted then in
the choice of a unique source dedicated to profile measurement: a superconducting undulator with a 5 T
peak magnetic field combined with a dipole edge effect.

After a presentation of the LHC machine and of the working hypotheses for the monitor in Sec-
tion 2, the main results of the synchrotron radiation theory are presented in Section3 introducing the
equations used for both the analytical calculation and the numerical tools. Section4 explains the various
analytical models at our disposal or developed for the calculation of the angular spectral energy densities
of various types of sources. Two simplifying models are explained: the study of interferences between
two sources and the low-frequency approximation of the angular spectral energy density allowing ana-
lytically calculable integrals with series expansions up to different orders. Section5 presents the Zgoubi
program, used to simulate the synchrotron radiation emitted by any magnetic source, in particular when
no known model is applicable. Particular care was taken to cross-check as often as possible the results
with the analytical formulas at disposal.

The last two Sections,6 and7 detail the results of the work completed. First of all, a thorough
comparison of the performance of the various sources studied was carried out in order to justify the fi-
nal choice. The principal configurations considered are the D2 dipole, a superconducting miniwiggler
creating a self-compensated orbit bump, a room-temperature undulator, and, finally, a superconducting
undulator. The comparison of fluxes is largely in favour of the combination of a superconducting undu-
lator with a dipole edge effect. Section7 gives the study of the optical performance of the monitor, based
on simulations with the SRW code.

The system finally selected consists of a superconducting undulator with two 28 cm long periods,
with a 5 T peak magnetic field peak, combined with the edge effect of a 9.45 m long dipole with a
magnetic field of 3.9 T at 7 TeV. The performance in terms of intensity collected as well as in terms of
precision of the optics should satisfy the requirements of the users, including with a pilot bunch and in
turn-by-turn modes.

As an extension to the work already completed, several points can be still developed. First of all,
the study of the optical performance, based on simulations with SRW, was carried out with ideal compo-
nents. The imperfections of these components thus remain to be introduced for more rigour. Commercial
codes such as Zemax have complete catalogues to study the telescope with real components in a detailed
way. However, they generally do not make it possible to simulate the synchrotron radiation sources. At
the other end of the chain, Zgoubi simulates the source precisely, but not the optical propagation. An
interesting development could thus be brought to the Zgoubi code by introducing the optical calculation
of the propagation of synchrotron radiation based on the operator method. The ingredients necessary
(methodology, equations and electric fields) have been given and the largest part of the work would
consist in developing and testing the code.

Another point to evaluate is the use of the SR monitor with ions beam. In addition, the evaluation
of the energy collected by the telescope was calculated starting from simulations of undulator magnetic
field maps. When the undulator prototype will be built, one will undoubtedly need to perform the simu-
lations with the measured field maps.
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A APPENDIX LOW-FREQUENCY DERIVATION UP TO ORDER 2

φ

αρ

φ

protons

Observer

= 0

L

 t = 0

Fig. A.1: Definition of the reference frame used for calculation

If the observation frequencyω is such thatω∆t¿ 1, the Fourier transform of the electric field is
written:

Ẽ(φ, ψ, ω) =
1√
2π

∫ +∞

−∞
E(φ, ψ, t)e−iωtdt (A.1)

'
ω¿ωl

1√
2π

∫

∆t
E(φ, ψ, t)(1− iωt− (ωt)2

2
+ i

(ωt)3

6
+ ...+

(iωt)n

n!
) dt .

The calculation ofẼ(φ, ψ, ω) is reduced thus to integrals calculations of the form
∫
E(t)tndt with n an

integer.

A.1 Calculation of order 0: R0 =
∫ +∞
−∞ E(φ, ψ, t)dt

According to Eqs. (15)–(16) with ω0 = c
ρ , theσ component of the electric field is defined by:

t =
1 + γ2(φ2 + ψ2)

2γ2
t′ − ω0φt

′2

2
+
ω2

0

6
t′3 (A.2)

dt

dt′
=

1 + γ2ψ2 + γ2(ω0t
′ − φ)2

2γ2

Eσ(t′) =
qω0γ

4

πε0cr

(1 + γ2ψ2)− γ2(ω0t
′ − φ)2

(1 + γ2ψ2 + γ2(ω0t′ − φ)2)3
.

By definingP (t′) = (1 + γ2 ψ2) − γ2(ω0t′ − φ)2

(1 + γ2ψ2 + γ2(ω0t′ − φ)2)2
,R0 is rewritten in the form:

R0 =
qω0γ

2

2πε0cr

∫ L
c

0
P (t′)dt′ . (A.3)

By carrying out the change of variableu = γ(ω0t′ − φ)√
1 + γ2ψ2

, the calculation ofP1(t′) =
∫
P (t′)dt′, a

primitive form ofP (t′), is written:

P1(t′) =
∫
P (t′)dt′ =

1
1 + γ2ψ2

∫
1− u2

(1 + u2)2

√
1 + γ2ψ2

γω0
du (A.4)

=
1

γω0

√
1 + γ2ψ2

u

1 + u2
(A.5)

P1(t′) =
ω0t

′ − φ

ω0 (1 + γ2ψ2 + γ2(ω0t′ − φ)2)
. (A.6)
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Whence the following expression ofR0, withK = αγ/2 andα = L/ρ:

R0 =
qγ

2πε0cr

[
2K − γφ

1 + γ2ψ2 + (2K − φ)2
+

γφ

1 + γ2(ψ2 + φ2)

]
. (A.7)

By carrying out the change of orientation of the reference frameφ ⇒ φ + α/2 (Fig. A.1) one finds the
expression (48) given in Section4.

A.2 Calculation of order 1: R1 =
∫ +∞
−∞ E(φ, ψ, t)t dt

se beam profile measurements, the first stage is to choose the best possible source in terms of flux co

In the same way,R1 is written according tot′ for aL long magnet:

R1 =
qω0γ

2

2πε0cr

∫ L
c

0

(1 + γ2ψ2)− γ2(ω0t
′ − φ)2

(1 + γ2ψ2 + γ2(ω0t′ − φ)2)2(
1 + γ2(φ2 + ψ2)

2γ2
t′ − ω0φt

′2

2
+
ω2

0t
′3

6

)
dt′ . (A.8)

By definingP (t′) = (1 + γ2ψ2) − γ2(ω0t′ − φ)2

(1 + γ2ψ2 + γ2(ω0t′ − φ)2)2
, one reduces the problem to calculations of several inte-

grals of theSn type:

R1 =
qω0γ

2

2πε0cr




1 + γ2(φ2 + ψ2)
2γ2

∫ L
c

0

P (t′)t′dt′

︸ ︷︷ ︸
S1

−ω0φ

2

∫ L
c

0

P (t′)t′2dt′

︸ ︷︷ ︸
S2

+
ω2

0

6

∫ L
c

0

P (t′)t′3dt′

︸ ︷︷ ︸
S3


 . (A.9)

Calculation of Sn =
∫ L

c
0 P (t′)t′ndt′ The calculation ofR1 is reduced to the calculation of three

integralsSn =
∫ L

c
0 P (t′)t′ndt′. By carrying out several integrations by parts, one notices that these three

integrals are expressed starting from the successive primitives ofP (t′). For example, the calculation of
S3 by three successive integrations by parts integratingP (t′) and by derivingt′3 leads to:

S3 =
[
P1(t′)

]L/c
0

− 3
[
P2(t′)

]L/c
0

+ 6
[
P3(t′)

]L/c
0

− 6
[
P4(t′)

]L/c
0

(A.10)

with Pn(t′) =
∫
Pn−1(t′)dt′ primitive of Pn−1(t′). By introducing the values ofPn(L/c) andPn(0)

into the expressions of type (A.11), one obtains the expressions ofSn:

S3 = P1(L/c)
L3

c3
− 3P2(L/c)

L2

c2
+ 6P3(L/c)

L

c
− 6 (P4(L/c)− P4(0)) (A.11)

S2 = P1(L/c)
L2

c2
− 2P2(L/c)

L

c
+ 2 (P3(L/c)− P3(0)) (A.12)

S1 = P1(L/c)
L

c
− 2 (P2(L/c)− P2(0)) . (A.13)

Calculation of Pn(t′) =
∫
Pn−1(t′)dt′ The calculation ofP1(t′) =

∫
P (t′)dt′ was already carried out

for calculation with order 0:

P1(t′) =
ω0t

′ − φ

ω0 (1 + γ2ψ2 + γ2(ω0t′ − φ)2)
. (A.14)

96



With the same change of variableu = γ(ω0t′−φ)√
1+γ2ψ2

, the following primitives give:

P2(t′) =
1

2(γω0)2
ln

(
1 +

γ2(ω0t
′ − φ)2

1 + γ2ψ2

)
(A.15)

P3(t′) =

√
1 + γ2ψ2

(γω0)3

[
Arctan

(
γ(ω0t

′ − φ)√
1 + γ2ψ2

)
− γ(ω0t

′ − φ)√
1 + γ2ψ2

(A.16)

+
γ(ω0t

′ − φ)

2
√

1 + γ2ψ2
ln

(
1 +

γ2(ω0t
′ − φ)2

1 + γ2ψ2

)]

P4(t′) =
1 + γ2ψ2

(γω0)4

[
−3γ2(ω0t

′ − φ)2

4(1 + γ2ψ2)
− 1

4
ln

(
1 +

γ2(ω0t
′ − φ)2

1 + γ2ψ2

)
(A.17)

+
γ(ω0t

′ − φ)√
1 + γ2ψ2

Arctan
γ(ω0t

′ − φ)√
1 + γ2ψ2

+
γ2(ω0t

′ − φ)2

4(1 + γ2ψ2)
ln

(
1 +

γ2(ω0t
′ − φ)2

1 + γ2ψ2

)]
.

Coming back to the expression ofR1 All the ingredients are calculated, it only remains to go up the
chain untilR1. First of all, by introducing the valuesPn(L/c) andPn(0) calculated from Eq. (A.15) in
the expressions ofSn [Eq. (A.11)], then the expressions ofSn for n = 1 to 3 in expression (A.9), one
finally obtains after simplification of Eq. (57):

R1 =
∫
E(φ, ψ, t) t dt (A.18)

=
qγ2αρ

4πε0c2r

[(
1 + γ2(φ2 + ψ2)

γ2
− αφ+

α2

3

)
α− φ

1 + γ2((α− φ2) + ψ2)
+

2φ− α

2γ2

]
.

A.3 Calculation of order 2: R2 =
∫ +∞
−∞ E(φ, ψ, t)t2dt

Calculation with order 2 is in fact an approximation with order 3 int′. Indeed, the development oft2 as
a function oft′ starting from Eq. (16) gives by keeping only the terms of order 3 int′:

t2 ' 1 + γ2(φ2 + ψ2)
2γ2

[
1 + γ2(φ2 + ψ2)

2γ2
t′2 − ω0φt

′3
]
. (A.19)

With the previous definition of P(t′),R2 can be written in the form:

R2 =
1 + γ2(φ2 + ψ2)

2γ2

qω0γ
2

2πε0cr




1 + γ2(φ2 + ψ2)
2γ2

∫ L/c

0

P (t′)t′2dt′

︸ ︷︷ ︸
S2

−ω0φ

∫ L/c

0

P (t′)t′3dt′

︸ ︷︷ ︸
S3


 . (A.20)

One finds the same integrals as with order 1. In the same way, one thus obtains expression (58)
with α = L/ρ:

∫
E(φ, ψ, t) t2 dt =

qρ2(1 + γ2(φ2 + ψ2))
4πε0c3rγ2

[(
1 + γ2(φ2 + ψ2)

2γ2
− αφ

)
γ2α2(α− φ)

1 + γ2((α− φ)2 + ψ2)

− α

(
1 + γ2(ψ2 − 2φ2)

γ2
− 3

2
αφ

)
− 2φ(1 + γ2(ψ2 − φ2/2))

γ2
ln

1 + γ2((α− φ)2 + ψ2)
1 + γ2φ2 + γ2ψ2

+

√
1 + γ2ψ2(1 + γ2(ψ2 − 5φ2))

γ3

(
Arctan

γ(α− φ)√
1 + γ2ψ2

− Arctan
−γφ√

1 + γ2ψ2

)]
. (A.21)
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B APPENDIX CALCULATION OF THE PHASE DELAY

αρ

φd

φ

Observer

t = 0

= 0

L

φ

> 0

L

Fig. B.1: Definition of the reference frame used for the calculation of the crossing time of the magnets

Crossing time of a dipole Equation (16) gives the relation between particle time and observer time.

2γ2t =
[
1 + 2γ2(φ2 + ψ2)

]
t′ − γ2φ

c

ρ
t′2 +

γ2c2

3ρ2
t′3 . (B.1)

DefiningT+ as the crossing time of theL = ρα long dipole in observer time, Eq. (16) leads to:

2γ2T+ =
[
1 + 2γ2(φ2 + ψ2)

] αρ
c
− γ2φ

c

ρ

(αρ
c

)2
+
γ2c2

3ρ2

(αρ
c

)3

T+ =
αρ

2γ2c

[
1 + γ2(φ2 + ψ2)− γ2φα+

α2γ2

3

]
. (B.2)

Crossing time of a straight section In the same way, definingTd as the crossing time of ad long
straight section corresponding to an infinite curvatureρ, seen under the angleφ (Fig. B.1):

Td =
d

2γ2c

(
1 + γ2(φ2 + ψ2)

)
. (B.3)

Example of application Let us consider two magnets of the same lengthL, same radius of curvature
ρ, separated by the distanced (Fig. B.1). The two magnets are in a configuration of opposite magnetic
field so that the directions of entry and exit of the beam are the same. The direction of observation
corresponds to an angleφ. The crossing timeT of the whole magnetic structure is:

T = T+ + Td + T− (B.4)

with T+ andT− being the crossing time of the first and the second magnet, respectively, andTd the
crossing time of the straight section.T+ is given by Eq. (B.2) andTd by Eq. (B.3). For the second
dipole, by symmetry, the problem comes back to that of the first dipole with a radius of curvature−ρ,
a deflection angle−α, and a direction of observation−φ. ConsequentlyT− = T+. Finally, the total
crossing time of the structure in observer time is written:

T =
αρ

γ2c

[
1 + γ2(φ2 + ψ2)− γ2φα+

α2γ2

3

]
+

d

2γ2c

[
1 + γ2((φ− α)2 + ψ2)

]
. (B.5)
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C APPENDIX MAGNETIC SIMULATIONS OF THE UNDULATOR

The undulator is currently under construction. A model was designed [38] and Figs.C.1–C.4 give the
performances obtained.
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Fig. C.1: TheBY component (transverse vertical) of the magnetic field in the horizontal median plane of the undulator
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D APPENDIX OPTICAL EQUIVALENT TO THE TELESCOPE
To confirm the equivalence between the telescope installed in LEP (BEUV) and the diaphragmed lens,
from the optical point of view, we have compared the MTF and the cut of the PSF in both cases (Figs.D.1
andD.2, with the help of the Zemax program [49].

Fig. D.1: Optical data, cut of the PSF, MTF and diffracted image with the BEUV telescope

Fig. D.2: Optical data, cut of the PSF, MTF and diffracted image with the equivalent diaphragmed lens
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[29] L. Ponce and F. Ḿeot, Undulator radiation simulation tool in view of proton beam diagnostics in
LHC, SL-Note-2001-038 BI and DSM/DAPNIA/SEA-01-13 (2001).
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