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Abstract

We study the asymptotic behavior of the ratio of Pauli and Dirac electromagnetic nucleon form

factors, F2/F1, in time-like region for different parametrizations built for the space-like region. We

investigate how fast the ratio F2/F1 approaches the asymptotic limits according to the Phragmèn-

Lindelöf theorem. We show that the QCD-inspired logarithmic behavior of this ratio results in very

far asymptotics, experimentally unachievable. This is also confirmed by the normal component of

the nucleon polarization, Py, in e+ + e− → N + N̄ (in collisions of unpolarized leptons), which

is a very interesting observable, with respect to this theorem. Finally we observe that the 1/Q

parametrization of F2/F1 contradicts this theorem.
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I. INTRODUCTION

The asymptotic behavior of the ratio R = F2/F1 of Pauli and Dirac electromagnetic nu-

cleon form factors (FFs) has recently arised much interest from experimental and theoretical

point of view. The last experimental data in space-like (SL) region [1], about the momentum

transfer squared (q2 = −Q2)dependence1 of the ratio of the Sachs electric and magnetic FFs,

µGEp(Q
2)/GMp(Q

2) (µ is the proton magnetic moment), which has been measured with the

polarization transfer method [2], changed the belief that the QCD asymptotic behavior of

F2/F1 ≃ 1/Q2 [3] had already been reached for Q2 ≥ 2 GeV2 [4].

The recent data suggested a different behavior of this ratio: F2/F1 ≃ 1/
√

Q2. Such de-

pendence has been justified in framework of different theoretical approaches [5–12]. Another

approach, confirming the QCD 1/Q2 behavior, discovered the importance of logarithmic cor-

rections, R ≃ ln2(Q2/Λ2)/Q2 [13], where Λ is the soft scale related to the size of the nucleon.

Note that the unexpected behavior of the ratio µGEp(Q
2)/GMp(Q

2) was predicted before the

experiment took place, by a particular VDM model [14] and also in framework of a soliton

model [9].

The assumption of the analyticity of FFs [15] allows to connect the nucleon FFs in SL

and time-like (TL) regions and to study the behavior of the ratio F2/F1 in TL region. The

analyticity of FFs, which has been discussed for example in Ref. [16], allows to extend a

parametrization of FFs available in one kinematical region to the other kinematical region.

Dispersion relation approaches [17–19], which are based essentially on the analytical prop-

erties of nucleon electromagnetic FFs, can be considered a powerful tool for the description

of the Q2 behavior of FFs in the entire kinematical region.

The VDM model [14], after appropriate treatment of the ρ contribution, can be also

extrapolated from the SL region to the TL region [20–22].

The quark-gluon string model [23] allowed firstly to find the Q2 dependence of the elec-

tromagnetic FFs in TL region, in a definite analytical form, which can be continued in the

SL region.

One of the problems concerning FFs of pions and nucleons is the large difference in the

absolute values in SL and TL regions. For example, at q2=18 GeV2, the largest value at

1 In the following text we will use the notation t = q2 in TL region
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which proton TL FFs have been measured [24], the corresponding values in TL and SL

regions differ by a factor of two. The analyticity of FFs allows to apply the Phragmèn-

Lindelöf theorem [25] which gives a rigorous prescription for the asymptotic behavior of

analytical functions:

lim
t→−∞

F (SL)(t) = lim
t→∞

F (TL)(t). (1)

This means that, asymptotically, FFs have the following constraints:

1. The imaginary part of FFs, in TL region, vanishes: ImFi(t) → 0, as t → ∞;

2. The real part of FFs, in TL region, coincides with the corresponding value in SL

region: ReF
(TL)
i (t)[t → ∞] = F

(SL)
i (t)[t → −∞], because FFs are real functions in SL

region, due to the hermiticity of the corresponding electromagnetic Hamiltonian.

The existing experimental data violate the Phragmèn-Lindelöf theorem, even at t values as

large as 18 GeV2 [26]. In order to test the two requirements stated above, the knowledge

of the differential cross section for e+ + e− ↔ p + p̄ is not sufficient, and polarization

phenomena have to be studied also. In this respect, T-odd polarization observables, which

are determined by ImF1F
∗
2 , are especially interesting. The simplest of these observables is

the Py component of the proton polarization in e+ + e− → p + p̄ that in general does not

vanish, even in collisions of unpolarized leptons [27], or the asymmetry of leptons produced

in p+ p̄ → e+ + e−, in the collision of unpolarized antiprotons with a transversally polarized

proton target (or in the collision of transversally polarized antiprotons on an unpolarized

proton target) [28].

These observables are especially sensitive to different possible parametrizations of the

ratio R, suggested by QCD and VDM models. Calculations have been done up to t ≃ 40

GeV2 and show that the Py component remains large in absolute value [29]. For example,

QCD inspired parametrizations, which fit reasonably well the data in the SL region, predict

|Py| ≃ 35% up to t ≃ 40 GeV2. Such behavior has to be considered an indication that the

corresponding asymptotics are very far, in agreement with the estimations of the quark-gluon

string model [23] and VDM approach [20].

Note another important property of QCD inspired predictions for nucleon FFs: the cor-

responding ImFi(t), t ≥ 4m2, i = 1, 2 (m is the nucleon mass), either vanish or have a

definite sign in the TL region. The previously quoted parametrizations can not apply in the

3



whole TL region: the asymptotic pQCD behavior follows F1(t) ≃ t−2 and F2(t) ≃ t−3 at

large t, according to the quark counting rules [3]. The superconvergent conditions:

∫ ∞

t0
ImFi(t)dt = 0, i = 1, 2 (2)

has to be satisfied, where the lower limit corresponds to t0 = 4m2
π, for isovector FFs, and

t0 = 9m2
π for isoscalar FFs, where mπ is the pion mass.

This implies that the nonzero QCD-contribution to Eq. (2) has to be compensated by

the corresponding non-perturbative contribution of opposite sign. We can expect that such

contribution mainly arises from the special region of t: t0 ≤ t ≤ 4m2, which is unphysical

for the process e+ + e− ↔ p + p̄. The contribution from the different vector mesons (with

different masses) is expected to be very important here. We can say that the supercon-

vergent condition (2) can be interpreted as a manifestation of the special duality between

pQCD, from one side, and the vector meson contribution, from another side [30]. In principle

such duality is similar to the well known Gilman-Bloom duality [31], concerning the electro-

magnetic properties of the nucleons in SL region, when the deep inelastic electron nucleon

scattering is dual to the excitation of different nucleonic resonances in e− + N → e− + N∗.

Also one can mention the duality in hadron physics relating the high energy behavior of

the amplitudes of hadron-hadron scattering, from one side, to the resonance physics, on the

other side.

Returning to the unphysical region, t0 ≤ t ≤ 4m2, we recall, for completeness, that

another interesting physical effect has to be taken into account here: a specific N̄N bound

states, or even gluon states with JPC = 1−− quantum numbers. And, due to the analyticity

of FFs, these effects should appear in the SL region of momentum transfer, and should be

correlated with the asymptotic behavior of FFs.

Our main aim here is to discuss the asymptotic behavior of the existing parametrizations

for F2/F1 in TL region, from the point of view of the Phragmèn-Lindelöf theorem. In

particular we will analyze the behavior of Im(F2/F1), its convergence to zero and study

more particularly the asymptotic behavior of the Py-component of the proton polarization

in e+ + e− → p̄ + p, which contains equivalent information. For completeness we will

also consider the behavior of the ratio R = |F2/F1|TL/|F2/F1|SL which should converge

asymptotically to one, following the Phragmèn-Lindelöf theorem.

In order to have a quantitative estimation of the corresponding value of the relevant
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variable, we will use the following prescription, from Ref. [20]: ”A function f(z) is said to

be x% scaled when its value is x% of the asymptotic value fas(z). The value at which this

condition is met is the solution of the equation |f(z)| = x|fas(z)| ”. For the cases considered

here, this definition translates into the following three equations2:

F = |Im(F2/F1)|/|Re(F2/F1)| = ∆ (3)

|Py| = ∆ (4)

R = |F2/F1|TL/|F2/F1|SL = 1 + ∆ (5)

where we will take ∆ = 0.1 and ∆ = 0.05 in order to characterize the deviations from the

asymptotic predictions of the Phragmèn-Lindelöf theorem.

For this aim, we use the following three different parametrizations, which apply in the

SL region:
F2

F1
=

a
√

(−t)
, a = 1.25 GeV from Ref. [29], (6)

F2

F1
= 0.17[ GeV2]

ln2(−t/Λ2)

(−t)
with Λ = 0.3 GeV from Ref. [13], (7)

and the VDM inspired parametrization from Ref. [21]:

F2

F1

=
F

(S)
2 + F

(V )
2

F
(S)
1 + F

(V )
1

(8)

where

F
(S)
1 (Q2) =

g(Q2)

2

[

(1 − βω − βφ) + βω
µ2

ω

µ2
ω + Q2

+ βφ

µ2
φ

µ2
φ + Q2

]

,

F
(V )
1 (Q2) =

g(Q2)

2

[

(1 − βρ) + βρ

µ2
ρ + 8Γρµπ/π

(µ2
ρ + Q2) + (4µ2

π + Q2)Γρα(Q2)/µπ

]

,

F
(S)
2 (Q2) =

g(Q2)

2

[

(µp + µn − 1 − αφ)
µ2

ω

µ2
ω + Q2

+ αφ

µ2
φ

µ2
φ + Q2

]

,

F
(V )
2 (Q2) =

g(Q2)

2

[

(µp − µn − 1)
µ2

ρ + 8Γρµπ/π

(µ2
ρ + Q2) + (4µ2

π + Q2)Γρα(Q2)/µπ

]

,

where g(Q2) =
1

(1 + γQ2)2
and α(Q2) =

2

π

√

√

√

√

Q2 + 4µ2
π

Q2
ln





√

(Q2 + 4µ2
π) +

√
Q2

2µπ



, with the

standard values of the masses m = 0.939 GeV, µρ = 0.77 GeV, µω = 0.78 GeV, µφ =

2 When fas(z) = 0, we take |f(z)| = x.
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1.02 GeV, µπ = 0.139 GeV and the ρ width Γρ = 0.112 GeV. µp and µn are the magnetic

moments of proton and neutron, respectively, whereas γ = 0.25 GeV−2, βρ = 0.672, βω =

1.102, βφ = 0.112, and αφ = −0.052 are parameters fitted on the data.

This paper is organized as follows. In Section II we analyze the t-behavior of the imaginary

part of the F2/F1 ratio for different approaches, and estimate the corresponding value of

t for deviations of the order of ∆ from the expected asymptotic values. Then we give the

expressions for the polarization observables accessible through the reaction e+ + e− → pp

in terms of the ratio F2/F1 and analyze in particular the Py component of the proton

polarization, which depends on the imaginary part of this ratio (Section III). In Section IV

we study how the ratio R approaches to one, that is the expected value for the asymptotic

regime.

II. IMAGINARY PART OF THE NUCLEON ELECTROMAGNETIC FORM

FACTORS

Let us recall here the definition of the Phragmèn-Lindelöf theorem, which will be the

basis of the following discussion. Following [25]: if f(z) → a as z → ∞ along a straight

line, and f(z) → b as z → ∞ along another straight line, and f(z) is regular and bounded

in the angle between, then a = b and f(z) → a uniformly in the angle”. For the problem

considered here, we identify the variable z with the momentum transfer squared t. So one of

these straight lines can be chosen along the x-axis, in the positive direction (in the complex

z-plane), i.e., for t values corresponding to the TL region, and the other line with negative

x direction, with t in the SL region. Assuming the analyticity of FFs, Fi(t), i = 1, 2, in

the upper part of the z-plane, we satisfy the necessary conditions for the application of the

Phragmèn-Lindelöf theorem, for all nucleon FFs, F1,2(t). More exactly, it holds also for the

four independent FFs F
(S)
1,2 (t) and F

(V )
1,2 (t), where the upper indices (S) or (V ) correspond to

isoscalar or isovector electromagnetic FFs of the nucleon. Note that the analytical properties

of Fi(t), i = 1, 2, should be discussed namely for the isoscalar and the isovector FFs, and

not for proton and neutron, because the unitarity conditions (which allow to calculate the

imaginary part of FFs) have the simplest and most transparent form for the isotopic FFs.

More exactly, isoscalar(isovector) FFs are determined by intermediate states with odd(even)

number of pions.
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So, finally, one can write the following four independent relations:

lim
t→+∞

F
(S,V )
1,2 (t) = lim

t→−∞
F

(S,V )
1,2 (t) (9)

as a consequence of the Phragmèn-Lindelöf theorem.

This theorem has other applications in particle physics, such as, for example, the well

known theorem of Pomeranchuk [32], concerning the asymptotic behavior of the total cross

sections for a + b and ā + b collisions (a and b any hadrons): σT (ab) = σT (āb). However,

to be rigorous, the applicability of this theorem to FFs, which seems evident, has not been

proved up to now3.

Unfortunately, this theorem does not allow to indicate the physical value of t, starting

from which it is working at some level of precision. For this aim one needs some additional

dynamical information.

In our considerations about nucleon electromagnetic FFs, such information is contained

in the parametrizations of FFs. More precisely, we discuss the ratio F2/F1 for the proton

and use those parametrizations which work well in the SL region, where the available precise

experimental data allow to constrain the necessary parameters. It is possible to continue

analytically such parametrizations to the TL region, using the following prescription [29]:

ln(−t) = ln(t) − iπ, t > 0. (10)

Evidently, the choice of sign for the imaginary part4, in Eq. (10), results in strong physical

consequences concerning the calculations of any T-odd polarization observable for e++e− ↔
N + N̄ .

Let us firstly discuss the t-behavior of Im(F2/F1) in TL region, using the QCD in-

spired and VDM parametrizations. Following the Phragmèn-Lindelöf theorem, the ratio

F = |Im(F2/F1)|/|Re(F2/F1)| should converge to zero as t → ∞. And the value of t, cor-

responding to the solution of the equation: F = ∆, ∆ ≪ 1 characterizes how F approaches

to zero.

3 In Ref. [33] one can read ”There is, a priori, no general constraint to ensure that the limit of some

observable, such as a form factor, should be the same in every direction in the complex plane”.
4 Note that in Ref. [28] another sign has been taken: ln(−t) = ln(t) + iπ, whereas in Ref. [34] the formula

ln(−t) = ln(t) ± iπ has been applied for the analytical continuation from SL to TL region.
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After analytical continuation in TL region, one can see that parametrization (6) gives

R → ∞, because it reduces in TL region to:

F2

F1
= i

1.25 GeV√
t

, t > 0 [29]. (11)

Such parametrization definitely contradicts the Phragmèn-Lindelöf theorem because both

form factors can not be real at the same time.

This situation is not changed, after a modification suggested to normalize FFs at t = 0

[29]:

F2

F1

→
[

1

κ2
p

+
t

(1.25)2 GeV2

]−1/2

,

where κp is the proton anomalous magnetic moment.

Parametrization (7) results in the following formula for the relative size of the imaginary

to the real part F :

F =
2π ln(t/Λ2)

ln2(t/Λ2) − π2
, t > 0, (12)

which implies F → 0, if t → ∞, but very slowly. Quantitatively, the condition F = ∆ has

two solutions:

x± = ln
t

Λ2
=

π

∆

(

1 ±
√

1 + ∆2
)

. (13)

For the x+ solution, which should be considered as the physical solution for the TL region,

we obtain:
√

t ≃ 1013 GeV, for ∆ = 0.1,

which represents a very large energy, not far from the Planck scale,
√

t = 1019 GeV. This

last value corresponds to a deviation of 6.5% from the expected asymptotical zero value.

In the model [14], the isoscalar FFs, F
(S)
1,2 , are real in all the kinematical range. Only the

isovector FFs, F
(V )
1,2 , have non vanishing imaginary part, induced by the ρ-meson contribu-

tion, which is, however, one order of magnitude smaller than the real part. The individual

FFs are shown in Fig. 1. A singularity appears in the TL region, for all FFS, due to the

dipole term and in F
(S)
1 , due to a compensation of the ω and φ contributions.

Taking the parameters from Ref. [14], one can find:

F =
19.36

[1 + 0.512ln(
√

t/mπ)]2 − 12.3ln(
√

t/mπ) − 23.5
(14)

with a faster decreasing, proportional to [ln(
√

t/mπ)]−2, relatively to the previously consid-

ered parametrizations. Such asymptotic behavior leads to ∆=0.1(0.05) for
√

t = 1011(1015)
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FIG. 1: Isoscalar and isovector FFs in SL and TL regions. (a) and (b): F
(S)
1 and F

(S)
2 in SL region

(dashed line) and in TL region (solid line), (c) and (d) F
(V )
1 and F

(V )
2 in SL region (dashed line) and

in TL region: real part (solid line), imaginary part (dotted line) and absolute value (dash-dotted

line) which overlaps almost everywhere with the real part.

GeV, again very far from the region experimentally accessible. Note that the contribution

which is linear in logarithm as well as the constant terms in the denominator are important,

as they are responsible for the zero of Re(F2/F1) at ln(
√

t/mπ) ≃ 45, which results in a

number larger than the asymptotic value.

Recently, the model [14] has been modified with respect to a common factor for all FFs

[20, 22]:

(1 − γt)−2 → (1 − γeiθt)−2,

where θ has been taken equal to 530 and γ=0.25 GeV−2. This term moves the corresponding
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singularity t = 1/γ to t = 1/γeiθ ≃ 4e−iθ GeV2 from the physical region of TL momentum

transfer. Such factor does not modify polarization phenomena as it cancels out. However,

such substitution has some shortcomings as it violates the Schwartz reflection symmetry, in

the following relation: F ∗(z) = F (z∗), and does not satisfy the Phragmèn-Lindelöf theorem,

because this factor induces: ImF (t)/ReF (t) ≃ − tan 2θ ≃ 3.5, i.e., a nonzero value in the

asymptotic region.

III. POLARIZATION OBSERVABLES AND ASYMPTOTIC BEHAVIOR OF THE

T-ODD OBSERVABLE Py

Let us analyze the polarization observables related to the process e+ + e− → p + p̄

and their asymptotic behavior for the considered parametrizations of F2/F1. As the cos θ

dependence is not relevant for the following considerations, for the numerical calculations

we take θ = 45o. The cos θ dependence is well known in framework of one photon exchange

[27], therefore, its measurement can be useful to check the validity of this mechanism at

large Q2. It is straightforward to derive the expressions for the polarization observables in

terms of F2/F1 following the formalism derived in Ref. [27]. The reference system is taken

as follows: the z axis along the direction of the colliding electron, the y axis normal to the

scattering plane, defined by the direction of the electron and of the outgoing proton, and

the x axis to form a left-handed coordinate system.

In case of unpolarized beam and target, only a single spin polarization observable does

not vanish, the component of the polarization of the scattered proton which is normal to

the scattering plane, Py:

Py = −τ − 1√
τ

ImF2/F1

D
, (15)

where τ = t/(4m2) and

D =
3

2

∣

∣

∣

∣

1 +
F2

F1

∣

∣

∣

∣

2

+
1

2τ

∣

∣

∣

∣

1 + τ
F2

F1

∣

∣

∣

∣

2

=
1

2

[

3 + 8Re
F2

F1
+

1

τ
+ (τ + 3)

∣

∣

∣

∣

F2

F1

∣

∣

∣

∣

2
]

.

The double spin coefficients, which do not vanish due to parity and C conservations, are:

Axx =
1

2D

[

1 +
1

τ
+ 4Re

F2

F1
+ (1 + τ)

∣

∣

∣

∣

F2

F1

∣

∣

∣

∣

2
]

, (16)

Ayy =
1 − τ

2τD

[

1 − τ

∣

∣

∣

∣

F2

F1

∣

∣

∣

∣

2
]

, (17)
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Axz =
1√
τD

[

1 + (1 + τ)Re
F2

F1
+ τ

∣

∣

∣

∣

F2

F1

∣

∣

∣

∣

2
]

, (18)

Azz =
1

2D

[

3 − 1

τ
+ 4Re

F2

F1
+ (3 − τ)

∣

∣

∣

∣

F2

F1

∣

∣

∣

∣

2
]

, (19)

and they depend on the real part and/or on the modulus of F2/F1. The observable Py, which

contains the imaginary part of the FFs ratio, can bring information for the comparison of

SL and TL asymptotic behavior.

The following formula for Py, at τ ≫ 1, holds for the parametrization (6):

Py = −

(

1 − 1

τ

)

a

m

3 +
1

τ
+

(

1 +
3

τ

)

a2

4m2

→ Py,as = − a/m

3 + a2/(4m2)
≃ −0.387.

This parametrization results in non vanishing (negative) asymptotics Py, with large absolute

value, in contradiction with the Phragmèn-Lindelöf theorem. The behavior of Py for 1/τ ≪ 1

can be approximated by:

Py = Py,as

(

1 − p

τ

)

, p = 1 +
3 + 4m2/a2

1 + 12m2/a2
= 1.67.

This implies that a 10%(5%) difference from asymptotics appears at t = 58.8(117.6) GeV2.

For the logarithmic parametrization (7), the asymptotic behavior of Py is described by:

Py → −0.19
ln(t/Λ2)√

τ
.

One can see that the absolute value decreases with t, and one finds Py = −10%(-5)% at

t ≃ 350(6000) GeV2, still too large to be achieved by experiments.

Finally, the asymptotic behavior of the Py polarization in the model [14, 20] can be

described by the following formula:

Py → 3.5/
√

τ
[

1 + 0.51ln(
√

t/mπ)
]2 → 13.5√

τln2(
√

t/mπ)

with a faster decreasing with t. Note that this polarization is positive in TL region. Moreover

the constant term in the denominator is important at large t, for example, a value of Py=0.02

is reached at t = 2 · 106 GeV2, which corresponds to very far asymptotics.

For the cases discussed above, the large value of |Py| arises questions about the asymptotic

trend of electromagnetic FFs. According to the prescriptions of Phragmèn-Lindelöf theorem,

Py should vanish.
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IV. DIFFERENCE BETWEEN THE ABSOLUTE VALUES OF F2/F1 IN SL AND

TL REGIONS

We mentioned above that the measured values of the magnetic proton FFs are different

in TL and SL regions of momentum transfer, up to t = 18 GeV2, where the TL values of

|GMp|2 exceed by a factor of two the corresponding values in SL region. These values should

approach the same number at asymptotic values of t. But which number?

Let us analyze the behavior of |F2/F1| in TL region, using, again, the considered

parametrizations. The parametrization (6) gives |F2/F1|SL = |F2/F1|TL, at any value of

t. Furthermore, this parametrization gives a specific behavior of the ratio |GE|2/|GM |2 in

TL region. One finds:

|GE|2
|GM |2 =

1 + τ
a2

4m2

1 +
a2

4m2τ

→ τ
a2

4m2
= 0.44τ. (20)

Note, in this respect, that up to now the separation of the electric and magnetic contributions

to the differential cross section in the TL region has not been realized, yet. The analysis of

the experimental data is currently based on two assumptions: either GE = 0 or |GM | = |GE|.
The extracted values for GM according to these prescriptions differ at most by 20%.

However, Eq. (20) suggests another possible relation between GE and GM , that leads to

comparable contributions of the electric and magnetic terms to the cross section, indepen-

dently on the t-value. The resulting value for GM is 10% lower than the value corresponding

to |GM | = |GE|, and still does not compensate the observed difference of FFs in SL and TL

regions.

The parametrization (7) gives the following relation:

R =
|F2/F1|TL

|F2/F1|SL
= 1 +

π2

ln2(t/Λ2)
.

A deviation of R from 1 by 10%(5%) is reached at
√

t ≃ 43(337) GeV.

V. CONCLUSIONS

We have analyzed the asymptotic behavior of recently suggested, pQCD inspired,

parametrizations of the ratio of the Dirac and Pauli FFs, F2/F1. We have based our study

on the requirements given by Phragmèn-Lindelöf theorem, in particular the equality of FFs

12



in SL and TL regions. As FFs are real in SL region and complex in TL region, this implies

that the imaginary part of FFs in TL region vanishes, as well as the polarization of the

emitted proton, in the annihilation reaction e+ + e− ↔ p + p̄ (when the colliding particles

are unpolarized).

We have shown that the considered parametrizations do not satisfy the asymptotic con-

ditions suggested by the Phragmèn-Lindelöf theorem or they do so only for very large values

of Q2, well beyond the experimentally accessible range. In particular, the 1/
√

Q2 behavior

of this ratio, which reproduces the recent measurements in the SL region, is certainly not

compatible with an asymptotic regime, showing that the presently measurable data should

be better interpreted in frame of classical nucleon degrees of freedom.

Concerning the double logarithmic parametrization, it has been pointed out long ago [35],

that a suppression to Sudakov type contributions could take place.

The dipole-like formulas for FFs do satisfy the Phragmèn-Lindelöf theorem. But such

parametrization has the following evident problems:

• the threshold condition: GEN(4m2) = GMN(4m2) is not satisfied,

• the unitarity conditions for all nucleon FFs are strongly violated, as one should have

a branching point at t = 4m2
π for isovector FFs and t = 9m2

π for isoscalar FFs,

• the prediction in TL region underestimates the experimental data.

The analytical continuation of nucleon electromagnetic FFs, presently used to describe

the main properties of nucleon structure in SL region of momentum transfer squared (in

some models), results as a rule, in an essential imaginary part in TL region. Moreover,

the relative value (with respect to the real part) is a very slowly decreasing function of t.

Such behavior, of course, is in agreement with the Phragmèn-Lindelöf theorem, but the

corresponding asymptotic regime corresponds to very large values of t.

The asymptotic regime defined by the prescriptions of the considered models and the

asymptotic properties derived from the analyticity of form factors act at a different level.

Phragmèn-Lindelöf theorem defines the asymptotic conditions without direct connection

with QCD. The most evident application of the Phragmèn-Lindelöf theorem in physics is

the Pomeranchuk theorem - which relates the asymptotic behavior of the total cross section

for NN and NN̄ interaction. This is not QCD regime, because such theorem applies for

13



t = 0, i.e., to evidently non perturbative physics, despite the fact that the Mandelstam

variable s is very large. So the connection between QCD asymptotics and asymptotics from

Phragmèn-Lindelöf theorem, from the point of view of hadron FFs is non trivial, as this

theorem seems to work for elastic NN and NN̄ amplitudes in the kinematical region where

QCD does not apply.

We can consider the present results as an indirect indication of the importance of non

perturbative contributions to the physics of the nucleon electromagnetic structure.
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