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Abstract

An undulator is installed in IR4 to produce synchrotron &tidin. The pertur-
bation it introduces in LHC is examined. It has little effect the closed orbit, a
negligible effect on the tune. lIts intrinsic non-lineaggiare negligible (analysis
by ray tracing). Specifications on the multipole contenttsfimtegrated field are
given to produce no effect on the dynamic aperture.
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Figure 1: Schematic view of the undulator

1 Introduction

The determination of the beam size in LHC can be done withrakdevices [1]. One
of them is based on the detection of the synchrotron radiatimitted by a special
undulator [2] consisting of four alternating magnetic po(see fig. 1) housed in IR4 as
shown on figure 2.

The integral of the magnetic field on the axis is zero. The filddcription is ex-
amined in section 2. A beam passing though this device doegat@ny deflection
but a displacement perpendicular to the entrance trajectie associated closed orbit
distortion is evaluated in Section 3. The effect on the tusevaluated in Section 4.

It is worth evaluating the importance of this wiggler withmgile comparisons.
In synchrotron light machines, wigglers are introducedalthperturb significantly
the linear optics (see for instance [3] in which the lattiseehcompasses matching
quadrupoles to accommodate the wiggler). It is straightéod to test the importance
of such a perturbation with a simple model with hard edge ldgo It appears that
the LHC wiggler is less important than that described in [Blabout four orders of
magnitude, which is confirmed by the simple model. The noadr effect are also
reduced accordingly, they are associated with the longitddariation of the field and
are examined in Sections 5. Conventional 2D specificationsoltipole components
are relevant and are given in Section 6.

2 Description of the undulator field.

The variation of the vertical magnetic field on the axis of tmelulator is shown in
Figure 3. The integrated magnetic field is zero on the axis.

For ray tracing the model of the field on the axis as given onré@y together with
the assumption of invariance by x-translation (transvewvgbe beam), is sufficient to
compute the value of the field off-axis by expanding it in Taid series and putting
them in Maxwell’s equations.

For the MADX computation, the undulator effect can be modéle describing the
undulator with a sequence of dipoles. Actually a sequencéostd orbit correctors is
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Figure 2: Installation of the undulator close to the dipo®iB IR4. The synchrotron
radiation is observed on a screen 10m from D3 while the prb&am is deflected by
D3.

used.

The simplest model consists of four dipoles of length 0.14m. Each dipole has
a constant magnetic fiel® given by B = QB/W, so that the integrated field of each
piece is equal to that of half an oscillation of the field shawrFigure 3 (note that the
small oscillations at both ends have been neglected). Thdeirhas the advantage of
a simple analytic treatment.

A more accurate model has been constructed to reproducadgiesaand displace-
ment obtained by ray tracing. Each undulation of the fieldeisctibed by a sequence
of six dipoles of length 1d=0.02m with fields equal respeeitjivto Bsin(r dl / 0.14),
Bsin(2r dI / 0.14) andBsin(3r dI / 0.14). With this model it is possible to reproduce
the trajectory shown on figure 4.

3 Effect of the dipole component.

Although the undulator gives no kick, it produces a transeelisplacement of the par-
ticle trajectories. The integration of the trajectoriesy(tracing) by means of the code
ZGOUBI [4] produces a displacement shown on figure 4. Thealvdisplacement is
35um.

The four dipole model overestimates the displacement wiBiébur times the dis-
placement due to a single dipole, i.e. 85 (the field overshoot at the end has been
neglected).

The maximum closed orbit distortion obtained by ray tradé;80um. The maxi-
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Figure 3: Longitudinal variation of the vertical magnetieldi in the undulator (full
line). The dotted line is a fit with the functiopr—2:22 sin of the longitu-
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dinal coordinates.

mum distortionz(s) at positions, calculated for the four dipole model in appendix |,
is given by :

ol B(s)

#(s) = 2s8in@ I5)

wheref is the kick angle associated with a single dipole, the uéabg being an
average over the undulator, i.e. about 105m. With the LH€tiibaal part of the tune
of 0.28 and for a maximum value of thtefunction in the arcs of 200m, the maximum
value ofz(s) in the arcs is 0.052mm. The calculation with MAD for the sanmeded
gives the same number.

Itis possible to cancel the closed orbit distortion in thesaby localizing the closed
orbit distortion in the undulator region by means of a lodaked orbit bump. This is
shown in Figure 5. The horizontal closed orbit correctoesduare close to Q5 on the
left, Q6 and Q8 on the right. The respective kick angles are-0.007 and -0.0Q@ad,
i.e. smaller than 0.2% of the nominal strength.

The actual undulator might have a non-zero integrated fiéel express the asso-
ciated kick as a fraction of the kick of a single dipole in the four dipole model. The
associated maximum closed orbit distortiéris) is given by :

ng

els) = 5o /BB = (5) L

© 2sin7@

We have seen that the maximum valuet¢$) is small and that the corrector strength
to cancel it is very small. Therefore a value 6f(s) of the same order ag(s) is
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Figure 4: Trajectory of a 450GeV proton starting on the uathrl axis obtained by
ray tracing. The curve with the larger amplitude of the datidns corresponds to a
starting point with a vertical offset of 3cm.

acceptable, i.e. an error of the integrated field of the uatdubf the order of3i? /3 =
9-10~%Tm, i.e. 9Gauss.m is quite acceptable. An error 10 timesrgs kaould take
less than 2% of the maximum corrector strength, i.e. it is atxeptable. An error 100
times as large is not acceptable as it consumes too much obthector strength and
reduces the aperture by 2mm at a critical point, openingkeofisystematic quench of
D3.

4 Quadrupole effects.

If a particle trajectory passes with a non-zero arfigkarough a place where the vertical
magnetic field changes abruptly, this produces a focusifegteh the vertical plane,
as well as non-linear components. The focusing strengtivéndpy 26 B/(Bp), where
(Bp) is the magnetic rigidity of the particles. We can evaluat@ater of magnitude
of the effect by considering a trajectory which enters theéulator perpendicular to the
first dipole. In this case there are two places where thecti@jg crosses dipole edges
with opposite field changes and opposite angles. The assdciartical tune-shift
AQy is given by :

86 B
8= By

Its numerical value is 0.0001. The calculation done withtdAD and ray tracing (see
section 5) give smaller results as the actual angles aréhnsétquoted above. In any
case the tune-shift due to the undulator is totally negligibs well as the associated
(-beating.
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Figure 5: localization of the closed orbit distortion duehe undulator by means of

three closed orbit correctors (strength smaller thapi@d). The displacement of the

trajectory due to the undulator is clearly seen on the figarger.

The quadrupole effect has been analyzed by means of rapgrathe integration
of trajectories has been done over the whole LHC. Only chtimityasextupoles have
been included in order to compare the multipole effects dled 3D field of the undu-
lator with those of these sextupoles. A comparison betwiewarious computations
is given in table 1.

Table 1:Optical parameters in LHC, with or without fringe fields (FEhdulator. The anhar-

momicities are evaluated from tracking with asg18mplitude.

I No FF, undulator off | FF +undulator off| FF+undulator on
MAD ray-tracing
Frac.Q. / Qy 0.2800 / 0.3100 || 0.2800 /0.3100 | 0.2798 /0.3098 | 0.2798 / 0.3098
Q. / Q_; 1.978 / 1.751 1.951 / 1.812 1.952 / 1.816 1.953 / 1.816
nQy 157 / 78 137 /-8 137 /10

= /”ﬁ% /”jjiy — /-1540 / 512 | 423 /-1670 / 590 | 470 /-1630 / 630

5 Intrinsic multipole effects.

As the field of the undulator is essentially three dimendidgha description of the mul-
tipole errors used for the usual magnets of circular machisi@ot relevant a priori.
Actually it can be shown that the usual description is nénedetss valid for the inte-
grated transverse field components (see appendix Il). indess for these components
are established in section 6.



The multipole effects associated with the longitudinalaton of the vertical mag-
netic field are addressed in appendix lll. It is shown thahibre-linearities are expected
to have an effect only in the vertical plane.

From trajectory tracking a little above the LHC dynamic dpeg at injection, i.e.
at 135, the three anharmonicities have been evaluated. Theysted in table 1.

Trajectories starting with a radial amplitude3dis in both planes have been tracked
over 510* turns using ray tracing. The phase space plots associatedhei machine
and its chromaticity sextupoles are shown on figure 6. Theesalots obtained by
adding the undulator are shown on figure 7. The differencevdost the plots is
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Figure 6:Initial amplitudes of 20, 25 and 30 three initial angles 1545° and 75 in the {x,y}
plane,5 10" turns. Fringe fields set in all dipoles and quadrupoles, rolatizity sextupoles on,
no undulator.
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Figure 7:Initial amplitudes of 20, 25 and 30, three initial angles 1545° and 75 in the {x,y}
plane,5 10" turns. Fringe fields set in all dipoles and quadrupoles, rolatizity sextupoles on,
undulator excited at full field.

indistinguishable with the exception of two trajectorigthvslightly different tunes in
the vertical plane. The detunings obtained at 3@e very close to each other, they are
listed in table 2. This shows that the intrinsic non-lingas due to the undulator are
very small compared with those associated with the chraihagextupoles. As the
latter are negligible, the intrinsic non-linearities agated with the undulator are even
more negligible.

As the non-linearities are negligible and as dispersiomis at the location of the



undulator, no effect on the non-linear chromaticity is estpd. This has been checked
by ray tracing and Fourier analysis as for the case of larg@tioe amplitudes. The
differences in tunes for a relative momentum deviationt@f003 is in the range of

somel0~° which is totally negligible.

Angle (deg.)

N, 15° 45° 75°
0 0.279815/0.309758 0.279815/0.309759 0.279815/0.3975
1 0.279795/0.309720 0.279789/0.309726 0.279784/0.3D973
5 0.279848/0.309489 0.279708/0.309648 0.279505/0.3D982
9 0.280047/0.308760 0.279386/0.309438 0.278794/0.31007
13 0.280239/0.3077438 0.278961/0.309086 0.277731/G66RL0
20 0.280744/0.305190 0.27779/0.308167 0.274812/0.3R118
25 0.281192/0.302753 0.27658/0.307286 0.271918/0.31205
30 0.281651/0.299863  0.27498/0.306312 0.268394/0.3306

15° 45° 75°
0 0.279796/0.309783 0.279796/0.309783 0.279796/0.3978
1 0.279798/0.309767 0.279792/0.309775 0.279787/0.3D978
5 0.279853/0.309537 0.279711/0.309683 0.279513/0.3D991
9 0.280056/0.308807 0.279392/0.309498 0.278798/0.3.010
13  0.280244/0.307781 0.278971/0.309120 0.277735/04104
20  0.280749/0.305218 0.277794/0.308199 0.274818/03112
25 0.281198/0.302779 0.276596/0.307332 0.271924/0%120
30 0.281658/0.299890 0.274994/0.306361 0.268404 /01331

Table 2: Tunes),,/Q, vs No and angle. (Fourier expansion, 1000 turns). Upper table
: machine as for fig. 6, lower table : machine as for fig. 7

6 Multipole effects due to imperfections

Because of mechanical imperfections the integrated fieti@findulator may not be
zero. In particular the integral may vary with the distaneehte axis. This integral
can be described with a polynomial of the horizontal positi@ecause of the small
variation of the phase advance in the undulator and as thesitt non-linearities have
been shown to be negligible, it is legitimate to identifystpiolynomial with that of a
standard description of dipole errors in LHC. This is showappendix II.

If the associated multipole components have the same vakidse random mul-
tipole components in a single main dipole, they will have reasurable effect on the
dynamic aperture. The integrated components are givenascidn of the dipole field
errorsb,, by the formula:

(n - 1)' bn Zdip

(n—1)!
b
pRnfl

Zan—lB bl n—1 _ -~ ),
/9% 0.0177- 1™

(Bp) =7.7107*



whereR is the reference radius (0.017m) gmthe radius of curvature in the dipoles.
The numerical formula gives the integrated components id~Tmb,, being given in
units of 10~4. The values of the integrated components are given in Tabls3hey
are associated with the r.m.s. dipole field errors, erragelaby a factor of 3 are
acceptable.

Itis worth comparing these values to reference valueseatiian, like the sextupole
component of the chromaticity sextupoles of 45Thor the octupole componentin the
Landau octupoles of 60000TT.

n 3 [ 4 5 6 7 8 9 10
br.a 147 051] 043 | 009 | 022 0.04 0.07 0.01

1 2 Byypm—+2 | 78 | 480 | 5.410" [ 5.810° | 510° | 3.810" | 3.110" | 2410
Bn.d 048] 051 034 [ 0.7 [ 0.08 0.08 0.12 0.01

1 2 _Be T "+2 | 25 | 480 | 4.310* | 8910° | 1.810° | 7.610'" | 5.310" | 2.410'

Table 3: Possible multipole errors in the undulator at ausdf 17 mm. The measure-
ment is done with a rotating coil extending over the whole negErrors larger by
a factor three, i.e. equal to the maximum error set in tracking, are acceptable.

7 Conclusion

The introduction of the undulator to measure the LHC beama dizes not have any
consequence from the point of view of single particle efedthe closed orbit distor-
tion has a maximum amplitude smaller than 0.04mm. It can b#yezorrected with
the closed orbit correctors. The tune shifts are compleatebligible. The intrinsic
non-linearities are probably negligible because the phdsance across the undulator
is small. The field errors computed from a polynomial fit of agiation of the vertical
field along the x axis should be smaller than those given ineTakabove in order to
have no effect on the dynamic aperture. The integrated faltbdiffer from zero by
90Gauss.m at most.
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Appendix |

Closed orbit distortion due to two close opposite dipoles

The centers of the two dipoles are labeled 1 and 2. The clasicistortionz(s)
at the positiors in the machine, associated with a deflectfoim dipole 1 and—6 in
dipole 2 is given by :

x(s) = \/— [\/7cos )+ p1) — /B2 cos((s) + H2)}

2sinw@

This expression can be expanded in termesfy(s) + w1 ) andsin(t(s) + p1). From
the coefficients of these two members, the maximum amplifideof the distortion
in the machineis :

\/51 + B2 — 2/ B1 P2 cos(p2 — 1)

For the case where the length of the dipoles (0.14m in our)dasesry small com-
pared withg; andgs (105m in our case), the phase advance can be approximated wit
1/+/B1B2 andB2 ~ 1 — 2a4l. Introducing these expressions in the above equation,
we obtain eventually :

ool B(s) a1l
#(s) = 2sin Q) ? (1 + E)

Z(s) =

2 sin 7TQ

As «1=0.11 in our casei(s) is very well approximated with :

0l B(s)

B(s) = 2(s) = 2sinw@Q \| B

For a value of5(s) of 200m and a field of 2.5T in the dipoles, the valueig§) is
0.027mm at 450GeV.

For our case, there are two sets of two opposite dipoles wisle an additive
effect if the phase advance between both is neglected, sevérdual maximum dis-
tortion in the arcs will be 0.054mm.
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Appendix Il

2D Maxwell equations

We consider an isolated magnet of finite length and the Mabegglations in free
space to compute the magnetic field around its axis (there @irrent). The magnet
axis is thes axis and the transverse axis arandy, like in a circular machine.

The Maxwell equations in free space reduce to :

0B, 0B, 0B,
= 1
or oy Js 0 @)
B, 0B, 0B, 0Bs 0B, 0B

= = = 2
Oy Ox ' 0Os Ox ' Os Oy )
We use the property that integration and derivation can la@ped. Integrating equa-

tion 1 with respect ta, we obtain :

2/+OOBdsJFQ/WBds+[B]+"°—o (3)
x| o 7 oy) oo Y Yo

As there is no magnetic field far outside the magth}fz = 0 and equation 1
reduces to a 2D equation for the transverse fields integoatedthe longitudinal axis.

Then integrating the first equation in 2 provides the “seddiadwell equation for
2D fields”.

Integrating the next two equations expresses ihais constant since botB, and
B, are zero far outside the magnet. As the total magnetic fieteiis far outside the
magnet, the integral aB; is also zero.

Eventually what remains are two 2D equations for the integt&,, andB,,.

11



Appendix IlI

Dipole end field

We consider the 2D problem of the magnetic field of a dipolehim hard edge
approximation. The longitudinal axis is perpendicular to the magnet end and there
is no variation with the horizontal coordinate(we assume an extension in x much
larger than the gap). We assume that the field of normalizie@ é is vertical inside
the dipole (nar variation), i.e. :b, = % f(s) is a dimensionless function of the
longitudinal variables which has a zero integral over the undulator by definitionsTh
magnetic field satisfies the first Maxwell equation (see agpdl) but not the second
one (2D). Inserting this expression in the second equatiergbtain :

o, b,  f(s)

oy s p

where f’(s) is the derivative off (s) with respect tos. Integrating this equation, we

obtainb,(s) = @ since there is no field outside the dipole and no x variatidrent
putting this expression into the first equation, we obta@rtbxt term of the expansion
of B, with respect ofy. This procedure can be iterated. We obtain eventually :

2 4
b= 3 |10 = 1+ 1O ]

3 5
b=~ [f’(S)y - f“‘)(s)% + f“’% + } :

wheref (") (s) is then'" derivative of the functiorf(s). It is easy to check that these
expressions fulfill the 2D Maxwell equations.

The non-linear kick can be calculated exactly ifix@d frame by integrations of
the equation of motion :

2" =y'bs — b, , y" =a'bs(by =0).

The integration oft” can be performed exactly except for the first term. Taking the
origin at the undulator center amibeing its half length, i.e. the distance at which the
field vanishes, we obtain :

s 2 4 6
'(s) = 2 (—d) + % [— [d F(t)dt + %f(l)(s) - %f@(s) + L) —

asf(—d) andf(™ (—d) are all zero.
The total kick can be obtained by setting= d. As ffj f)dt, f(+d) and

™ (4d) are also zero, there is no kick in the horizontal plane du@¢onon-linear
fields associated with the longitudinal variation of thetioad field. This does not mean

12



that there is no effect. Indeed we have seen that there ipdésnent due to the non-

zero value offfj du ffd f(t)dt. Assuming that the variation of is small along the
undulator, the above equation can be further integrategivés :

s u 2 s 4 6
2(s) = a:(fd)Jra:'(fd)er% [ /_ddu /_df(t)dtJr % /_df(t)dt - %f’(s) + %f@')(s) e

Again due to the absence of field outside of the undulatortdted displacement is
only due to the first term. Thus, within the approximationtthaoes not vary along
the undulator, there is no non-linear effect in the horiabplane. In the moving frame
used to describe the betatron oscillations there are kitieahaon-lirear terms in the
equation of motion. Thus only these terms, which are usuaglected in the analysis
of betetron oscillations contribute to the non-linearitytee undulator in the horizontal
plane.

In the vertical plane, the integration of the equation ofimtannot be done sim-
ply as we cannot assume that the coordinate x does not vary atoieg the undulator.

The assumption that the y coordinate varies little is asgdediwith the small phase
advance over the length of the undulator. The optics funstalculated in the undu-
lator are given in Table 4.

Bz/m L/ 27 D,/m By/m Wy /2T
entrance 105.80| 24.29212899 -0.000138| 246.15| 22.3715008
mid first pole | 105.72| 24.29247783 0.0005025| 246.51| 22.37166539
mid second pole 105.76| 24.29236971 -0.000141| 246.39| 22.3716042
mid third pole | 105.70| 24.29279118 -0.000124| 246.81| 22.37178491]
end undulator | 105.63| 24.29328824 -0.000105| 247.31| 22.37199749

Table 4: Optics functions inside the undulator computedh WHADX. The poles are
modeled with a sequence of constant field dipoles of lengd®r.as described in
section 2.
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