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Abstract

An undulator is installed in IR4 to produce synchrotron radiation. The pertur-
bation it introduces in LHC is examined. It has little effecton the closed orbit, a
negligible effect on the tune. Its intrinsic non-linearities are negligible (analysis
by ray tracing). Specifications on the multipole content of its integrated field are
given to produce no effect on the dynamic aperture.
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Figure 1: Schematic view of the undulator

1 Introduction

The determination of the beam size in LHC can be done with several devices [1]. One
of them is based on the detection of the synchrotron radiation emitted by a special
undulator [2] consisting of four alternating magnetic poles (see fig. 1) housed in IR4 as
shown on figure 2.

The integral of the magnetic field on the axis is zero. The fielddescription is ex-
amined in section 2. A beam passing though this device does not get any deflection
but a displacement perpendicular to the entrance trajectory. The associated closed orbit
distortion is evaluated in Section 3. The effect on the tunesis evaluated in Section 4.

It is worth evaluating the importance of this wiggler with simple comparisons.
In synchrotron light machines, wigglers are introduced which perturb significantly
the linear optics (see for instance [3] in which the lattice is encompasses matching
quadrupoles to accommodate the wiggler). It is straightforward to test the importance
of such a perturbation with a simple model with hard edge dipoles. It appears that
the LHC wiggler is less important than that described in [3] by about four orders of
magnitude, which is confirmed by the simple model. The non-linear effect are also
reduced accordingly, they are associated with the longitudinal variation of the field and
are examined in Sections 5. Conventional 2D specifications on multipole components
are relevant and are given in Section 6.

2 Description of the undulator field.

The variation of the vertical magnetic field on the axis of theundulator is shown in
Figure 3. The integrated magnetic field is zero on the axis.

For ray tracing the model of the field on the axis as given on figure 3, together with
the assumption of invariance by x-translation (transverseto the beam), is sufficient to
compute the value of the field off-axis by expanding it in Taylor’s series and putting
them in Maxwell’s equations.

For the MADX computation, the undulator effect can be modeled by describing the
undulator with a sequence of dipoles. Actually a sequence ofclosed orbit correctors is
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40 mm

56 cm

4.5 T @ 7 TeV

9.45 m

10 m

13 mm0.55 mrad
0.85 mrad

1.6 mrad

85 cm

Location : IR4

proton

D3

15σ

Undulator

Figure 2: Installation of the undulator close to the dipole D3 in IR4. The synchrotron
radiation is observed on a screen 10m from D3 while the protonbeam is deflected by
D3.

used.
The simplest model consists of four dipoles of lengthl = 0.14m. Each dipole has

a constant magnetic fieldB given byB = 2B̂/π, so that the integrated field of each
piece is equal to that of half an oscillation of the field shownon Figure 3 (note that the
small oscillations at both ends have been neglected). This model has the advantage of
a simple analytic treatment.

A more accurate model has been constructed to reproduce the angles and displace-
ment obtained by ray tracing. Each undulation of the field is described by a sequence
of six dipoles of length ld=0.02m with fields equal respectively to B̂sin(π dl / 0.14),
B̂sin(2π dl / 0.14) andB̂sin(3π dl / 0.14). With this model it is possible to reproduce
the trajectory shown on figure 4.

3 Effect of the dipole component.

Although the undulator gives no kick, it produces a transverse displacement of the par-
ticle trajectories. The integration of the trajectories (ray tracing) by means of the code
ZGOUBI [4] produces a displacement shown on figure 4. The overall displacement is
35µm.

The four dipole model overestimates the displacement whichis four times the dis-
placement due to a single dipole, i.e. 65µm (the field overshoot at the end has been
neglected).

The maximum closed orbit distortion obtained by ray tracingis 30µm. The maxi-
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Figure 3: Longitudinal variation of the vertical magnetic field in the undulator (full
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mum distortionx(s) at positions, calculated for the four dipole model in appendix I,
is given by :

x̂(s) =
θl

2 sinπQ

√

β(s)

β

whereθ is the kick angle associated with a single dipole, the unlabeled β being an
average over the undulator, i.e. about 105m. With the LHC fractional part of the tune
of 0.28 and for a maximum value of theβ-function in the arcs of 200m, the maximum
value ofx(s) in the arcs is 0.052mm. The calculation with MAD for the same model
gives the same number.

It is possible to cancel the closed orbit distortion in the arcs, by localizing the closed
orbit distortion in the undulator region by means of a local closed orbit bump. This is
shown in Figure 5. The horizontal closed orbit correctors used are close to Q5 on the
left, Q6 and Q8 on the right. The respective kick angles are 0.1, -0.007 and -0.005µrad,
i.e. smaller than 0.2% of the nominal strength.

The actual undulator might have a non-zero integrated field.We express the asso-
ciated kick as a fractionη of the kick of a single dipole in the four dipole model. The
associated maximum closed orbit distortionx̂e(s) is given by :

x̂e(s) =
ηθ

2 sinπQ

√

β(s)β = x̂(s)
ηβ

l

We have seen that the maximum value ofx̂(s) is small and that the corrector strength
to cancel it is very small. Therefore a value ofx̂e(s) of the same order aŝx(s) is
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Figure 4: Trajectory of a 450GeV proton starting on the undulator axis obtained by
ray tracing. The curve with the larger amplitude of the oscillations corresponds to a
starting point with a vertical offset of 3cm.

acceptable, i.e. an error of the integrated field of the undulator of the order ofBl2/β =
9 · 10−4Tm, i.e. 9Gauss.m is quite acceptable. An error 10 times as large would take
less than 2% of the maximum corrector strength, i.e. it is also acceptable. An error 100
times as large is not acceptable as it consumes too much of thecorrector strength and
reduces the aperture by 2mm at a critical point, opening a risk of systematic quench of
D3.

4 Quadrupole effects.

If a particle trajectory passes with a non-zero angleθ, through a place where the vertical
magnetic field changes abruptly, this produces a focusing effect in the vertical plane,
as well as non-linear components. The focusing strength is given by2θB/(Bρ), where
(Bρ) is the magnetic rigidity of the particles. We can evaluate anorder of magnitude
of the effect by considering a trajectory which enters the undulator perpendicular to the
first dipole. In this case there are two places where the trajectory crosses dipole edges
with opposite field changes and opposite angles. The associated vertical tune-shift
∆Qy is given by :

∆Qy =
βθ

π

B

(Bρ) .

Its numerical value is 0.0001. The calculation done with both MAD and ray tracing (see
section 5) give smaller results as the actual angles are not those quoted above. In any
case the tune-shift due to the undulator is totally negligible, as well as the associated
β-beating.
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Figure 5: localization of the closed orbit distortion due tothe undulator by means of
three closed orbit correctors (strength smaller than 0.1µrad). The displacement of the
trajectory due to the undulator is clearly seen on the figure center.

The quadrupole effect has been analyzed by means of ray tracing. The integration
of trajectories has been done over the whole LHC. Only chromaticity sextupoles have
been included in order to compare the multipole effects due to the 3D field of the undu-
lator with those of these sextupoles. A comparison between the various computations
is given in table 1.

Table 1:Optical parameters in LHC, with or without fringe fields (FF), undulator. The anhar-
momicities are evaluated from tracking with a 13σ amplitude.

No FF, undulator off FF + undulator off FF+undulator on
MAD ray-tracing

Frac.Qx / Qy 0.2800 / 0.3100 0.2800 / 0.3100 0.2798 / 0.3098 0.2798 / 0.3098
Q′

x / Q′

y 1.978 / 1.751 1.951 / 1.812 1.952 / 1.816 1.953 / 1.816
Q′′

x / Q′′

y 157 / 78 137 / -8 137 / 10

π∆Qx

∆ǫx
/π∆Qx

∆ǫy
/

π∆Qy

∆ǫy
− / -1540 / 512 423 / -1670 / 590 470 / -1630 / 630

5 Intrinsic multipole effects.

As the field of the undulator is essentially three dimensional, the description of the mul-
tipole errors used for the usual magnets of circular machines is not relevant a priori.
Actually it can be shown that the usual description is nevertheless valid for the inte-
grated transverse field components (see appendix II). Tolerances for these components
are established in section 6.
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The multipole effects associated with the longitudinal variation of the vertical mag-
netic field are addressed in appendix III. It is shown that thenon-linearities are expected
to have an effect only in the vertical plane.

From trajectory tracking a little above the LHC dynamic aperture at injection, i.e.
at 13σ, the three anharmonicities have been evaluated. They are listed in table 1.

Trajectories starting with a radial amplitude of30σ in both planes have been tracked
over 5104 turns using ray tracing. The phase space plots associated with the machine
and its chromaticity sextupoles are shown on figure 6. The same plots obtained by
adding the undulator are shown on figure 7. The difference between the plots is
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Figure 6:Initial amplitudes of 20, 25 and 30σ, three initial angles 15◦ 45◦ and 75◦ in the{x,y}
plane,5 10

4 turns. Fringe fields set in all dipoles and quadrupoles, chromaticity sextupoles on,
no undulator.
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Figure 7:Initial amplitudes of 20, 25 and 30σ, , three initial angles 15◦ 45◦ and 75◦ in the{x,y}
plane,5 10

4 turns. Fringe fields set in all dipoles and quadrupoles, chromaticity sextupoles on,
undulator excited at full field.

indistinguishable with the exception of two trajectories with slightly different tunes in
the vertical plane. The detunings obtained at 30σ are very close to each other, they are
listed in table 2. This shows that the intrinsic non-linearities due to the undulator are
very small compared with those associated with the chromaticity sextupoles. As the
latter are negligible, the intrinsic non-linearities associated with the undulator are even
more negligible.

As the non-linearities are negligible and as dispersion is zero at the location of the
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undulator, no effect on the non-linear chromaticity is expected. This has been checked
by ray tracing and Fourier analysis as for the case of large betatron amplitudes. The
differences in tunes for a relative momentum deviation of±0.003 is in the range of
some10−5 which is totally negligible.

Angle (deg.)
Nσ 15◦ 45◦ 75◦

0 0.279815 / 0.309758 0.279815 / 0.309759 0.279815 / 0.309759
1 0.279795 / 0.309720 0.279789 / 0.309726 0.279784 / 0.309734
5 0.279848 / 0.309489 0.279708 / 0.309648 0.279505 / 0.309829
9 0.280047 / 0.308760 0.279386 / 0.309438 0.278794 / 0.310071
13 0.280239 / 0.3077438 0.278961 / 0.309086 0.277731 / 0.310363
20 0.280744 / 0.305190 0.27779 / 0.308167 0.274812 / 0.311183
25 0.281192 / 0.302753 0.27658 / 0.307286 0.271918 / 0.312057
30 0.281651 / 0.299863 0.27498 / 0.306312 0.268394 / 0.313069

15◦ 45◦ 75◦

0 0.279796 / 0.309783 0.279796 / 0.309783 0.279796 / 0.309783
1 0.279798 / 0.309767 0.279792 / 0.309775 0.279787 / 0.309784
5 0.279853 / 0.309537 0.279711 / 0.309683 0.279513 / 0.309914
9 0.280056 / 0.308807 0.279392 / 0.309498 0.278798 / 0.310108
13 0.280244 / 0.307781 0.278971 / 0.309120 0.277735 / 0.310444
20 0.280749 / 0.305218 0.277794 / 0.308199 0.274818 / 0.311232
25 0.281198 / 0.302779 0.276596 / 0.307332 0.271924 / 0.312097
30 0.281658 / 0.299890 0.274994 / 0.306361 0.268404 / 0.313113

Table 2: TunesQx/Qy vsNσ and angle. (Fourier expansion, 1000 turns). Upper table
: machine as for fig. 6, lower table : machine as for fig. 7

6 Multipole effects due to imperfections

Because of mechanical imperfections the integrated field ofthe undulator may not be
zero. In particular the integral may vary with the distance to the axis. This integral
can be described with a polynomial of the horizontal position. Because of the small
variation of the phase advance in the undulator and as the intrinsic non-linearities have
been shown to be negligible, it is legitimate to identify this polynomial with that of a
standard description of dipole errors in LHC. This is shown in appendix II.

If the associated multipole components have the same valuesas the random mul-
tipole components in a single main dipole, they will have no measurable effect on the
dynamic aperture. The integrated components are given as a function of the dipole field
errorsbn by the formula :

l ∂n−1B/∂xn−1 =
(n− 1)! bn ldip

ρRn−1
(Bρ) = 7.7 10−4 (n− 1)!

0.017n−1
bn,
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whereR is the reference radius (0.017m) andρ the radius of curvature in the dipoles.
The numerical formula gives the integrated components in Tm2−n, bn being given in
units of10−4. The values of the integrated components are given in Table 3. As they
are associated with the r.m.s. dipole field errors, errors larger by a factor of 3 are
acceptable.

It is worth comparing these values to reference values at injection, like the sextupole
component of the chromaticity sextupoles of 45Tm−1 or the octupole component in the
Landau octupoles of 60000Tm−2.

n 3 4 5 6 7 8 9 10
bn,d 1.47 0.51 0.43 0.09 0.22 0.04 0.07 0.01

l
∂n−1By

∂xn−1 /Tm−n+2 7.8 480 5.410
4 5.810

6 5 10
9 3.810

11 3.110
14 2.410

16

an,d 0.48 0.51 0.34 0.17 0.08 0.08 0.12 0.01

l ∂n−1Bx

∂xn−1 /Tm−n+2 2.5 480 4.310
4 8.910

6 1.810
9 7.610

11 5.310
14 2.410

16

Table 3: Possible multipole errors in the undulator at a radius of 17 mm. The measure-
ment is done with a rotating coil extending over the whole magnet. Errors larger by
a factor three, i.e. equal to the maximum error set in tracking, are acceptable.

7 Conclusion

The introduction of the undulator to measure the LHC beam size does not have any
consequence from the point of view of single particle effects. The closed orbit distor-
tion has a maximum amplitude smaller than 0.04mm. It can be easily corrected with
the closed orbit correctors. The tune shifts are completelynegligible. The intrinsic
non-linearities are probably negligible because the phaseadvance across the undulator
is small. The field errors computed from a polynomial fit of thevariation of the vertical
field along the x axis should be smaller than those given in Table 3 above in order to
have no effect on the dynamic aperture. The integrated field could differ from zero by
90Gauss.m at most.
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[4] F. Méot and S. Valéro, Zgoubi user’s guide, Report CEA/DSM/DAPNIA/SEA-97-
13, Saclay, October 1997.

[5] C. Vollinger, private communication (June 2003, LHC days).

9



Appendix I

Closed orbit distortion due to two close opposite dipoles

The centers of the two dipoles are labeled 1 and 2. The closed orbit distortionx(s)
at the positions in the machine, associated with a deflectionθ in dipole 1 and−θ in
dipole 2 is given by :

x(s) =
θ
√

β(s)

2 sinπQ

[

√

β1 cos(ψ(s) + µ1) −
√

β2 cos(ψ(s) + µ2)
]

This expression can be expanded in terms ofcos(ψ(s)+µ1) andsin(ψ(s)+µ1). From
the coefficients of these two members, the maximum amplitudex̂(s) of the distortion
in the machine is :

x̂(s) =
θ
√

β(s)

2 sinπQ

√

β1 + β2 − 2
√

β1β2 cos(µ2 − µ1)

For the case where the length of the dipoles (0.14m in our case) is very small com-
pared withβ1 andβ2 (105m in our case), the phase advance can be approximated with
l/
√
β1β2 andβ2 ≃ β1 − 2α1l. Introducing these expressions in the above equation,

we obtain eventually :

x̂(s) =
θl

2 sinπQ

√

β(s)

β1

(

1 +
α1l

β1

)

As α1=0.11 in our case,̂x(s) is very well approximated with :

x̂(s) = x̂(s) =
θl

2 sinπQ

√

β(s)

β1

For a value ofβ(s) of 200m and a field of 2.5T in the dipoles, the value ofx̂(s) is
0.027mm at 450GeV.

For our case, there are two sets of two opposite dipoles whichhave an additive
effect if the phase advance between both is neglected, so theeventual maximum dis-
tortion in the arcs will be 0.054mm.
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Appendix II

2D Maxwell equations

We consider an isolated magnet of finite length and the Maxwell equations in free
space to compute the magnetic field around its axis (there is no current). The magnet
axis is thes axis and the transverse axis arex andy, like in a circular machine.

The Maxwell equations in free space reduce to :

∂Bx

∂x
+
∂By

∂y
+
∂Bs

∂s
= 0 (1)

∂Bx

∂y
=
∂By

∂x
,

∂Bx

∂s
=
∂Bs

∂x
,

∂By

∂s
=
∂Bs

∂y
(2)

We use the property that integration and derivation can be swapped. Integrating equa-

tion 1 with respect tos, we obtain :

∂

∂x

∫ +∞

−∞

Bxds+
∂

∂y

∫ +∞

−∞

Byds+ [Bs]
+∞

−∞
= 0 (3)

As there is no magnetic field far outside the magnet,[Bs]
+∞

−∞
= 0 and equation 1

reduces to a 2D equation for the transverse fields integratedover the longitudinal axis.

Then integrating the first equation in 2 provides the “secondMaxwell equation for
2D fields”.

Integrating the next two equations expresses thatBs is constant since bothBx and
By are zero far outside the magnet. As the total magnetic field iszero far outside the
magnet, the integral ofBs is also zero.

Eventually what remains are two 2D equations for the integratedBx andBy.

11



Appendix III

Dipole end field

We consider the 2D problem of the magnetic field of a dipole in the hard edge
approximation. The longitudinals axis is perpendicular to the magnet end and there
is no variation with the horizontal coordinatex (we assume an extension in x much
larger than the gap). We assume that the field of normalized value1/ρ is vertical inside
the dipole (nox variation), i.e. :by = f(s)

ρ
. f(s) is a dimensionless function of the

longitudinal variables which has a zero integral over the undulator by definition. This
magnetic field satisfies the first Maxwell equation (see appendix II) but not the second
one (2D). Inserting this expression in the second equation,we obtain :

∂bs
∂y

=
∂by
∂s

=
f ′(s)

ρ

wheref ′(s) is the derivative off(s) with respect tos. Integrating this equation, we

obtainbs(s) = yf ′(s)
ρ

since there is no field outside the dipole and no x variation. Then
putting this expression into the first equation, we obtain the next term of the expansion
of By with respect ofy. This procedure can be iterated. We obtain eventually :

by =
1

ρ

[

f(s) − f ′′(s)
y2

2!
+ f (4)(s)

y4

4!
+ ....

]

bs =
1

ρ

[

f ′(s)y − f (3)(s)
y3

3!
+ f (5) y

5

5!
+ ....

]

,

wheref (n)(s) is thenth derivative of the functionf(s). It is easy to check that these
expressions fulfill the 2D Maxwell equations.

The non-linear kick can be calculated exactly in afixed frame by integrations of
the equation of motion :

x′′ = y′bs − by , y′′ = x′bs(bx = 0).

The integration ofx′′ can be performed exactly except for the first term. Taking the
origin at the undulator center andd being its half length, i.e. the distance at which the
field vanishes, we obtain :

x′(s) = x′(−d) +
1

ρ

[

−
∫ s

−d

f(t)dt+
y2

2!
f (1)(s) − y4

4!
f (3)(s) +

y6

6!
f (5)(s) − .....

]

asf(−d) andf (n)(−d) are all zero.

The total kick can be obtained by settings = d. As
∫ +d

−d
f(t)dt, f(+d) and

f (n)(+d) are also zero, there is no kick in the horizontal plane due to the non-linear
fields associated with the longitudinal variation of the vertical field. This does not mean
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that there is no effect. Indeed we have seen that there is a displacement due to the non-
zero value of

∫ +d

−d
du

∫ u

−d
f(t)dt. Assuming that the variation ofy is small along the

undulator, the above equation can be further integrated. Itgives :

x(s) = x(−d)+x′(−d)s+1

ρ

[

−
∫ s

−d

du

∫ u

−d

f(t)dt+
y2

2!

∫ s

−d

f(t)dt− y4

4!
f ′(s) +

y6

6!
f (3)(s) − .....

]

Again due to the absence of field outside of the undulator, thetotal displacement is
only due to the first term. Thus, within the approximation that y does not vary along
the undulator, there is no non-linear effect in the horizontal plane. In the moving frame
used to describe the betatron oscillations there are kinematical non-lirear terms in the
equation of motion. Thus only these terms, which are usuallyneglected in the analysis
of betetron oscillations contribute to the non-linearity of the undulator in the horizontal
plane.

In the vertical plane, the integration of the equation of motion cannot be done sim-
ply as we cannot assume that the coordinate x does not vary much along the undulator.

The assumption that the y coordinate varies little is associated with the small phase
advance over the length of the undulator. The optics functions calculated in the undu-
lator are given in Table 4.

βx/m µx/2π Dx/m βy/m µy/2π
entrance 105.80 24.29212899 -0.000138 246.15 22.3715008

mid first pole 105.72 24.29247783 0.0005025 246.51 22.37166539
mid second pole 105.76 24.29236971 -0.000141 246.39 22.3716042
mid third pole 105.70 24.29279118 -0.000124 246.81 22.37178491
end undulator 105.63 24.29328824 -0.000105 247.31 22.37199749

Table 4: Optics functions inside the undulator computed with MADX. The poles are
modeled with a sequence of constant field dipoles of length 0.02m as described in
section 2.
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