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Abstract

This paper describes a novel inpainting algorithm that is capable of filling in holes in

overlapping texture and cartoon image layers. This algorithm is a direct extension of a

recently developed sparse–representation–based image decomposition method called

MCA (morphological component analysis), designed for the separation of linearly-

combined texture and cartoon layers in a given image (see [27, 28]). In this exten-

sion, missing pixels fit naturally into the separation framework, producing separate

layers as a by-product of the inpainting process. As opposed to the inpainting system

proposed by Bertalmio et. al., where image decomposition and filling–in stages were

separated as two blocks in an overall system, the new approach considers separation,

hole-filling, and denoising as one unified task. We demonstrate the performance of the

new approach via several examples.
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1 Introduction

Filling–in ‘holes’ in images is an interesting and important inverse problem with many appli-

cations. Removal of scratches in old photos, removal of overlayed text or graphics, filling–in

missing blocks in unreliably transmitted images, scaling–up images, predicting values in im-

ages for better compression, and more, are all manifestations of the above problem. In recent

years this topic attracted much interest, and many contributions have been proposed for the

solution of this interpolation task. Common to these many techniques is the understanding

that classic interpolation methods (such as polynomial-based approaches) are not satisfying;

indeed nonlinear strategies and local adaptivity seem crucial.

Among the numerous approaches to fill in holes in images, variational methods are very

attractive; these were pioneered by Guillermo Sapiro and his collaborators [6, 22, 23], and

followed by [7]. These techniques were coined Inpainting as a reminder of the recovery

process museums experts do for old and deteriorating artwork. In their work, Sapiro et. al.

motivate the filling-in algorithms by geometrical considerations: one should fill in by smooth

continuation of isophotes. This principle leads to one or another nonlinear partial differential

equation (PDE) model, propagating information from the boundaries of the holes while

guaranteeing smoothness of some sort. In a series of publications, the geometric principle

has been implemented through several different PDEs, aiming to get the most convincing

outcome.

The variational approach has been shown to perform well on piecewise smooth images.

Here and below we call such images cartoons, and think of them as carrying only geometric

information. Real images also contain textured regions, and variational methods generally

fail in such settings. On the other hand, local statistical analysis and prediction have been

shown to perform well at filling in texture content [3, 15, 31].

Of course real images contain both geometry and texture; they demand approaches that

work for images containing both cartoon and texture layers. In addition, approaches based

on image segmentation – labelling each pixel as either cartoon or texture – are to be avoided,

since some areas in the image contain contributions from both layers. Instead, a method of

additively decomposing the image into layers would be preferred, allowing a combination of
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layer-specific methods for filling in.

This motivated the approach in [2]. Building on the image decomposition method by Vese,

Osher, and others [30, 1], the image was separated into cartoon and texture images. The

inpainting was done separately in each layer, and the completed layers were superposed to

form the output image. The layer decomposition, a central component in this approach,

was built on variational grounds as well, extending the notion of Total-Variation [25], based

on a recent model for texture images by Meyer [24]. An interesting feature of this overall

system is that even if the image decomposition is not fully successful, the final inpainting

results can be still quite good, since the expected failures are in areas where the assignment

to cartoon/texture contents is mixed , where both inpainting techniques perform rather well.

In previous papers we presented an alternative approach to layer decomposition, optimiz-

ing the sparsity of each layer’s representation [27, 28]. The central idea is to use two adapted

dictionaries, one adapted to represent textures, and the other to represent cartoons. The

dictionaries are mutually incoherent; each leads to sparse representations for its intended

content type, while yielding non-sparse representations on the other content type. These

are amalgamated into one combined dictionary, and the the basis-pursuit denoising (BPDN)

algorithm [8] is relied upon for proper separation, as it seeks the combined sparsest solution,

which should agree with the sparse representation of each layer separately. This algorithm

was shown to perform well, and was further improved by imposing total-variation (TV) regu-

larization as an additional constraint. A nice feature to this algorithm is its ability to handle

additive noise as a third content type, and separate the given image into three components,

achieving denoising as a by-product.

Naturally, one could deploy such a separation technique in the block diagram strategy

of [2], obtaining an alternative inpainting algorithm. However, separation-by-sparsity offers

a fundamentally different strategic option, integrated inpainting. Indeed, in this paper we

propose an inpainting algorithm capable of filling in holes in either texture or cartoon con-

tent, or any combinations thereof. This new algorithm extends the sparsity–seeking layer

separation method of [27, 28] mentioned above. In effect, we show that missing pixels fit

naturally into the layer-separation framework. As a result, layer separation and denoising of
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the image are integral by-products of the inpainting process.

As opposed to the inpainting system proposed in [2], where the image decomposition and

the filling–in stages were separated, our approach recombines the two ingredients in one.

Our model is general and has several desirable features:

1. The image is allowed to include additive white noise;

2. The image is allowed to have missing pixels; and

3. The image is assumed to be a sparse combination of atoms from the two dictionaries,

Whereas the two first features refer to the measurements of the problem, as manifested in the

likelihood function, the last one plays the role of regularization, proposing a prior knowledge

on the unknown image.

The inpainting method proposed in [20, 21] is closely related to our technique, being

also based on sparse representations. Our method seems to offer substantial advantages,

including: (i) the use of general overcomplete representations which are better suited for

typical image content, (ii) a global treatment of the image, rather than a local block-based

analysis, (iii) a coherent modelling of the overall problem as an optimization, rather than the

presentation of a numerical scheme; and perhaps most important of all, (iv) the ability to

treat overlapping texture and cartoon layers, due to our separation abilities. We will return

to these issues in more depth after describing our algorithm in Section 3.

In the next section we briefly describe the image separation method as presented in [27, 28].

In Section 3 we show how this should be extended to treat missing parts, and discuss the

numerical algorithm that should be employed for the solution of the new optimization task

posed. We describe some experimental results in Section 4 and conclude in Section 5.

2 Image Decomposition using the MCA approach

Let the input image, containing N total pixels, be represented as a 1D vector of length N by

lexicographic ordering. To model images X t containing only texture, we assume that a matrix

Tt ∈MN×L (where typically L À N) allows sparse decomposition, written informally as
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X t = Ttαt αt is Sparse. (1)

Here sparsity can be quantified by any of several different quasi-norms including the `0 norm

‖α‖0 = #{i : α(i) 6= 0}, and `p-norms ‖α‖p = (
∑ |α(i)|p)1/p with p < 1, with small values

of any of these indicating sparsity. Sparsity measured in `0 norm implies that the texture

image can be a linear combination of relatively few columns from Tt.

There are two more technical assumptions. First, localization: the representation matrix

Tt is such that if the texture appears in parts of the image and is otherwise zero, the

representation is still sparse, implying that this dictionary employs a multi-scale and local

analysis of the image content. Second, incoherence: Tt should not be able to represent

cartoon images sparsely. We require that when (1) is applied to images containing cartoon

content, the resulting representations are non-sparse. Thus, the dictionary Tt plays a role

of a discriminant between content types, preferring texture geometry.

Turn now to the geometric layer. Converse to the above, we assume there is a dictionary

Tn, such that a cartoon image Xn is sparsely represented by the above definition. We further

assume that texture images are represented very non-sparsely by Tn, and also assume that

the analysis applied by this dictionary is of multi-scale and local nature, enabling it to

represent localized pieces of the desired content.

For an arbitrary image X containing both texture and piecewise smooth content (super-

posed or segmented), we propose to seek a sparse representations over the combined dictio-

nary containing both Tt and Tn. If we work with the `0 norm as a definition of sparsity, we

need to solve

{αopt
t , αopt

n } = Arg min
{αt, αn}

‖αt‖0 + ‖αn‖0 (2)

subject to: X = Ttαt + Tnαn.

It would be very desirable to obtain the solution of this optimization task. Intuitively, it

should lead to a successful separation of the image content, with Ttαt containing the texture

and Tnαn containing the cartoon. This expectation relies on the assumptions made earlier
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about Tt and Tn being able to sparsely represent one content type while being highly non-

effective in sparsifying the other.

While sensible as a general goal, the problem formulated in Equation (2) is non-convex

and seemingly intractable. Its complexity grows exponentially with the number of columns

in the overall dictionary. The basis pursuit (BP) method [8] suggests the replacement of the

`0-norm with an `1-norm, thus leading to a tractable convex optimization problem, in fact

being reducible to linear programming:

{αopt
t , αopt

n } = Arg min
{αt, αn}

‖αt‖1 + ‖αn‖1 (3)

subject to: X = Ttαt + Tnαn.

Interestingly, recent work has shown that, for certain dictionaries and for objects that have

sufficiently sparse solutions, the BP approach can actually produce the sparsest of all repre-

sentations [10, 11, 16, 18].

If the image is noisy it cannot be cleanly decomposed into sparse texture and cartoon

layers. We therefore propose a noise-cognizant version of BP

{αopt
t , αopt

n } = Arg min
{αt, αn}

‖αt‖1 + ‖αn‖1 (4)

subject to: ‖X −Ttαt −Tnαn‖2 ≤ ε.

This way, the decomposition of the image is only approximate, leaving some error to be

absorbed by content that is not represented well by both dictionaries. The parameter ε stands

for the noise level in the image X. Alternatively, the constrained optimization in (4) can be

replaced by an unconstrained penalized optimization. Both noise-cognizant approaches have

been analyzed theoretically, providing conditions for a sparse representation to be recovered

accurately [9, 29].

Also useful in the context of sparsity–based separation is the imposition of a total variation

(TV) penalty [25]. This works particularly well in recovering piecewise smooth objects with

pronounced edges – i.e. when applied to the cartoon layer. It is most conveniently imposed

as a penalty in an unconstrained optimization:
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{αopt
t , αopt

n } = Arg min
{αt, αn}

‖αt‖1 + ‖αn‖1 (5)

+λ ‖X −Ttαt −Tnαn‖2
2 + γTV {Tnαn}.

Here the total variation of an image I, TV (I) is essentially the `1 norm of the gradient.

Penalizing with TV forces the image Tnαn to have a sparser gradient, and hence to be closer

to a piecewise smooth image. More on TV and how to use it can be found in [25].

As to the actual choice of Tt and Tn, our approach in this work is to choose known

transforms. For texture content we may use transforms such as local DCT, Gabor or wavelet

packets (oscillatory ones to fit texture behavior). For the cartoon content we can use wavelet,

curvelet, ridgelets, contourlets, and there are several more options. In both cases, the proper

choice of dictionaries depends on the actual content of the image to be treated. At this

writing, the best choice of transform will depend on the user’s experience; choices made may

vary from one image to another. For numerical reasons, we restrict our choices to dictionaries

Tt and Tn that have fast forward, inverse, and adjoint transforms. More details on these

issues can be found in [27, 28].

Figure 1 illustrates the layer separation result for the Barbara image, as obtained by the

above described algorithm. Many more such results are given in [27, 28]. This separation was

obtained using the curvelet transform with five resolution levels at Tn, and 50% overlapping

discrete cosine transform with a block size 32× 32 as Tt.

3 Image Inpainting using MCA

Assume that the missing pixels are indicated by a diagonal ‘mask’ matrix M ∈MN×N . The

main diagonal of M encodes the pixel status, namely ‘1’ for an existing pixel and ‘0’ for a

missing one. Thus, in the model (5) we can incorporate this mask by

{αopt
t , αopt

n } = Arg min
{αt, αn}

‖αt‖1 + ‖αn‖1 (6)

+λ ‖M (X −Ttαt −Tnαn)‖2
2 + γTV {Tnαn}.
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Figure 1: The original Barbara image (top), the separated texture (bottom left), and the

separated cartoon (bottom right).
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This way, we desire an approximate decomposition of the input image X to texture and

cartoon parts, Ttαt and Ttαt, respectively, and the fidelity of the representation is measured

with respect to the existing measurements only, disregarding missing pixels. The idea is that

once Ttαt and Tnαn are recovered, those represent entire images, where holes are filled in

by the two dictionaries’ basis functions.

Interestingly, if we simplify the above model by using a single unitary transform T, the

model becomes

X̂ = T · αopt = T · Arg min
α

{
‖α‖1 + λ ‖M (X −Tα)‖2

2

}
= (7)

= Arg min
{Z}

{
‖THZ‖1 + λ ‖M (X − Z)‖2

2

}
,

and this is essentially the model underlying the the method presented in [20, 21]. In his

work, Guleryuz describes an iterated numerical scheme that effectively minimizes the above

function. While the above model leads to a simpler inpainting method, it is a weaker version

of the one proposed here in Equation (6) for several reasons:

• The model in (6) uses general overcomplete representations. This allows to better

match natural image content by choosing the transform to strengthen the sparsity

assumption, which is at the heart of the two methods.

• Using a pair of dictionaries, the algorithm can cope with the combination of linearly

combined texture and cartoon content overlapped in the image.

• The Total-Variation penalty in (6) suppresses the typical ringing artifacts encountered

in using linear transforms. This can be crucial near sharp edges, where ringing artifacts

are strongly visible.

• While the above models (both) consider the image as a whole, the approach taken in

[20, 21] is local and block-based. Thus, multi-scale relations that exist in the image and

could be exploited are overlooked. Still, the formulation of (7) allows T to be chosen as

an orthonormal multi-scale transform that operates on the entire image (e.g., wavelet),

and then improved results could be obtained.
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On the other hand, we should mention that Guleryuz’s block-based approach is much simpler

than the one proposed here, and so has a strong appeal despite the above drawbacks.

Returning to the model in (6), instead of solving this optimization problem directly and

finding two representation vectors {αopt
t , αopt

n }, let us reformulate this problem so as to get the

texture and the cartoon images, X t and Xn, as our unknowns. The reason behind this change

is the obvious simplicity caused by searching lower-dimensional vectors – representation

vectors are much longer than the image they represent for overcomplete dictionaries as the

ones we use here.

Defining X t = Ttαt, given X t we can recover αt as αt = T+
t X t+rt where rt is an arbitrary

vector in the null-space of Tt. A similar structure exists for Xn = Tnαn, with a residual

vector rn in the null-space of Tn. Put these back into (6) we obtain

{Xopt
t , Xopt

n } = Arg min
{Xt, Xn, rt, rn}

‖T+
t X t + rt‖1 + ‖T+

n Xn + rn‖1 (8)

+ λ ‖M (X −X t −Xn)‖2
2 + γTV {Xn}

Subject to: Ttrt = 0 , Tnrn = 0.

The terms T+
t X t and T+

n Xn are overcomplete linear transforms of the images X t and Xn,

respectively. For tight frames, these are equivalent to the multiplication by the adjoint of

the original dictionaries Tt and Tn.

In the spirit of the simplification done in [28], we assume rt = rn = 0. Thus we find a

suboptimal solution to the problem posed in (8). The resulting minimization task becomes

min
{Xt, Xn}

∥∥∥T+
t X t

∥∥∥
1
+

∥∥∥T+
n Xn

∥∥∥
1
+ λ ‖M(X −X t −Xn)‖2

2 + γTV {Xn} . (9)

There are several ways to justify this choice of rt = rn = 0 made above:

• The function minimized in (9) could be perceived as a simplified upper-bound function

to the one in (8). Indeed, per every choice of the pair {X t, Xn}, the value of the function

in (9) is higher than the one obtained in (8) when optimized with respect to rt and rn.

Replacing the original objective with an upper bound of it makes sense here, since the

new formulation is much easier to solve, as it’s unknowns are of substantially smaller

dimension. A crucial question that remains is how far could the optimal solutions
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{X t, Xn} be, when passing from (8) to (9). While we do not explicitly answer this

question here, we show experimentally that the solutions obtained from (9) are of

worth. Also, the next explanations shed some light on the fact that the two are

expected to be quite close in general.

• Interestingly, it is relatively easy to see that if the dictionaries Tt and Tn are square

and non-singular matrices (leading to a complete, rather than overcomplete, represen-

tations), then (8) and (9) are equivalent, implying that the choice rt = rn = 0 loses

nothing. Similarly, if the `1-norms in (8) and (9) are replaced with `2 norms, the two

formulations are again equivalent, regardless of the dictionary sizes. When we depart

from those two simplified cases and consider `1-norm and overcomplete representations,

we know that the two are different, but expect this difference to be relatively small.

The reason is that we are interested in the images X t and Xn, and not their represen-

tations. While rt and rn may be different from zero, their effect on the final outcome is

reduced as we multiply by the dictionaries Tt and Tn to obtain the separated images.

• The formulation in (9) has a solid Bayesian interpenetration, independent of the source

formulation in (8). The new problem format has Maximum A-posteriori Probability

structure, with a log-likelihood term being ‖M(X −X t −Xn)‖2
2, and prior terms for

the cartoon and the texture parts. The priors are analysis-based, with a promotion

of sparsity of the filtered images, T+
t X t and T+

n Xn. In addition, spatial piece-wise

smoothness in the cartoon image is promoted by the TV term. Note, however, that

this change implies a change in the sparsity assumption underlying our method.

The algorithm we use to solve this optimization problem is based on the Block-Coordinate-

Relaxation method with some required changes due to the non-unitary transforms involved,

and the additional TV term [4, 27]. Also, the mask matrix M should be taken into consid-

eration. The MCA algorithm is given below:
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1. Initialization:

– Choose parameters: Lmax - threshold factor, N - number of iterations,

and the parameters λ, γ.

– Initialize Xn = X and Xt = 0.

– Set δ = λ · Lmax.

2. Perform N times:

Part A - Update Xn with Xt fixed:

– Calculate the residual R = M(X −Xt −Xn).

– Calculate the curvelet transform of Xn + R: αn = T+
n (Xn + R).

– Soft threshold the coefficient αn with the δ threshold and obtain α̂n.

– Reconstruct Xn by Xn = Tnα̂n.

Part B - Update Xt with Xn fixed:

– Calculate the residual R = M(X −Xt −Xn).

– Calculate the local-DCT transform of Xt + R: αt = T+
t (Xt + R).

– Soft threshold the coefficient αt with the δ threshold and obtain α̂t.

– Reconstruct Xt by Xt = Ttα̂t.

Part C - TV Penalization:

– Apply TV correction by

Xn = Xn − µ
∂TV {Xn}

∂Xn

= Xn − µ∇ ·
( ∇Xn

|∇Xn|
)

.

(see [25] for more details about this derivative). The parameter µ is

chosen either by a line-search minimizing the overall penalty function,

or as a fixed step-size of moderate value that guarantees convergencea.

3. Update the threshold by δ = δ − λ/N .

4. If δ > λ, return to Step 2. Else, finish.

aThis is were γ influences the algorithm’s outcome.

The numerical algorithm for minimizing (9)1.

1Notice that in turning from the formulation (9) to the algorithm described here, we have changed the

role of λ. In the algorithm is it used as a weight that multiplies the `1-norm terms. This change was made to

better fit the soft-thresholding description, and it has no impact on the way the problem formulation acts.
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As can be seen, by replacing the mask matrix by the identity operator we obtain the

very same algorithm as proposed in [27, 28] for the task of image decomposition. Thus, this

algorithm is a simple modification of the separation one proposed earlier.

The rationale behind the way the mask is taken into account here is the following: suppose

that after several rounds we have a rough approximation of X t and Xn. In order to update

Xn we assume that X t is fixed and compute the residual image R = M(X −X t −Xn). In

existing pixels (where the mask value is ‘1’) this residual has a content that can be attributed

to texture, cartoon, and/or noise content. On the missing pixels (where the mask is ‘0’) the

residual value is forced to zero by the multiplication with the mask. Thus, the image R+Xn

does not contain holes. An analysis of this image – transforming it to curvelet coefficients,

nulling small entries, and reconstructing it – is able to absorb some of the cartoon content

that exists in R. This way the updated Xn takes some of the cartoon content that exists in

the residual, and the new residual image energy becomes smaller.

In the language of numerical optimization, the above algorithm could be described as

a block-coordinate descent algorithm, where one image (say X t) is fixed while the other

(say Xn) is updated, and vice-versa. Within each such update stage there are two parts

(disregarding the TV treatment): The first minimizes the penalty ‖M(X −X t −Xn)‖2
2 by

assigning Xnew
n ← Xold

n + M(X −X t −Xold
n ). This causes this penalty to be nulled,

‖M(X −X t −Xnew
n )‖2

2 =
∥∥∥M

(
X −X t −Xold

n −M(X −X t −Xold
n )

)∥∥∥
2

2
= 0

since M2 = M. The second part decreases the penalty ‖T+
n Xn‖1 while maintaining proximity

between the outcome and the updated Xn. This is achieved by soft–thresholding. Merged

together, these two steps cause a decrease in the overall penalty as a function of Xn, if the

thresholding is moderate enough. The same applies to the update of X t.

3.1 Why Should This Work?

In this Section we started from the desire to fill-in missing pixels in an image, and concluded

with the claim that a proper way to achieve this goal is the solution of the minimization

problem posed in (9). In the path from the objective to its solution, we have used various
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assumptions and conjectures, without which the overall inpainting process is doomed to fail.

Let us list those assumptions and show how they build the eventual inpainting algorithm:

• Sparse and overcomplete model assumption: We assume that an image could be

modelled as a sparse linear combination of atom images. Furthermore, we assume that

general images could be described as such sparse compositions over two dictionaries,

one responsible for the texture and the other for the cartoon content. These assump-

tions are at the roots of this work. We cannot justify such claims theoretically, and in

fact, it is unclear whether this is at all possible. Instead, we can rely on recent years’

results on the role of sparsity and over-completeness in signal and image processing,

with respect to the wavelet transform, and its advanced versions such as the curvelet

[26], and more. We can also pose these as assumptions we build upon, and see whether

the results agree.

An additional assumption here is the existence of such two dictionaries for the cartoon

and the texture, and our ability to get them. In this work we have chosen specific

known transforms, exploiting their known tendency to sparse compositions. Further

work is needed to replace this stage by a training method that evaluates the dictionaries

from examples. As above, the results of the MCA algorithm will either support such

assumptions or stand as a contradiction.

• Sparsity can be handled with `1: Considering the above assumptions as true, we

need to find the sparsest representation that fits the data. This process, as posed in

(2), is known as atomic decomposition. Since this is a complex combinatorial problem,

it has been relaxed with an `1 formulation. Results gathered in the past four years

support such a relaxation, with a reasonable guarantee of successful recovery of the

desired representation, if it is sparse enough to begin with. Representative work along

these lines can be found in [14, 5, 12, 19, 17, 13, 29], where both the exact and the

noisy cases are considered.

• Treatment of missing samples: Missing pixels in the image are handled by the

weight matrix M introduced in Equation (4). Considering a simplified version of (4),
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without the TV term and with an exact decomposition rather than an inaccurate one,

we get

αopt = Arg min
α

‖α‖1 subject to MX = MTα. (10)

The core question remains: assuming that there is indeed a sparse α such that X = Tα,

will the formulation in (10) be successful in recovering it? How does this depend on the

sparsity of α and the amount of missing pixels marked in M? Clearly, if α is recovered

successfully, then by multiplication by the dictionary we get the filling-in effect we

desire.

These questions and their generalization to the approximate representation case (where

the constraint MX = MTα is replaced by a penalty ‖MX−MTα‖2
2) can be analyzed.

Putting things into perspective, the constraint in (10) essentially states X̃ = T̃α, where

we define X̃ = MX and T̃ = MT. This linear set of equations has a subset of the rows

in the original X = Tα. Thus, previous analysis in the study of uniqueness of sparse

representations and equivalence when using `1 are all applicable. Thus, a study of the

decay of the mutual incoherence as a function of the rows removed could be of help here

(see [14, 5, 12, 19]). We will not show this study here (we are currently working on this

problem and we hope to show some theoretical results soon). Instead we demonstrate

the expected behavior of the above problem via a synthetic experiment.

We use a maximally incoherent two random and orthonormal dictionaries T = [Φ,Ψ]

of size 64×128 [5]. We use a random and sparse representation α with n ∈ [1, 10] non-

zero entries in random locations and with zero mean Gaussian iid entries, and compute

X = Tα. We generate a random missing pattern of k samples with k ∈ [0, 32] missing

samples, and solve (10). Finally, we compare the obtained result Tαopt to the original

signal X, using the following formula: ‖X −Xopt‖2
2/(‖X‖2

2 − ‖Xopt‖2
2). Since the non-

cancelled entries in X are unaffected and are the same as those in Xopt, the denominator

in the above measure gives the energy of the missing values. Thus, the error obtained

is a relative error, being 1 for a simple interpolation that fills the missing values by

zeros.
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Figure 2 presents this relative error as a function of k - the number of missing samples,

and n - the original number of non-zeros in the representation. Per every (k, n) pair

a set of 1000 experiments were performed and averaged. As can be seen, for sparse

enough representations and with small enough number of missing samples, the process

yields perfect recovery (the top left masked area). The results deteriorate as the two

grow, but as can be seen, even for ‖α‖0 = 10 and 32 missing samples, the relative error

is still reasonable, being approximately 0.14. As was said above, a theoretical analysis

of this behavior is currently under study.
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Figure 2: A synthetic experiment showing the relative error in the recovery of missing samples

as a function of their number k and the original representation’s cardinality n. The overlaid

curves are the contour plot of the same data, showing a growth towards the bottom right

corner. The masked area corresponds to a perfect recovery.

• From synthesis to analysis formulation: The last brick in the wall of assumptions

made to solve the inpainting problem, is the transition from the formulation posed in

(8) to (9). Several explanations to justify this change have been already given. Further

work is required to relate the two formulations and bound the difference between their
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solutions.

4 Experimental Results

We present here six experiments demonstrating the separation, inpainting, and denoising

obtained. In these experiments we have used the following parameters: λ = 1, Lmax =

255, N ∈ [30, 200] (number of iterations), and γ ∈ [0.5, 2]. Note that the computational

complexity of the MCA inpainting process is governed mostly by the number of iterations

(inner and outer) NLmax and the complexity in applying the two forward and the inverse

transforms.

Experiment 1 - Synthetic noiseless: Figure 3 shows the Adar image with two cases of

missing data (left). The Adar image is a synthetic combination of cartoon and texture (see

[27, 28] for more details). The results of the MCA-inpainting method using curvelet and

global DCT are shown in Figure 3 (right). Both results show no trace of the original holes,

and look near-perfect.

Experiment 2 - Synthetic with additive noise : In order to show that the proposed

algorithm is capable of denoising as a by-product of the separation and inpainting, we added

a zero mean white Gaussian noise (σ = 10) to the image Adar and then applied the MCA

algorithm. Figure 4 shows the inpainting result and the residual. Notice that the residual

is almost feature-less, implying that the noise was removed successfully, without taking true

texture of cartoon content.

Experiment 3 - Barbara: Figure 5 presents the Barbara image and its inpainting results

for two different patterns of missing data as before. The MCA-inpainting method applied

here used Wavelet and homogeneous decomposition level Wavelet Packets to represent the

cartoon and the texture respectively. Again, the results show no trace to the original holes,

and look natural and artifact-free.

Experiment 4 - Random Mask: Figure 6 presents the Barbara image and its filled-in

results for three random patterns of 20%, 50%, and 80% missing pixels. The unstructured

form of the mask makes the reconstruction task easier. These results are tightly related

to the removal of salt-and-pepper noise in images. As before, the MCA-inpainting method

17



Figure 3: Two synthetic Adar images (top and bottom left) with combined cartoon and

texture, and imposed missing pixels. The results of the MCA inpainting are given in the top

and bottom right.
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Figure 4: MCA inpainting results for the Adar image (with two missing pixels masks - curves

(top) and text (bottom)) contaminated by additive noise. Left: The inpainting result; Right:

the residual.
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Figure 5: Two Barbara images (top and bottom left) and imposed missing pixels. The

results of the MCA inpainting are given in the top and bottom right.
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applied here used Wavelet and Wavelet Packets to represent the cartoon and the texture

respectively, and again, the results look natural and artifact-free.

Experiment 5 - Growing Mask: Figure 7 presents the Barbara image and its filled-in

results for three patterns of missing pixels (9 blocks of size 8×8, 16×16, and 32×32 pixels).

As before, the MCA-inpainting method applied here used Wavelet and Wavelet Packets to

represent the cartoon and the texture respectively. We see that as the regions of missing

pixels grow, the recovery deteriorates, as expected, and smooth behavior is enforced.

Experiment 6 - WMAP data: Figure 8 shows real WMAP cosmic microwave back-

ground (CMB) data (see http://lambda.gsfc.nasa.gov/product/map for more details about

this data), and imposed missing values (uniform gray areas represent missing data). Such

masking is frequently encountered in actual cosmic data gathering, due to foreground com-

ponents contamination. The CMB field is known to be stationary random field. We have

used the global-DCT and the wavelet transform in our MCA-inpainting method and the

results are shown in Figure 8.

5 Discussion

In this paper we have presented a novel method for inpainting – filling holes in an image. Our

method is based on the ability to represent texture and cartoon layers as sparse combinations

of atoms of predetermined dictionaries. The proposed approach is a fusion of Basis Pursuit

with the Total-Variation regularization scheme, allowing missing data and automatically

filling in missing pixels.

Further theoretical work should attempt to document the performance of the method in

filling in missing samples when the object truly has a sparse representation. It seems urgent

to make a thorough study of the approximations used in proceeding from the original model

to the numerical solution. Both topics are in our current research agenda.
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Figure 6: Three Barbara images with 20%, 50%, and 80% missing pixels (right). The results

of the MCA inpainting are given on the left.
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Figure 7: Three Barbara images with three patterns of missing pixels – 9 blocks of size 8×8,

16×16, and 32×32 pixels (right). The results of the MCA inpainting are given on the left.
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Figure 8: WMAP Cosmic Microwave Data and missing values. Upper left: original image

with missing data. Upper right: result of the MCA inpainting. Bottom left, a large band of

missing data have been imposed to the original image. Bottom right, the MCA inpainting

result.
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